Articles | Volume 25, issue 12
https://doi.org/10.5194/hess-25-6107-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-6107-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhanced flood hazard assessment beyond decadal climate cycles based on centennial historical data (Duero basin, Spain)
National Museum of Natural Sciences, MNCN-CSIC, C/ Serrano 115bis,
28006, Madrid, Spain
Olegario Castillo
Dpt. Ingeniería Industrial e Ingeniería Civil, Escuela Técnica Superior de Ingeniería de Algeciras, Universidad de Cádiz, 11202 Algeciras, Cádiz, Spain
Juan A. Ballesteros-Cánovas
Climatic Change Impacts and Risks in the Anthropocene (C-CIA),
Institute for Environmental Sciences, University of Geneva, Geneva,
Switzerland
Maria Machado
National Museum of Natural Sciences, MNCN-CSIC, C/ Serrano 115bis,
28006, Madrid, Spain
Mariano Barriendos
Dpt. d'Història i Arqueologia, Universitat de Barcelona,
Montalegre 6, 08001 Barcelona, Spain
Related authors
Kelly Patricia Sandoval-Rincón, Julio Garrote-Revilla, Daniel Vázquez-Tarrío, Silvia Cervel, Jose Hernández-Manchado, Juan López-Vinielles, Rosa María Mateos, Juan Antonio Ballesteros-Cánovas, Gerardo Benito, and Andrés Díez-Herrero
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-549, https://doi.org/10.5194/essd-2024-549, 2025
Preprint under review for ESSD
Short summary
Short summary
Most published palaeoflood databases are outdated, lack hydrological data, and are difficult to access, especially for non-research communities such as flood risk managers. PaleoRiada, the first open palaeoflood database for Spain, addresses these issues by compiling data from 299 palaeoflood records, accessible via ArcGIS Online. This database aims to support the revision of Potential Significant Flood Risk Areas, providing insights for regions not included in current national flood maps.
Marcos Marín-Martín, Ernesto Tejedor, Gerardo Benito, Miguel A. Saz, Mariano Barriendos, Edurne Martínez del Castillo, Jan Esper, and Martín de Luis
EGUsphere, https://doi.org/10.5194/egusphere-2025-2530, https://doi.org/10.5194/egusphere-2025-2530, 2025
Short summary
Short summary
The Mediterranean faces more extreme weather. To understand these changes beyond short modern records, we studied Spanish pine tree rings, reconstructing over 500 years of rainfall. Our findings show that while past centuries had wet and dry periods, recent decades have experienced an unprecedented surge in both severe droughts and extreme wet events. This long-term view helps assess current climate shifts and their impact on ecosystems and water resources, highlighting the need for adaptation.
Tamir Grodek and Gerardo Benito
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-171, https://doi.org/10.5194/nhess-2024-171, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Check dams, terraces, and trees on steep basins serve to retain sediments, thereby protecting urbanized alluvial fan canals and levees from flooding. However, their effectiveness gradually decreases over time due to sedimentation and aging, which may lead to catastrophic breaching floods. To enhance urban resilience, we propose preserving natural mountain basins and allocating 20–30 % of the alluvial fan for channel migration and sediment deposition corridors.
Kelly Patricia Sandoval-Rincón, Julio Garrote-Revilla, Daniel Vázquez-Tarrío, Silvia Cervel, Jose Hernández-Manchado, Juan López-Vinielles, Rosa María Mateos, Juan Antonio Ballesteros-Cánovas, Gerardo Benito, and Andrés Díez-Herrero
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-549, https://doi.org/10.5194/essd-2024-549, 2025
Preprint under review for ESSD
Short summary
Short summary
Most published palaeoflood databases are outdated, lack hydrological data, and are difficult to access, especially for non-research communities such as flood risk managers. PaleoRiada, the first open palaeoflood database for Spain, addresses these issues by compiling data from 299 palaeoflood records, accessible via ArcGIS Online. This database aims to support the revision of Potential Significant Flood Risk Areas, providing insights for regions not included in current national flood maps.
Marcos Marín-Martín, Ernesto Tejedor, Gerardo Benito, Miguel A. Saz, Mariano Barriendos, Edurne Martínez del Castillo, Jan Esper, and Martín de Luis
EGUsphere, https://doi.org/10.5194/egusphere-2025-2530, https://doi.org/10.5194/egusphere-2025-2530, 2025
Short summary
Short summary
The Mediterranean faces more extreme weather. To understand these changes beyond short modern records, we studied Spanish pine tree rings, reconstructing over 500 years of rainfall. Our findings show that while past centuries had wet and dry periods, recent decades have experienced an unprecedented surge in both severe droughts and extreme wet events. This long-term view helps assess current climate shifts and their impact on ecosystems and water resources, highlighting the need for adaptation.
Tamir Grodek and Gerardo Benito
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-171, https://doi.org/10.5194/nhess-2024-171, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Check dams, terraces, and trees on steep basins serve to retain sediments, thereby protecting urbanized alluvial fan canals and levees from flooding. However, their effectiveness gradually decreases over time due to sedimentation and aging, which may lead to catastrophic breaching floods. To enhance urban resilience, we propose preserving natural mountain basins and allocating 20–30 % of the alluvial fan for channel migration and sediment deposition corridors.
