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Abstract. Streamflow forecasts are traditionally effective
in mitigating water scarcity and flood defense. This study
developed an artificial intelligence (AI)-based management
methodology that integrated multi-step streamflow fore-
casts and multi-objective reservoir operation optimization
for water resource allocation. Following the methodology,
we aimed to assess forecast quality and forecast-informed
reservoir operation performance together due to the influ-
ence of inflow forecast uncertainty. Varying combinations of
climate and hydrological variables were input into three AI-
based models, namely a long short-term memory (LSTM),
a gated recurrent unit (GRU), and a least-squares support
vector machine (LSSVM), to forecast short-term streamflow.
Based on three deterministic forecasts, the stochastic in-
flow scenarios were further developed using Bayesian model
averaging (BMA) for quantifying uncertainty. The fore-
casting scheme was further coupled with a multi-reservoir
optimization model, and the multi-objective programming
was solved using the parameterized multi-objective robust
decision-making (MORDM) approach. The AI-based man-
agement framework was applied and demonstrated over a
multi-reservoir system (25 reservoirs) in the Zhoushan Is-
lands, China. Three main conclusions were drawn from
this study: (1) GRU and LSTM performed equally well
on streamflow forecasts, and GRU might be the preferred
method over LSTM, given that it had simpler structures and
less modeling time; (2) higher forecast performance could
lead to improved reservoir operation, while uncertain fore-
casts were more valuable than deterministic forecasts, re-
garding two performance metrics, i.e., water supply relia-
bility and operating costs; (3) the relationship between the

forecast horizon and reservoir operation was complex and
depended on the operating configurations (forecast quality
and uncertainty) and performance measures. This study re-
inforces the potential of an AI-based stochastic streamflow
forecasting scheme to seek robust strategies under uncer-
tainty.

1 Introduction

Multi-step streamflow forecast is of great importance for
reservoir operations to determine optimal water allocations
considering the current use and the carry-over storage for
mitigating water scarcity risk in the future (Guo et al., 2018;
Zhao et al., 2019). Previous studies have identified that real-
time reservoir operations are influenced by multiple uncer-
tainties (Xu et al., 2020), among which inflow forecast un-
certainty has been determined as the primary source, result-
ing in the risk of water shortage when the forecast inflow
overestimates the actual inflow. Ensemble forecasting tech-
niques are commonly used to characterize various uncertain-
ties in streamflow forecasts. According to comparative anal-
ysis for various probabilistic forecasting techniques (Nott et
al., 2012; Fang et al., 2018a; Zhai and Chen, 2018; Zhou et
al., 2020b), Bayesian model averaging (BMA) (Hoeting et
al., 1999) has been found to be an effective and most com-
monly used method to evaluate uncertainty and thus can be
used in streamflow forecast.

Any ensemble forecast approach relies upon model di-
versity that different models produce, with specific empha-
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sis and different aspects of the features they want to model
(Zhou et al., 2020a). In the last few decades, many ap-
proaches have been developed to forecast streamflow, includ-
ing physically based and data-driven models (Tikhamarine et
al., 2020; Zuo et al., 2020). Although physically based mod-
els can help understand underlying physical processes, they
usually require a large amount of input information, such as
meteorological and geographic data as well as soil and land
use characteristics (Guo et al., 2018, 2020a). Different from
physically based models, data-driven models based on statis-
tical modeling have attracted significant interest due to their
simplicity and satisfactory forecast results with low informa-
tion requirements (Al-Sudani et al., 2019; Mehdizadeh et al.,
2019; Osman et al., 2020). Artificial intelligence (AI)-based
approaches, i.e., machine learning (ML) methods, belong to
the latter group. Widely used ML approaches include artifi-
cial neural networks (ANNs) and least-squares support vec-
tor machines (LSSVMs) (Ghumman et al., 2018; Kisi et al.,
2019; Meng et al., 2019; Adnan et al., 2020; Ali and Shahbaz,
2020). Such models have been proven to be efficient tools to
model qualitative and quantitative hydrological variables and
deal with nonlinear features in streamflow. In recent years,
the booming development of deep learning technology has
brought many new approaches, such as recurrent neural net-
works (RNNs) (Elman, 1990), one of the most popular neu-
ral networks in the deep learning field. RNNs can preserve
and remember the short-past and long-past information and
thus are preferred for a complex and highly nonlinear timing
problem. Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and gated recurrent unit (GRU) models
(Cho et al., 2014) are two different versions of RNNs. LSTM
and GRU networks have been successfully applied in many
fields (Greff et al., 2017; Zhang et al., 2018; Jung et al., 2020;
Shahid et al., 2020; Ayzel and Heistermann, 2021), and they
are demonstrated to generate comparable performances, But
GRU has a more straightforward structure and a higher oper-
ation speed than LSTM. Recently, many applications that as-
sessed them together are also found in the hydrological field
(Gao et al., 2020; Muhammad et al., 2019).

