Articles | Volume 25, issue 11
Hydrol. Earth Syst. Sci., 25, 6023–6039, 2021
https://doi.org/10.5194/hess-25-6023-2021
Hydrol. Earth Syst. Sci., 25, 6023–6039, 2021
https://doi.org/10.5194/hess-25-6023-2021

Research article 24 Nov 2021

Research article | 24 Nov 2021

The impact of wind on the rainfall–runoff relationship in urban high-rise building areas

Xichao Gao et al.

Related authors

A Framework for Automatic Calibration of SWMM Considering Input Uncertainty
Xichao Gao, Zhiyong Yang, Dawei Han, Guoru Huang, and Qian Zhu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-367,https://doi.org/10.5194/hess-2020-367, 2020
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Theory development
Drivers of nitrogen and phosphorus dynamics in a groundwater-fed urban catchment revealed by high-frequency monitoring
Liang Yu, Joachim C. Rozemeijer, Hans Peter Broers, Boris M. van Breukelen, Jack J. Middelburg, Maarten Ouboter, and Ype van der Velde
Hydrol. Earth Syst. Sci., 25, 69–87, https://doi.org/10.5194/hess-25-69-2021,https://doi.org/10.5194/hess-25-69-2021, 2021
Short summary
Isotopic reconnaissance of urban water supply system dynamics
Yusuf Jameel, Simon Brewer, Richard P. Fiorella, Brett J. Tipple, Shazelle Terry, and Gabriel J. Bowen
Hydrol. Earth Syst. Sci., 22, 6109–6125, https://doi.org/10.5194/hess-22-6109-2018,https://doi.org/10.5194/hess-22-6109-2018, 2018
Short summary
Fractal analysis of urban catchments and their representation in semi-distributed models: imperviousness and sewer system
Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, Susana Ochoa-Rodriguez, Patrick Willems, Abdellah Ichiba, Li-Pen Wang, Rui Pina, Johan Van Assel, Guendalina Bruni, Damian Murla Tuyls, and Marie-Claire ten Veldhuis
Hydrol. Earth Syst. Sci., 21, 2361–2375, https://doi.org/10.5194/hess-21-2361-2017,https://doi.org/10.5194/hess-21-2361-2017, 2017
Short summary
Urban hydrology in mountainous middle eastern cities
T. Grodek, J. Lange, J. Lekach, and S. Husary
Hydrol. Earth Syst. Sci., 15, 953–966, https://doi.org/10.5194/hess-15-953-2011,https://doi.org/10.5194/hess-15-953-2011, 2011

Cited articles

Best, A.: The size distribution of raindrops, Q. J. Roy. Meteor. Soc., 76, 16–36, https://doi.org/10.1002/qj.49707632704, 1950. 
Blocken, B. and Carmeliet, J.: Driving rain on building envelopes – I. Numerical estimation and full-scale experimental verification, J. Therm. Envel. Build. Sci., 24, 61–85, https://doi.org/10.1177/109719630002400104, 2000a. 
Blocken, B. and Carmeliet, J.: Driving rain on building envelopes – II. Representative experimental data for driving rain estimation, J. Therm. Envel. Build. Sci., 24, 89–110, https://doi.org/10.1106/EGXC-T4CL-E8VN-9JRL, 2000b. 
Blocken, B. and Carmeliet, J.: A review of wind-driven rain research in building science, J. Wind Eng. Ind. Aerod., 92, 1079–1130, https://doi.org/10.1016/j.jweia.2004.06.003, 2004. 
Blocken, B. and Carmeliet, J.: High-resolution wind-driven rain measurements on a low-rise building – experimental data for model development and model validation, J. Wind Eng. Ind. Aerod., 93, 905–928, https://doi.org/10.1016/j.jweia.2005.09.004, 2005. 
Download
Short summary
We proposed a theoretical framework and conducted a laboratory experiment to understand the relationship between wind and the rainfall–runoff process in urban high-rise building areas. The runoff coefficient (relating the amount of runoff to the amount of precipitation received) found in the theoretical framework was close to that found in the laboratory experiment.