Duncan Pappert, Mariano Barriendos, Yuri Brugnara, Noemi Imfeld, Sylvie Jourdain, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2545–2565, https://doi.org/10.5194/cp-18-2545-2022, https://doi.org/10.5194/cp-18-2545-2022, 2022
Short summary
Short summary
We present daily temperature and sea level pressure fields for Europe for the severe winter 1788/1789 based on historical meteorological measurements and an analogue reconstruction approach. The resulting reconstruction skilfully reproduces temperature and pressure variations over central and western Europe. We find intense blocking systems over northern Europe and several abrupt, strong cold air outbreaks, demonstrating that quantitative weather reconstruction of past extremes is possible.
Santiago Gorostiza, Maria Antònia Martí Escayol, and Mariano Barriendos
Clim. Past, 17, 913–927, https://doi.org/10.5194/cp-17-913-2021, https://doi.org/10.5194/cp-17-913-2021, 2021
Short summary
Short summary
How did cities respond to drought during the 17th century? This article studies the strategies followed by the city government of Barcelona during the severely dry period from 1620 to 1650. Beyond the efforts to expand urban water supply sources and to improve the maintenance of the system, the city government decided to compile knowledge about water infrastructure into a book and to restrict access to it. This management strategy aimed to increase the city's control over water.
Cited articles
Aires, C., Pereira, D. I., and Azevedo, T. M.: Inundações do rio
Douro: dados históricos e hidrológicos, I Jornadas do
Quarternário da APEQ, Porto, available at: http://web.letras.up.pt/asaraujo/APEQ/p11.html (last access: 26 November 2021), 2000.
Alcoforado, M. J., Silva, L. P., Amorim, I., Fragoso, M., and Garcia, J. C.:
Historical floods of the Douro River in Porto, Portugal (1727–1799), Climatic
Change, 165, 17, https://doi.org/10.1007/s10584-021-03039-7, 2021.
Aldrete, G. S.: Floods of the Tiber in ancient Rome, Johns Hopkins
University Press, Baltimore, 338 pp., 2007.
Alonso-Zarza, A. M., Armenteros, I., Braga, J. C., Muñoz, A., Pujalte,
V., Ramos, E., Aguirre, J., Alonso-Gavilán, G., Arenas, C., Ignacio
Baceta, J., Carballeira, J., Calvo, J. P., Corrochano, A., Fornós, J.
J., González, A., Luzón, A., Martín, J. M., Pardo, G., Payros,
A., Pérez, A., Pomar, L., Rodriguez, J. M., and Villena, J.: Tertiary, in: The Geology of Spain, edited by: Gibbons, W. and Moreno, T., Geological Society of London, London, UK, 632 pp., https://doi.org/10.1144/gospp.13, 2002.
Álvarez-Vázquez, J. A.: Drought and rainy periods in the province of
Zamora in the 17th, 18th, and 19th centuries, in: Quaternary climate in
Western Mediterranean, edited by: Lopez-Vera, F., Universidad Autónoma
de Madrid, Madrid, Spain, 221–235, 1986.
Amorim, I., Garcia, J. C., and Silva, L. P.: As cheias do rio Douro no Porto
(Portugal) do século XVIII, SÉMATA, 29, 185–217, 2017.
Antón, F.: El Arte Románico Zamorano. Monumentos primitivos,
Biblioteca de Heraldo de Zamora, Zamora, Spain, available at: https://bibliotecadigital.jcyl.es/es/consulta/registro.do?id=3773 (last access: 24 November 2021), 1927.
Baker, V. R.: Paleoflood hydrology: Origin, progress, prospects,
Geomorphology, 101, 1–13, https://doi.org/10.1016/j.geomorph.2008.05.016, 2008.
Ballesteros-Cánovas, J. A., Rodriguez-Morata, C., Garofano-Gomez, V.,
Rubiales, J. M., Sanchez-Salguero, R., and Stoffel, M.: Unravelling past
flash flood activity in a forested mountain catchment of the Spanish Central
System, J. Hydrol., 529, 468–479, 2015.
Ballesteros-Cánovas, J. A., Stoffel, M., Benito, G., Rohrer, M.,
Barriopedro, D., García-Herrera, R., Beniston, M., and Brönnimann,
S.: On the extraordinary winter flood episode over the North Atlantic Basin
in 1936, Ann. N.Y. Acad. Sci., 1436, 206–216, https://doi.org/10.1111/nyas.13911, 2019.
Barriendos, M. and Martín-Vide, J.: Secular Climatic Oscillations as
Indicated by Catastrophic Floods in the Spanish Mediterranean Coastal Area
(14th–19th Centuries), Climatic Change, 38, 473–491, https://doi.org/10.1023/a:1005343828552,
1998.
Barriendos, M. and Rodrigo, F. S.: Study of historical flood events on
Spanish rivers using documentary data, Hydrol. Sci. J., 51, 765–783,
https://doi.org/10.1623/hysj.51.5.765, 2006.