While a considerable research effort has been made to
evaluate and improve the quality of streamflow forecasts
(Gibbs et al., 2018; Nanda et al., 2019; Sharma et al., 2019;
Van Osnabrugge et al., 2019; Feng et al., 2020; Pechlivani-
dis et al., 2020), how forecasts impact decision-making in
the real-time reservoir operations has also gradually gained
researchers’ attention (Goddard et al., 2010; Shamir, 2017;
Anghileri et al., 2019; Alexander et al., 2020; Hadi et al.,
2020), e.g., do high-quality forecasts mean improved deci-
sion? Traditionally, a skillful forecast is vital for the reli-
ability of the forecasts and is essential to promote the use
of forecasts in real-world applications by decision makers.
In fact, forecast value is expected to increase with forecast
quality, but it may also vary based on other factors such as
reservoir capacity and operating objectives (Anghileri et al.,
2016). Some studies have even disproved the intuitive as-

sumption that higher forecast performance always leads to
better operation decisions, for example, in agricultural water
management (Chiew et al., 2003) and water resources allo-
cation (Turner et al., 2017). Therefore, when forecasts are
used to support reservoir operation, it should be assessed in
which conditions they can help make better decisions. More-
over, forecast uncertainty and error generally grow with the
increase of the forecast horizon (Maurer and Lettenmaier,
2004; Denaro et al., 2017; Zhao et al., 2019). A decision
maker may doubt whether longer forecast lead times provide
sufficient information for a decision purpose or not. There is
often a mismatch between the information needed for reser-
voir operations and the skillful lead time of the reservoir in-
flow forecast (Anghileri et al., 2016). It is crucial to demon-
strate the applicability and effectiveness of the forecast hori-
zon in a forecast-based reservoir operation system (Xu et al.,
2014). Overall, there is a continuous need for in-depth study
to conduct posterior evaluations of forecasts with different
forecast lead times and obtain the efficient forecast horizon
for water allocation.

A decision maker must allocate limited water to differ-
ent water use sectors considering the conflicting objectives
(e.g., benefits and costs) and multiple uncertainties (e.g.,
forecast uncertainty) in a forecast-based reservoir operation
system. Multi-objective programming (MOP) is a valuable
tool for helping decision makers facilitate decision-making
with multiple conflicting objectives (Fang et al., 2018b; Guo
et al., 2020c), which can offer feasible methods for gen-
erating compromise decision alternatives. Some MOP ap-
proaches have been widely developed to tackle the uncer-
tainty associated with the decision-making processes, such
as multi-objective fuzzy programming (Zimmermann, 1978;
Pishvaee and Razmi, 2012; Ren et al., 2017) and multi-
objective stochastic programming (Xu et al., 2014, 2020;
Zhang et al., 2020). These approaches generally convert the
multi-objective functions into a single-objective determinis-
tic problem through a fuzzy programming method or a con-
straint operator. They can effectively deal with the uncer-
tainties between objectives and/or constraints by integrat-
ing the decision makers aspiration levels. However, they
may encounter difficulties due to the need for predeter-
mined individual preferences or reasonable bounds for all
objectives. In comparison, multi-objective robust decision-
making (MORDM) is an effective way to handle such dif-
ficulties (Kasprzyk et al., 2013; Zeff et al., 2014; Yan et
al., 2017; Hadjimichael et al., 2020). It can generate many
alternative solutions (Pareto solutions) that do not require
assumptions about decision makers’ preferences and en-
hance the robustness of the optimization process. Besides,
MORDM, by parameterizing the decision space, can avoid
the curse of dimensionality in some MOP approaches, sim-
plify computational complexity, and reduce the running time
(Giuliani et al., 2016; Salazar et al., 2017).

