Articles | Volume 25, issue 11
https://doi.org/10.5194/hess-25-6023-2021
https://doi.org/10.5194/hess-25-6023-2021
Research article
 | 
24 Nov 2021
Research article |  | 24 Nov 2021

The impact of wind on the rainfall–runoff relationship in urban high-rise building areas

Xichao Gao, Zhiyong Yang, Dawei Han, Kai Gao, and Qian Zhu

Related authors

A highly generalizable data-driven model for spatiotemporal urban flood dynamics real-time forecasting based on coupled CNN and ConvLSTM
Wangqi Lou, Xichao Gao, Joseph Hun Wei Lee, Jiahong Liu, Jing Peng, Lirong Dong, and Kai Gao
EGUsphere, https://doi.org/10.5194/egusphere-2025-3171,https://doi.org/10.5194/egusphere-2025-3171, 2025
Short summary
Preface: Advances in pluvial and fluvial flood forecasting and assessment and flood risk management
Cristina Prieto, Dhruvesh Patel, Dawei Han, Benjamin Dewals, Michaela Bray, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 24, 3381–3386, https://doi.org/10.5194/nhess-24-3381-2024,https://doi.org/10.5194/nhess-24-3381-2024, 2024
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024,https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
Estimation of rainfall erosivity based on WRF-derived raindrop size distributions
Qiang Dai, Jingxuan Zhu, Shuliang Zhang, Shaonan Zhu, Dawei Han, and Guonian Lv
Hydrol. Earth Syst. Sci., 24, 5407–5422, https://doi.org/10.5194/hess-24-5407-2020,https://doi.org/10.5194/hess-24-5407-2020, 2020
Short summary

Cited articles

Best, A.: The size distribution of raindrops, Q. J. Roy. Meteor. Soc., 76, 16–36, https://doi.org/10.1002/qj.49707632704, 1950. 
Blocken, B. and Carmeliet, J.: Driving rain on building envelopes – I. Numerical estimation and full-scale experimental verification, J. Therm. Envel. Build. Sci., 24, 61–85, https://doi.org/10.1177/109719630002400104, 2000a. 
Blocken, B. and Carmeliet, J.: Driving rain on building envelopes – II. Representative experimental data for driving rain estimation, J. Therm. Envel. Build. Sci., 24, 89–110, https://doi.org/10.1106/EGXC-T4CL-E8VN-9JRL, 2000b. 
Blocken, B. and Carmeliet, J.: A review of wind-driven rain research in building science, J. Wind Eng. Ind. Aerod., 92, 1079–1130, https://doi.org/10.1016/j.jweia.2004.06.003, 2004. 
Blocken, B. and Carmeliet, J.: High-resolution wind-driven rain measurements on a low-rise building – experimental data for model development and model validation, J. Wind Eng. Ind. Aerod., 93, 905–928, https://doi.org/10.1016/j.jweia.2005.09.004, 2005. 
Download
Short summary
We proposed a theoretical framework and conducted a laboratory experiment to understand the relationship between wind and the rainfall–runoff process in urban high-rise building areas. The runoff coefficient (relating the amount of runoff to the amount of precipitation received) found in the theoretical framework was close to that found in the laboratory experiment.
Share