Barriendos, M., Gil-Guirado, S., Pino, D., Tuset, J., Pérez-Morales, A.,
Alberola, A., Costa, J., Balasch, J. C., Castelltort, X., Mazón, J., and
Ruiz-Bellet, J. L.: Climatic and social factors behind the Spanish
Mediterranean flood event chronologies from documentary sources (14th–20th
centuries), Global Planet. Change, 182, 102997,
https://doi.org/10.1016/j.gloplacha.2019.102997, 2019.
Benito, G., Machado, M. J., and Pérez-González, A.: Climate change
and flood sensitivity in Spain, Geological Society, London, Special
Publications, 115, 85–98, https://doi.org/10.1144/gsl.sp.1996.115.01.08, 1996.
Benito, G., Díez-Herrero, A., and Fernández De Villalta, M.:
Magnitude and frequency of flooding in the Tagus basin (Central Spain) over
the last millennium, Climatic Change, 58, 171–192, https://doi.org/10.1023/A:1023417102053,
2003.
Benito, G., Lang, M., Barriendos, M., Llasat, M. C., Francés, F.,
Ouarda, T., Thorndycraft, V., Enzel, Y., Bardossy, A., Coeur, D., and
Bobée, B.: Use of Systematic, Palaeoflood and Historical Data for the
Improvement of Flood Risk Estimation. Review of Scientific Methods, Nat.
Hazards, 31, 623–643, https://doi.org/10.1023/B:NHAZ.0000024895.48463.eb, 2004.
Benito, G., Rohde, R., Seely, M., Külls, C., Dahan, O., Enzel, Y., Todd,
S., Botero, B., Morin, E., Grodek, T., and Roberts, C.: Management of
Alluvial Aquifers in Two Southern African Ephemeral Rivers: Implications for
IWRM, Water Resour. Manage., 24, 641–667, https://doi.org/10.1007/s11269-009-9463-9, 2010.
Benito, G., Botero, B. A., Thorndycraft, V. R., Rico, M., Sánchez-Moya, Y., Sopeña, A., Machado, M. J., and Dahan, O.: Rainfall-runoff modelling and palaeoflood hydrology applied to reconstruct centennial scale records of flooding and aquifer recharge in ungauged ephemeral rivers, Hydrol. Earth Syst. Sci., 15, 1185–1196, https://doi.org/10.5194/hess-15-1185-2011, 2011.
Benito, G., Brázdil, R., Herget, J., and Machado, M. J.: Quantitative historical hydrology in Europe, Hydrol. Earth Syst. Sci., 19, 3517–3539, https://doi.org/10.5194/hess-19-3517-2015, 2015a.
Benito, G., Macklin, M. G., Zielhofer, C., Jones, A. F., and Machado, M. J.:
Holocene flooding and climate Change in the Mediterranean, Catena, 130,
13–33, https://doi.org/10.1016/j.catena.2014.11.014, 2015b.
Benito, G., Macklin, M. G., Panin, A., Rossato, S., Fontana, A., Jones, A.
F., Machado, M. J., Matlakhova, E., Mozzi, P., and Zielhofer, C.: Recurring
flood distribution patterns related to short-term Holocene climatic
variability, Scientific Reports, 5, 16398, https://doi.org/10.1038/srep16398, 2015c.
Benito, G., Harden, T. M., and O'Connor, J. E.: Quantitative Paleoflood
Hydrology, in: Reference Module in Earth Systems and Environmental Sciences,
2nd edn., edited by: Wohl, E., Elsevier, the Netherlands, 22 pp.,
https://doi.org/10.1016/B978-0-12-409548-9.12495-9, 2020.
Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J., and Kirchner, J.
W.: The Relative Importance of Different Flood-Generating Mechanisms Across
Europe, Water Resour. Res., 55, 4582–4593, https://doi.org/10.1029/2019WR024841, 2019.
Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J.,
Vázquez-Cendón, E., Dolz, J., and Coll, A.: Iber: herramienta de
simulación numérica del flujo en ríos, Revista Internacional de
Métodos Numéricos para Cálculo y Diseño en Ingeniería,
30, 1–10, https://doi.org/10.1016/j.rimni.2012.07.004, 2014.
Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka,
J., Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A.,
Boháč, M., Bonacci, O., Borga, M., Čanjevac, I., Castellarin,
A., Chirico, G. B., Claps, P., Frolova, N., Ganora, D., Gorbachova, L.,
Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen,
T. R., Kohnová, S., Koskela, J. J., Ledvinka, O., Macdonald, N.,
Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A.,
Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J. L., Sauquet,
E., Šraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., and
Živković, N.: Changing climate both increases and decreases European
river floods, Nature, 573, 108–111, https://doi.org/10.1038/s41586-019-1495-6, 2019.
Blöschl, G., Kiss, A., Viglione, A., Barriendos, M., Böhm, O.,
Brázdil, R., Coeur, D., Demarée, G., Llasat, M. C., Macdonald, N.,
Retsö, D., Roald, L., Schmocker-Fackel, P., Amorim, I., Belinová,
M., Benito, G., Bertolin, C., Camuffo, D., Cornel, D., Doctor, R., Elleder,
L., Enzi, S., Garcia, J. C., Glaser, R., Hall, J., Haslinger, K.,
Hofstätter, M., Komma, J., Limanówka, D., Lun, D., Panin, A.,
Parajka, J., Petric, H., Rodrigo, F. S., Rohr, C., Schönbein, J.,
Schulte, L., Silva, L. P., Toonen, W., Valent, P., Waser, J., and Wetter,
O.: Current flood-rich period is exceptional compared to the past 500 years
in Europe, Nature, 583, 560–566, https://doi.org/10.1038/s41586-020-2478-3, 2020.