In summary, there are still several challenges in forecast-
informed reservoir optimization. To address these chal-
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Figure 1. Framework of the AI-based management methodology.

lenges, the specific research questions of this study are as
follows:

1. Can GRU achieve the same accuracy in the streamflow
forecast compared to LSTM with fewer parameters and
more straightforward structures?

2. In which conditions can an improvement in forecast
skill be translated into improved reservoir operation op-
timization?

3. How do such short-term inflow forecasts with differ-
ent forecast horizons be used to optimize the multi-
reservoir system to impact operation results?

To answer the questions mentioned above, we build an AI-
based management framework, which integrates multi-step
streamflow forecasts and multi-reservoir operation optimiza-
tion. We strive to (1) simulate inflow using LSTM, GRU,
and LSSVM and verify their effectiveness on short-term de-
terministic streamflow forecasts; (2) generate stochastic in-
flow scenarios using BMA for refining uncertainty character-
ization; (3) develop the parameterized MORDM framework
for a multi-reservoir operation system and inform decision-
making by assessing the value, that is, the operation benefit
gain or the induced cost of forecasts with a particular lead
time. As a case study, including one recipient reservoir stor-
ing water from the continental diversion project and 24 sup-
ply reservoirs storing water from local rainfall, 25 reservoirs
supplying water for four water plants in the Zhoushan Is-
lands, China, are chosen to assess the performance of the AI-
based forecast and the forecast-informed operation.

2 Methodology

The experimental approach followed in the study is shown in
Fig. 1 and described in the following sections.

2.1 Machine learning (ML) methods

This section gives a brief introduction to long short-term
memory (LSTM), gated recurrent unit (GRU), and least-
squares support vector machine (LSSVM) models. In this
study, the mapping function between the forecasted stream-
flow Qt and hydrological variables xt can be represented
by f (·). In LSTM and GRU, Qt = f (xt ,ht−1)(ht−1) de-
notes the last hidden cell state and the initial state of ht is
h0 = 0, while in GWO-LSSVM, Qt = f (xt ).

2.1.1 Long short-term memory (LSTM)

The LSTM network is one of the recurrent neural net-
works (RNNs) developed by Hochreiter and Schmidhu-
ber (1997), and the basic structure of an LSTM cell is il-
lustrated in Fig. 2a. It is an improved RNN aiming to solve
problems such as gradients in long-term memory and back-
propagation. The LSTM cell has three gates maintaining and
adjusting its cell state and hidden state, including the for-
get gate, input gate, and output gate. The forget gate deter-
mines what information should be thrown away from the cell
state. The input gate decides which information is used to up-
date the cell state. The output gate controls which informa-
tion stored in the current cell state flows into the new hidden
state. In Fig. 2a, the state (ct ) and the hidden state (ht ) of the
LSTM cell are updated as follows (Hochreiter and Schmid-
huber, 1997):

forget gate, gt = σ
(
Wf xt +Uf ht−1+ bf

)
; (1)

input gate, it = σ (Wixt +Uiht−1+ bi) ; (2)
potential cell state, c̃t = tanh(Wc̃xt +Uc̃ht−1+ bc̃) ; (3)
cell state, ct = ft � ct−1+ it � c̃t ; (4)
output state, ot = σ (Woxt +Uoht−1+ bo) ; (5)
hidden state, ht = ot tanh� ct ; (6)
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Figure 2. Structure of an (a) LSTM and (b) GRU cell.

where gt , ct , ot , and c̃t represent the forget gate, input gate,
output gate, and potential cell state, respectively. � denotes
the element-wise multiplication of vectors, and tanh(·) is the
hyperbolic tangent. xt represents the current input vector,
ht−1 denotes the last hidden cell state, and the initial state
of ht is h0 = 0. σ(·) represents the logistic sigmoid function.
[Wf ,Wi ,Wo,Wc̃], [Uf , Ui , Uo, Uc̃], and [bf , bi , bo, bc̃] rep-
resent the input weight matrix, recurrent weight matrix, and
bias vectors for the forget, input–output, and potential cell
gates, respectively.

