Articles | Volume 25, issue 11
Hydrol. Earth Syst. Sci., 25, 5951–5979, 2021
https://doi.org/10.5194/hess-25-5951-2021
Hydrol. Earth Syst. Sci., 25, 5951–5979, 2021
https://doi.org/10.5194/hess-25-5951-2021
Research article
18 Nov 2021
Research article | 18 Nov 2021

AI-based techniques for multi-step streamflow forecasts: application for multi-objective reservoir operation optimization and performance assessment

Yuxue Guo et al.

Viewed

Total article views: 1,504 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,105 383 16 1,504 14 13
  • HTML: 1,105
  • PDF: 383
  • XML: 16
  • Total: 1,504
  • BibTeX: 14
  • EndNote: 13
Views and downloads (calculated since 16 Dec 2020)
Cumulative views and downloads (calculated since 16 Dec 2020)

Viewed (geographical distribution)

Total article views: 1,390 (including HTML, PDF, and XML) Thereof 1,386 with geography defined and 4 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 08 Aug 2022
Download
Short summary
We developed an AI-based management methodology to assess forecast quality and forecast-informed reservoir operation performance together due to uncertain inflow forecasts. Results showed that higher forecast performance could lead to improved reservoir operation, while uncertain forecasts were more valuable than deterministic forecasts. Moreover, the relationship between the forecast horizon and reservoir operation was complex and depended on operating configurations and performance measures.