Botero, B. A. and Francés, F.: AFINS Version 2.0-Análisis de
Frecuencia de Extremos con Información Sistemática y No
Sistemática, Research Group on Hydraulic and Hydrology, Department of
Hydraulic Engineering and Environment, Politechnical University of Valencia,
Valencia, Spain, 2006.
Botero, B. A. and Francés, F.: Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models, Hydrol. Earth Syst. Sci., 14, 2617–2628, https://doi.org/10.5194/hess-14-2617-2010, 2010.
Brázdil, R., Dobrovolný, P., Elleder, L., Kakos, V., Kotyza, O.,
Květoň, V., Macková, J., Müller, M., Štekl, J., Tolasz,
R., and Valášek, H.: Historical and Recent Floods in the Czech
Republic, Masaryk University, Czech Hydrometeorological Institute, Brno,
Prague, 2005.
Brázdil, R., Kundzewicz, Z. W., Benito, G., Demarée, G., MacDonald,
N., and Roald, L. A. (Eds.): Historical floods in Europe in the past
Millennium, Changes in Flood Risk in Europe, IAHS Press, Wallingford, UK,
121–166, 2012.
Brönnimann, S.: Early twentieth-century warming, Nat. Geosci., 2,
735–736, https://doi.org/10.1038/ngeo670, 2009.
Brönnimann, S., Ewen, T., Luterbacher, J., Diaz, H. F., Stolarski, R.
S., and Neu, U.: A focus on climate during the past 100 years, in: Climate
variability and extremes during the past 100 years, Springer, Dordrecht,
1–25, https://doi.org/10.1007/978-1-4020-6766-2_1, 2008.
Cohn, T. A., Lane, W. L., and Baier, W. G.: An algorithm for computing
moments-based flood quantile estimates when historical flood information is
available, Water Resour. Res., 33, 2089–2096, https://doi.org/10.1029/97WR01640, 1997.
Cohn, T. A., England, J. F., Berenbrock, C. E., Mason, R. R., Stedinger, J.
R., and Lamontagne, J. R.: A generalized Grubbs-Beck test statistic for
detecting multiple potentially influential low outliers in flood series,
Water Resour. Res., 49, 5047–5058, https://doi.org/10.1002/wrcr.20392, 2013.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman,
P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri,
M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L.,
Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis
Project, Q. J. Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Cœur, D. and Lang, M.: Use of documentary sources on past flood events
for flood risk management and land planning, C. R. Geosci., 340, 644–650,
https://doi.org/10.1016/j.crte.2008.03.001, 2008.
Dacre, H., Clark, P., Lavers, D., Martínez-Alvarado, O., and Stringer,
M.: How Do Atmospheric Rivers Form?, B. Am. Meteorol. Soc., 96, 1243–1255,
https://doi.org/10.1175/BAMS-D-14-00031.1, 2015.
Delgado-Iglesias, J. and Alonso-Gavilán, G.: Aportaciones a la
interpretación de los sedimentos del tránsito Cretacico
superior-Paleoceno en la ciudad de Zamora, Boletin Geologico y Minero, 119,
181–200, 2008.
Demarcación Hidrográfica del Duero (DHD): Plan de Gestión del Riesgo de Inundación, Ministerio de Agricultura Alimentación y Mediambiente, Madrid, Spain, 135 pp., available at: https://www.chduero.es/pgri-plan-de-gestion-del-riesgo-de-inundacion (last access: 26 November 2021), 2016.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte,
L., and Blöschl, G.: Debates – Perspectives on socio-hydrology:
Capturing feedbacks between physical and social processes, Water Resour.
Res., 51, 4770–4781, https://doi.org/10.1002/2014WR016416, 2015.
Döll, P., Jiménez-Cisneros, B., Oki, T., Arnell, N. W., Benito, G.,
Cogley, J. G., Jiang, T., Kundzewicz, Z. W., Mwakalila, S., and Nishijima,
A.: Integrating risks of climate change into water management, Hydrol. Sci.
J., 60, 4–13, https://doi.org/10.1080/02626667.2014.967250, 2015.
Elleder, L., Herget, J., Roggenkamp, T., and Nießen, A.: Historic floods
in the city of Prague – a reconstruction of peak discharges for 1481–1825
based on documentary sources, Hydrol. Res., 44, 202–214,
https://doi.org/10.2166/nh.2012.161, 2013.
England Jr., J. F., Cohn, T. A., Faber, B. A.,
Stedinger, J. R., Thomas Jr., W. O., Veilleux, A. G., Kiang, J. E., and Mason
Jr., R. R.: Guidelines for determining flood flow frequency – Bulletin 17C, Reston, VA, Report 4-B5, 168, https://doi.org/10.3133/tm4B5, 2019.