2.1.2 Gated recurrent unit (GRU)

GRU networks were proposed as a modification of LSTM
networks with a more straightforward structure (Cho et al.,
2014). The specific structure of the GRU cell is shown in
Fig. 2b. Compared with LSTM, GRU only has two control
gates, including a reset gate and an update gate. The update
gate is applied to control how much information of the previ-
ous step is brought into the current step, while the reset gate
is used to control the degree of ignoring the information of
the previous state. In this way, GRU is superior to LSTM in
terms of computer modeling time and parameter updates. In
Fig. 2b, the state (ct ) and the hidden state (ht ) of the GRU
cell are updated as follows (Cho et al., 2014):

reset state, rt = σ (Wrxt +Urht−1+ br) ; (7)
update state, zt = σ (Wzxt +Uzht−1+ bz) ; (8)
potential cell state, c̃t = tanh(Wc̃xt +Uc̃ (rt �ht−1)+ bc̃); (9)
cell state, ct = (1− zt )� ct−1+ zt � c̃t ; (10)
hidden state, ht = ct ; (11)

where rt , zt , and c̃t represent the reset, update, and poten-
tial cell state, respectively. � denotes the element-wise mul-
tiplication of vectors, and tanh(·) is the hyperbolic tangent.
xt represents the input vectors, ht−1 denotes the last hidden
cell state, and the initial state of ht is h0 = 0. σ(·) represents
the logistic sigmoid function. [Wr , Wz, Wc̃], [Ur , Uz, Uc̃],
and [br , bz, bc̃] represent the input weight matrix, recurrent

weight matrix, and bias vectors for the reset, update, and po-
tential cell gates, respectively.

2.1.3 Least-squares support vector machine with grey
wolf optimizer (GWO-LSSVM)

LSSVM is a modified version of SVM, proposed by Suykens
and Vandewalle (1999) to reduce the computational time of
SVM. SVM uses the quadratic program to formulate the
training process of the modeling procedure, while LSSVM
aims to employ the least-squares loss functions. The LSSVM
nonlinear function is expressed as (Suykens et al., 2002)

f (x)= wT ϕ(x)+ b, (12)

where ϕ(·) is the mapping function that maps the input x
into a d-dimensional feature vector,w is a weight vector, and
b represents bias. In LSSVM, a minimum objective function
is proposed to estimate ω and b (Suykens et al., 2002).

minJ (w,e)=
1
2
wTw+

1
2
γ

N∑
i=1

e2
i , (13)

that has the following constraints (Suykens et al., 2002):

yi = w
T ϕ (xi)+ b+ ei, (14)

where e is the error variable, and γ is the regulative con-
stant. The objective function can be obtained to solve the op-
timization problems in Eq. (15) by introducing the Lagrange
multipliers α and transferring the constraint problem into an
unconstrained one (Suykens et al., 2002):

L(w,b,e,α)=
1
2
wTw+

1
2
γ

N∑
i=1

e2
i

−

N∑
i=1

αi

(
wT ϕ (xi)+ b+ ei − yi

)
. (15)
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By finding the partial derivative of Eq. (16) with respect tow,
b, αi , and ei , the following equation can be derived:

y =

N∑
i=1

αi

(
ϕ(x)T ϕ (xi)

)
+ b =

N∑
i=1

αiK (x,xi)+ b, (16)

where K(x,xi) is the kernel function. Many kernel func-
tions such as linear, polynomial, radial basis, and sigmoidal
have been proposed for LSSVM (Bemani et al., 2020). We
adopt the most widely used kernel function, radial basis func-
tion (RBF), in this study. The RBF is expressed as

K (x,xi)= exp
(
−‖x− xi‖

2/2σ 2
)
, (17)

where σ 2 is the kernel parameter. In this study, the param-
eters γ and σ were optimized using the grey wolf opti-
mizer (GWO). Please see more details on GWO in Guo et
al. (2020d).