Enríquez de Salamanca, C.: Rutas del románico en la provincia de
Zamora, Castilla Ediciones, Valladolid, Spain, 152 pp., 1998.
European Commission: Impact of climate change on floods: Survey
findings and possible next steps to close the knowledge and implementation
gap, Version 1, EC Working Group on Floods, 28th meeting, 26 April 2021, DG Environment, Brussels, 26, internal document available at: https://circabc.europa.eu (last access: 26 November 2021), 2021.
EXCIMAP: Handbook on good practices for flood mapping in Europe, European
Commission, 57 pp., available at: https://ec.europa.eu/environment/water/flood_risk/flood_atlas/pdf/handbook_goodpractice.pdf (last access: 24 November 2021), 2007.
Fernández Duro, C.: Memorias históricas de la ciudad de Zamora, su provincia y obispado, 4 volumes, Establecimiento Tipográfico de los Sucesores de Rivadeneyra, Madrid, available at: https://bibliotecadigital.jcyl.es/es/consulta/registro.cmd?id=1190, (last access: 23 November 2021), 1882.
Flynn, K. M., Kirby, W. H., and Hummel, P. R.: User's manual for program
PeakFQ annual flood-frequency analysis using Bulletin 17B guidelines, U.S. Geological Survey, Techniques and Methods Book 4, Chapter B4, 42 pp., available at: https://pubs.usgs.gov/tm/2006/tm4b4/tm4b4.pdf (last access: 24 November 2021), 2006.
Fontana Tarrats, J. M.: Entre el cardo y la rosa. Historia del clima de las
Mesetas, typescript report, Madrid, 269, 1971–1977.
Frances, F.: Flood frequency analysis using systematic and non-systematic
information, in: SPHERE Gudelines, edited by: Benito, G. and Thorndycraft,
V. R., CSIC, Madrid, 55–70, 2004.
Frances, F., Salas, J. D., and Boes, D. C.: Flood frequency-analysis with
systematic and historical or paleoflood data-based on the 2-parameter
General Extreme-Value models, Water Resour. Res., 30, 1653–1664,
https://doi.org/10.1029/94wr00154, 1994.
García, L. E., Matthews, J. H., Rodriguez, D. J., Wijnen, M.,
DiFrancesco, K. N., and Ray, P.: Beyond Downscaling: A Bottom-Up Approach to
Climate Adaptation for Water Resources Management, World Bank Group,
Washington, DC, 62, 2014.
Gestengabe, R. W. and Werner, P. C.: Katalog der Grosswetterlagen Europas
(1881–2004) Nach Paul Hess Und Helmut Brezowsky, Potsdam Institut Für
Klimafolgenforschung, Postdam, Germany, 2005.
Glaser, R., Riemann, D., Schönbein, J., Barriendos, M., Brázdil, R.,
Bertolin, C., Camuffo, D., Deutsch, M., Dobrovolný, P., van Engelen, A.,
Enzi, S., Halíčková, M., Koenig, S. J., Kotyza, O.,
Limanówka, D., Macková, J., Sghedoni, M., Martin, B., and
Himmelsbach, I.: The variability of European floods since AD 1500, Climatic
Change, 101, 235–256, 2010.
Gomez-Moreno, M.: Catálogo Monumental de España. Provincia de
Zamora, Ministerio de Instrucción Pública y Bellas Artes, Madrid,
1927.
Gutiérrez González, J. A.: Orígenes y evolución urbana de
Zamora, in: Civitas, MC Aniversario de la Ciudad de Zamora, Junta de Castilla y León, Imprenta Jambrina, Zamora, Spain, 20–33, 1993.
Herget, J. and Meurs, H.: Reconstructing peak discharges for historic flood
levels in the city of Cologne, Germany, Global Planet. Change, 70, 108–116,
https://doi.org/10.1016/j.gloplacha.2009.11.011, 2010.
Hurrell, J. W.: Decadal Trends in the North Atlantic Oscillation: Regional
Temperatures and Precipitation, Science, 269, 676–679,
https://doi.org/10.1126/science.269.5224.676, 1995.
IPCC: Special Report on Managing the Risks of Extreme Events and Disasters
to Advance Climate Change Adaptation, Cambridge Univ. Press, New York, NY, USA, 582 pp., 2012.
Kagan, R. L.: Ciudades del Siglo de Oro. Las vistas españolas de Anton
van der Wyngaede, Ediciones El Viso, Madrid, Spain, 432 pp., 2008.
Kundzewicz, Z. W., Lugeri, N., Dankers, R., Hirabayashi, Y., Döll, P.,
Pińskwar, I., Dysarz, T., Hochrainer, S., and Matczak, P.: Assessing
river flood risk and adaptation in Europe – review of projections for the
future, Mitig. Adapt. Strat. Gl., 15, 641–656,
https://doi.org/10.1007/s11027-010-9213-6, 2010.
Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N.,
Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood,
R., Brakenridge, G. R., Kron, W., Benito, G., Honda, Y., Takahashi, K., and
Sherstyukov, B.: Flood risk and climate change: global and regional
perspectives, Hydrol. Sci. J., 59, 1–28, https://doi.org/10.1080/02626667.2013.857411, 2014.
Kundzewicz, Z. W., Su, B., Wang, Y., Wang, G., Wang, G., Huang, J., and Jiang, T.: Flood risk in a range of spatial perspectives – from global to local scales, Nat. Hazards Earth Syst. Sci., 19, 1319–1328, https://doi.org/10.5194/nhess-19-1319-2019, 2019.
La Opinión – El Correo de Zamora: Memoria Gráfica de Zamora, La Opinión – El Correo de Zamora, Junta de Castilla y León and Caja España, Zamora, Spain, 396 pp., 2000.
Lang, M., Ouarda, T. B. M. J., and Bobée, B.: Towards operational
guidelines for over-threshold modelling, J. Hydrol., 225, 103–117, 1999.
Larrén, H.: La evolución urbana de la ciudad de Zamora a través
de los vestigios arqueológicos, Codex aquilarensis: cuadernos de investigación del Monasterio de Santa María la Real,, 15, 91–118, 1999.
Lavers, D. A. and Villarini, G.: The contribution of atmospheric rivers to
precipitation in Europe and the United States, J. Hydrol., 522, 382–390,
https://doi.org/10.1016/j.jhydrol.2014.12.010, 2015.
Lavers, D. A., Villarini, G., Allan, R. P., Wood, E. F., and Wade, A. J.:
The detection of atmospheric rivers in atmospheric reanalyses and their
links to British winter floods and the large-scale climatic circulation,
J. Geophys. Res.-Atmos., 117, D20106, https://doi.org/10.1029/2012JD018027,
2012.
Lavers, D. A., Allan, R. P., Villarini, G., Lloyd-Hughes, B., Brayshaw, D.
J., and Wade, A. J.: Future changes in atmospheric rivers and their
implications for winter flooding in Britain, Environ. Res. Lett.,
8, 034010, https://doi.org/10.1088/1748-9326/8/3/034010, 2013.
Leese, M. N.: Use of censored data in the estimation of Gumbel distribution
parameters for annual maximum flood series, Water Resour. Res., 9,
1534–1542, https://doi.org/10.1029/WR009i006p01534, 1973.
Lins, H. F. and Cohn, T. A.: Stationarity: Wanted dead or alive?,
J. Am. Water Resour. As., 47, 475–480,
https://doi.org/10.1111/j.1752-1688.2011.00542.x, 2011.
López, J. and Francés, F.: Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates, Hydrol. Earth Syst. Sci., 17, 3189–3203, https://doi.org/10.5194/hess-17-3189-2013, 2013.
López-Moreno, J. I., Beguería, S., Vicente-Serrano, S. M., and
García-Ruiz, J. M.: Influence of the North Atlantic Oscillation on
water resources in central Iberia: Precipitation, streamflow anomalies, and
reservoir management strategies, Water Resour. Res., 43, W09411,
https://doi.org/10.1029/2007WR005864, 2007.
López-Moreno, J. I., Vicente-Serrano, S. M., Morán-Tejeda, E.,
Lorenzo-Lacruz, J., Kenawy, A., and Beniston, M.: Effects of the North
Atlantic Oscillation (NAO) on combined temperature and precipitation winter
modes in the Mediterranean mountains: Observed relationships and projections
for the 21st century, Global Planet. Change, 77, 62–76,
https://doi.org/10.1016/j.gloplacha.2011.03.003, 2011.
Loureiro, A.: Portos marítimos de Portugal e Ilhas Adjacentes, Imprensa Nacional, Lisboa, Portugal, 520 pp., 1904.
Luterbacher, J., Schmutz, C., Gyalistras, D., Xoplaki, E., and Wanner, H.:
Reconstruction of monthly NAO and EU indices back to AD 1675, Geophys. Res.
Lett., 26, 2745–2748, https://doi.org/10.1029/1999GL900576, 1999.
Macdonald, N.: Reassessing flood frequency for the River Trent through the
inclusion of historical flood information since AD 1320, Hydrol. Res.,
44, 215–233, https://doi.org/10.2166/nh.2012.188, 2013.
Machado, M. J., Botero, B. A., López, J., Francés, F., Díez-Herrero, A., and Benito, G.: Flood frequency analysis of historical flood data under stationary and non-stationary modelling, Hydrol. Earth Syst. Sci., 19, 2561–2576, https://doi.org/10.5194/hess-19-2561-2015, 2015.
Marquina, R. J.: Proyecto del Salto de Villalcampo en el Río Duero
(Zamora), Anexo 3, Determinación de la máxima avenida probable, Saltos del Duero S. A., Zamora, 82 pp., 1941–1944.
Marquina, R. J.: Crecidas extraordinarias del río Duero. Parte 1: Datos
Históricos, Revista de Obras Públicas, 97, Madrid, Spain, 202–213, 1949a.
Marquina, R. J.: Crecidas extraordinarias del río Duero. Parte 2:
Determinación de Caudales, Revista de Obras Públicas, 97, Madrid, Spain, 370–377,
1949b.
Martin Serrano, A.: La definicion y el encajamiento de la red fluvial actual
sobre el macizo Hesperico en el marco de su geodinamica alpina, Revista de
la Sociedad Geologica de España, 4, 337–351, 1991.