2.2 Bayesian model averaging (BMA)

Generally, it is difficult to determine which model is the best
one, leading to model uncertainty. BMA is proposed to solve
the uncertainty of the models through averaged estimations
from individual models (Liu and Merwade, 2019; Samadi et
al., 2020). The weight for each model is based on the simu-
lated decision probability density function, i.e., the posterior
probability of the model. Suppose Q is the unknown quan-
tity we want to predict, given a subset of model forecasts
f = {f1,f2, . . . , fK} (k = 1, 2, . . . ,K , where K is the num-
ber of individual model) and the observed data D, the pos-
terior distribution of Q can be calculated as (Hoeting et al.,
1999)

p(Q|D)=

K∑
i=1

p(fk|D) ·pk (Q|fk,D)

=

K∑
i=1

wk ·pk (Q|fk,D), (18)

where pk(Q|fk,D) is the posterior distribution of Q given
the model forecast fk and the observed dataD, and p(fk|D)
is the posterior probability. In this case, posterior probabili-

ties are the weighting factor for each model, and
K∑
k=1

wk = 1.

The posterior mean (E) and variance (V ) ofQ are as follows
(Hoeting et al., 1999):

E[Q|D] =

K∑
k=1

wk ·E
[
pk (Q|fk,D)

]
=

K∑
k=1

wkfk, (19)

V [Q|D] =

K∑
k=1

wk ·

[
fk −

K∑
k=1

wkfk

]2

+

K∑
k=1

wkσ
2
k , (20)

where wk and σ 2
k are the posterior mean (weight) and vari-

ance of the kth forecast model. In this study, a log-likelihood

function is maximized to estimate the parameters (weight wk
and variance σ 2

k ) as shown in Eq. (21).

l(θ)= log

(
K∑
k=1

(
wk · g

(
Q|f tk ,σ

2
k

)))
, (21)

where θ is the vector of parameters {wk , σ 2
k , k = 1, 2, . . . ,K}.

g(Q|f tk , σ 2
k ) is the Gaussian distribution function, where

wk is the weight and σ 2
k is the variance.

The expectation–maximization (EM) algorithm (Lee et al.,
2020) is used to find out the maximum likelihood with a ter-
mination criterion (early stopping or a maximal iteration).
As the EM proceeds, the parameters of weight wk and vari-
ance σ 2

k are updated as follows.

w
(Iter)
k =

1
NT

(
NT∑
t=1

zt
(Iter)

k

)
, (22)

σ 2(Iter)

k =

NT∑
t=1
zt

Iter

k ·
(
Y t − f tk

)2
NT∑
t=1
zt

Iter

k

, (23)

zt
(Iter)

k =

g
(
Q|f tk ,σ

2(Iter−1)

k

)
K∑
k=1

g
(
Q|f tk ,σ

2(Iter−1)

k

) , (24)

l(θ)(Iter)
=

NT∑
t=1

log

(
K∑
k=1

(
w
(Iter)
k · g

(
Q|f tk ,σ

2(Iter)

k

)))
, (25)

where “Iter” is the number of iterations. NT is the length of
calibration periods. Y t and f tk are the observed and forecast
streamflow at the t th time step, respectively (m3 s−1), and
zt
(Iter)

k is the latent variable for the kth model at the t th time
step in the Iter iteration. Then we use the Monte Carlo simu-
lation method to generate BMA ensemble forecasts. Assume
M is the number of Monte Carlo simulations, and the proce-
dure is described below (Zhou et al., 2020a).

a. Set the initial cumulative weight w∗0 = 0, and calcu-
late the cumulative weight w∗k = w

∗

k−1+wk for k = 1,
2, . . . ,K . Create a random variable u between 0 and 1. If
w∗k−1 ≤ u≤ w

∗

k , the kth forecast model would be used
as the target forecast.

b. Generate a realization of the forecasts Qt using the
Gaussian distribution function g(Qt |f

t
k , σ 2

k ). In such a
way, there are a set of alternative forecasts to be chosen
from as the final forecast.

c. Repeat steps (a) and (b) M times, and ob-
tain a set of streamflow series QT×M =

Q1,1 Q2,1 . . . QT ,1
Q1,2 Q2,2 . . . QT ,2
...