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz,
Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Climate change –
Stationarity is dead: Whither water management?, Science, 319, 573–574,
https://doi.org/10.1126/science.1151915, 2008.
Ministerio de Medio Ambiente (MMA): Guía Metodológica para el desarrollo del Sistema Nacional de
Cartografía de Zonas Inundables, Ministerio de Medio Ambiente y Medio
Rural y Marino Madrid, Spain, 349 pp., available at: https://www.miteco.gob.es/es/agua/publicaciones/guia_metodologica_ZI.aspx (last access: 26 November 2021), 2011.
Morán-Tejeda, E., Fassnacht, S. R., Lorenzo-Lacruz, J.,
López-Moreno, J. I., García, C., Alonso-González, E., and
Collados-Lara, A.-J.: Hydro-Meteorological Characterization of Major Floods
in Spanish Mountain Rivers, Water, 11, 2641, https://doi.org/10.3390/w11122641, 2019.
Naulet, R., Lang, M., Ouarda, T., Coeur, D., Bobee, B., Recking, A., and
Moussay, D.: Flood frequency analysis on the Ardeche river using French
documentary sources from the last two centuries, J. Hydrol., 313, 58–78,
https://doi.org/10.1016/j.jhydrol.2005.02.011, 2005.
Nobre, G. G., Jongman, B., Aerts, J., and Ward, P. J.: The role of climate
variability in extreme floods in Europe, Environ. Res. Lett., 12,
084012, https://doi.org/10.1088/1748-9326/aa7c22, 2017.
Oliva, M., Ruiz-Fernández, J., Barriendos, M., Benito, G., Cuadrat, J.
M., Domínguez-Castro, F., García-Ruiz, J. M., Giralt, S.,
Gómez-Ortiz, A., Hernández, A., López-Costas, O.,
López-Moreno, J. I., López-Sáez, J. A., Martínez-Cortizas,
A., Moreno, A., Prohom, M., Saz, M. A., Serrano, E., Tejedor, E., Trigo, R.,
Valero-Garcés, B., and Vicente-Serrano, S. M.: The Little Ice Age in
Iberian mountains, Earth-Sci. Rev., 177, 175–208,
https://doi.org/10.1016/j.earscirev.2017.11.010, 2018.
Pardé, M.: Sur la génèse et les caractères de plusieurs
grandes inondations récentes, Ann. Geog., 62, 18–36, 1953.
Puig y Larraz, G.: Descripción física y geológica de la provincia de Zamora, Comisión del Mapa Geológico de España, Imprenta y Fundición de Manuel Tello, Madrid, Spain, 488 pp., 1883.
Ralph, F. M., Neiman, P. J., Wick, G. A., Gutman, S. I., Dettinger, M. D.,
Cayan, D. R., and White, A. B.: Flooding on California's Russian River: Role
of atmospheric rivers, Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689, 2006.
Ralph, F. M., Neiman, P. J., Kiladis, G. N., Weickmann, K., and Reynolds, D.
W.: A Multiscale Observational Case Study of a Pacific Atmospheric River
Exhibiting Tropical–Extratropical Connections and a Mesoscale Frontal
Wave, Mon. Weather Rev., 139, 1169–1189, https://doi.org/10.1175/2010mwr3596.1, 2011.
Ralph, F. M., Dettinger, M. D., Lavers, D. A., Gorodetskaya, I., Martin, A.,
Viale, M., White, A., Oakley, N. S., Rutz, J. J., Spackman, J. R., Wernli,
H., and Cordeira, J. M.: Atmospheric rivers emerge as a global science and
applications focus, B. Am. Meteorol. Soc., 98, 1969–1973,
https://doi.org/10.1175/BAMS-D-16-0262.1, 2017.
Rodríguez-Méndez, F. J. and García-Gago, J. M.: Wyngaerde en
Zamora, EGE Revista de Expresión Gráfica en la Edificación, 8,
67–75, https://doi.org/10.4995/ege.2014.12486, 2014.
Rodríguez-Méndez, F. J., Andrés-Rodrigo, H., Rubio-Cavero, M.
P., and García-Gago, J. M.: El puente medieval de Zamora a comienzos
del siglo XX. Un estudio del alcance de la intervención del ingeniero
Luis de Justo, Anuario 2009 Instituto de Estudios Zamoranos Florián de
Ocampo, Zamora, 26, 227–268, 2012.
Rodríguez-Rodríguez, L., Antón, L., Rodés, Á.,
Pallàs, R., García-Castellanos, D., Jiménez-Munt, I., Struth,
L., Leanni, L., Aumaître, G., Bourlès, D., and Keddadouche, K.:
Dates and rates of endo-exorheic drainage development: Insights from fluvial
terraces (Duero River, Iberian Peninsula), Global Planet. Change, 193,
103271, https://doi.org/10.1016/j.gloplacha.2020.103271, 2020.
Salgueiro, A. R., Machado, M. J., Barriendos, M., Pereira, H. G., and
Benito, G.: Flood magnitudes in the Tagus River (Iberian Peninsula) and its
stochastic relationship with daily North Atlantic Oscillation since mid-19th
Century, J. Hydrol., 502, 191–201, https://doi.org/10.1016/j.jhydrol.2013.08.008, 2013.
Serinaldi, F. and Kilsby, C. G.: Stationarity is undead: Uncertainty
dominates the distribution of extremes, Adv. Water Resour., 77, 17–36,
https://doi.org/10.1016/j.advwatres.2014.12.013, 2015.
Silva, J. and Oliveira, M.: As cheias na parte portuguesa da bacia
hidrográfica do rio Douro, III Congreso Ibérico sobre gestión y planificación del agua: “La Directiva Marco del Agua: realidades y futuros”, Fundación Nueva Cultura del Agua, University of Seville, Sevilla, Spain, 13–17 November 2002, 16 pp., 2002.
Stedinger, J. R. and Cohn, T. A.: Flood Frequency Analysis With Historical
and Paleoflood Information, Water Resour. Res., 22, 785–793,
https://doi.org/10.1029/WR022i005p00785, 1986.
Stewart, I. T.: Changes in snowpack and snowmelt runoff for key mountain
regions, Hydrol. Process., 23, 78–94, https://doi.org/10.1002/hyp.7128, 2009.
St. George, S., Hefner, A. M., and Avila, J.: Paleofloods stage a comeback,
Nat. Geosci., 13, 766–768, https://doi.org/10.1038/s41561-020-00664-2, 2020.
Taborda, J. P.: O Temporal de 3 a 6 de Dezembro de 1739 em Portugal.
Reconstituição a partir de fontes documentais descritivas,
Finisterra, 41, 73–86, https://doi.org/10.18055/Finis1450, 2006.
Trigo, R., Varino, F., Ramos, A., Valente, M., Zêzere, J., Vaquero, J.,
Gouveia, C., and Russo, A.: The record precipitation and flood event in
Iberia in December 1876: description and synoptic analysis, Frontiers in
Earth Science, 2, feart.2014.00003, https://doi.org/10.3389/feart.2014.00003, 2014.
United Nations Office for Disaster Risk Reduction (UNISDR): Sendai Framework for Disaster Risk Reduction 2015–2030, UNISDR, Geneva, Switzerland, 37 pp., 2015.
Vaquero, J. M.: Solar Signal in the Number of Floods Recorded for the Tagus
River Basin over the Last Millennium, Climatic Change, 66, 23–26,
https://doi.org/10.1023/B:CLIM.0000043146.37662.de, 2004.
Velhas E.: As cheias na área urbana do Porto: risco, percepção e ajustamentos, Territorium, 4, 49–62, 1997.
Veilleux, A. G., Cohn, T. A., Flynn, K. M., Mason Jr., R. R., and Hummel, P.
R.: Estimating magnitude and frequency of floods using the PeakFQ 7.0
program, Reston, VA, Report 2013-3108, https://doi.org/10.3133/fs20133108, 2014.
Waliser, D. and Guan, B.: Extreme winds and precipitation during landfall of
atmospheric rivers, Nat. Geosci., 10, 179–183, https://doi.org/10.1038/ngeo2894, 2017.
Wetter, O., Pfister, C., Weingartner, R., Reist, T., Trösch, J., and
Luterbacher, J.: The largest floods in the high Rhine Basin since 1268
assessed from documentary and instrumental evidence, Hydrol. Sci. J., 56,
733–758, https://doi.org/10.1080/02626667.2011.583613, 2011.
Wilhelm, B., Ballesteros Cánovas, J. A., Macdonald, N., Toonen, W. H.
J., Baker, V., Barriendos, M., Benito, G., Brauer, A., Corella, J. P.,
Denniston, R., Glaser, R., Ionita, M., Kahle, M., Liu, T., Luetscher, M.,
Macklin, M., Mudelsee, M., Munoz, S., Schulte, L., St. George, S., Stoffel,
M., and Wetter, O.: Interpreting historical, botanical, and geological
evidence to aid preparations for future floods, Wiley Interdisciplinary
Reviews: Water, 6, e1318, https://doi.org/10.1002/wat2.1318, 2019.
Woollings, T., Hannachi, A., and Hoskins, B.: Variability of the North
Atlantic eddy-driven jet stream, Q. J. Roy. Meteor. Soc., 136, 856–868,
https://doi.org/10.1002/qj.625, 2010.
Zataraín-Fernández, M.: Apuntes y noticias curiosas para formalizar la historia eclesiástica de Zamora y su Diócesis, Ed. San José, Zamora, 355 pp., available at: https://bibliotecadigital.jcyl.es/es/consulta/registro.cmd?id=3769 (last access: 24 November 2021), 1898.
Short summary
Climate change is expected to increase the intensity of floods, but changes are difficult to project. We compiled historical and modern flood data of the Rio Duero (Spain) to evaluate flood hazards beyond decadal climate cycles. Historical floods were obtained from documentary sources, identifying 69 floods over 1250–1871 CE. Discharges were calculated from reported flood heights. Flood frequency using historical datasets showed the most robust results, guiding climate change adaptation.
Climate change is expected to increase the intensity of floods, but changes are difficult to...