...
. . .

...

Q1,M Q1,M . . . QT ,M

. Furthermore,
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90 % confidence intervals between the 5 % and 95 %
quantities are employed to represent the uncertainty of
BMA ensemble forecasts.

2.3 Forecast performance measures

Three performance indicators are applied to assess the de-
terministic forecast performance of the three data-process
models. They are the Nash–Sutcliffe efficiency (NSE) (Nash
and Sutcliffe, 1970), the root mean square error (RMSE)
(Karunanithi et al., 1994), and the mean absolute er-
ror (MAE) (Legates and McCabe, 1999). They are expressed
as below:

NSE= 1−

T∑
t=1

(
Qm,t −Qo,t

)2
T∑
t=1

(
Qo,t −Qo

)2 , (26)

RMSE=

√√√√ 1
T

T∑
t=1

(
Qm,t −Qo,t

)2
, (27)

MAE=
1
T

T∑
t=1

∣∣Qm,t −Qo,t

∣∣ , (28)

where T is the number of samples, Qm,t is the fore-
casted reservoir inflow (m3 s−1), Qo,t is the observed in-
flow (m3 s−1), and Qo is the average of the observed in-
flow (m3 s−1). The NSE can be used to evaluate the sta-
bility of the forecasted value. In contrast, the RMSE and
MAE are used to characterize the overall forecast accuracy.
The NSE value is (−∞, 1], while MAE and RMSE values
are (0,+∞). Generally, models with larger values of NSE or
smaller values of RMSE and MAE provide better forecasting
accuracy.

In addition, two performance indicators are used to eval-
uate the performance of ensemble forecast models, i.e., the
containing ratio (CR), and average deviation amplitude (D),
which were adopted for assessing the goodness of the predic-
tion bounds (Xiong et al., 2009).

CR=
1
T

T∑
t=1

Nt × 100%

Nt =

{
1 if Q̂l,t ≤Qo,t ≤ Q̂u,t

0 else
, (29)

D =
1
T

T∑
t=1

∣∣∣∣12 (Q̂l,t + Q̂u,t

)
−Qo,t

∣∣∣∣ , (30)

where Q̂l,t and Q̂u,t represent the lower and upper prediction
bounds of streamflow (m3 s−1), respectively. Clearly, models
with higher CR values but lower D values would produce
better performance.

2.4 Parameterized multi-objective robust
decision-making (MORDM)

This study proposes a parameterized multi-objective robust
decision-making approach to design operating policies for
the multi-objective reservoir operations by combining di-
rect policy search (DPS) and multi-objective robust decision-
making (MORDM). In the parameterized MORDM, instead
of using the volumes of water to be allocated as the decision
variables, we prescribe decisions approximated as nonlinear
functions conditioned on system state variables (e.g., forebay
water level observed or predicted inflows and precipitation)
(Giuliani et al., 2016; Quinn et al., 2017a, b; Salazar et al.,
2017). The nonlinear functions can be realized by the DPS
approach. DPS is based on the parameterization of the oper-
ating policy pθ and the exploration of the parameter space2
to find a parameterized policy that optimizes the expected
function, i.e.,

p∗θ = argminpθ (J1,J2, . . ., JM)pθ s · t · θ ∈2, (31)

where J1, J2, . . . , JM are the objective functions, and M is
the number of objectives. p∗θ is the corresponding opti-
mal policy with parameters θ∗. Different DPS approaches
have been proposed, where two nonlinear approximating net-
works, namely artificial neural networks (ANNs) and radial
basis functions (RBFs), have become widely adopted as uni-
versal approximators in many applications (Deisenroth et al.,
2013). In particular, we parameterize the operating policy
as RBFs because they have been demonstrated to be effec-
tive in solving multi-objective water resources management
problems (Giuliani et al., 2014, 2015), and the kth decision
variable in the vector ut (with k = 1, . . . ,K) is defined as

ukt =

N∑
i=1

ωi,kϕi,k (0t ) , (32)

where N is the number of RBFs ϕ(·), 0t is the policy in-
put vectors at the t th time step including exogenous informa-
tion (e.g., forebay water level observed or predicted inflows
and precipitation), and ωi,k is the weight of the ith RBF,
N∑
i=1
ωi,k = 1 ωi,k > 0. The single RBF is defined as follows:

ϕi,k (0t )= exp

[
−

M∑
j=1

[
(0t )j − cj,i

]2
b2
j,i

]
, (33)

where (0t )j is the j th policy input at the t th time step, and
M denotes the number of policy input vectors 0t , j = 1,
2, . . . ,M . ci and bi are the M-dimensional center and radius
vectors of the ith RBF, respectively. The centers of the RBF
must lie within the bounded input space (Yang et al., 2017).
The parameter vector θ is defined as θ = [ci,j,k,bi,j,k,ωi,j,k],
where the number of θ is nθ =N ×K × (2×M + 1). In
general, when DPS problems involve multiple objectives,
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they can be coupled with truly multi-objective optimization
methods, such as multi-objective evolutionary algorithms
(MOEAs), which allow for an approximation of the Pareto
front in a single run of the algorithm.

In our study, the parameterized MORDM approach will be
coupled with a rolling horizon scheme over a 1-year period to
solve the multi-objective reservoir operation problem. Given
the lead time of 7 d (the forecast horizon is equal to the op-
eration horizon) as an example, it is operated following two
steps: the optimization model is first operated daily over a 7 d
horizon using the parameterized MORDM; after implement-
ing current water allocation decisions, the status, inflow, and
other information of reservoirs update as time evolves, and
then the remainder is subsequently operated. The two steps
are repeated until the process (1-year period) is completed. In
each operating horizon, the main steps of the parameterized
MORDM are described below and presented in Fig. 3.

1. Problems are formulated, including the performance
measures and constraints.

2. Generate alternative parameterized policies subject to
all the constraints, and the objectives are evaluated over
stochastic inflows with the following procedures (Giu-
liani et al., 2016):

a. The operating policies are parameterized using
RBFs.

b. Run a system simulation from t = 1, 2, . . . 7 d upon
each individual parameterized policy pθ for each
inflow series and obtain the system trajectories.

c. Compute the parameterized policies performance
in terms of the operating objectives as a function
of system trajectories.

3. Recompute the parameterized policy performance with
robust criteria, for instance, the principle of insuffi-
cient reason, minimax, and minimax regret (Guo et al.,
2020b). Among them, the principle of insufficient rea-
son transforming the problem under uncertainty into
a decision-making problem under risk has been used
in water resources problems (Giuliani and Castelletti,
2016). The principle of insufficient reason suggests that
in the absence of knowledge on the probabilities asso-
ciated with the different states, the decision could be
taken by assigning equal probability to all the states
(i.e., Pj = 1/n). The robust parameterized policy per-
formance can be expressed as

min

(
1
n

n∑
j=1

Obj
(
pθ , sj

))
, (34)

where Obj(pθ , sj ) is the performance function using
parameterized policy pθ upon j th streamflow series,
sj denotes the scenario of the j th streamflow series, and
n is the number of stochastic streamflow series.

4. Optimize the parameterized policies using multi-
objective evolutionary algorithms (MOEAs) based on
the robust performance objectives. Repeat steps (2)–(4)
until the times of population iteration are reached, and
export the optimal Pareto solutions. In this study, the op-
timization is solved by applying NSGA-II to search the
space of decision variables and identify the trajectories.

It should be noted that the parameterized MORDM in this
study aims to solve optimization problems under uncertainty,
and thereby one streamflow series needs to be repeated mul-
tiple times.

3 Case study

3.1 Study area and data

The Zhoushan Islands are located in the northeast of Zhe-
jiang Province, China, with a total area of 22 000 km2 and
1390 islands (Fig. 4). The climate is governed by monsoon-
influenced subtropical marine weather systems, and the an-
nual mean temperature and precipitation are 17 ◦C and
1300 mm, respectively. There are no large rivers in the is-
lands, and the insufficient freshwater resources severely limit
the development of industry and population in the Zhoushan
Islands. Recently, a continental diversion project transfer-
ring water from the city of Ningbo to Zhoushan Islands has
been treated as an effective solution to overcome the water
scarcity problem partially. The transferred water is stored in
Huangjinwan Reservoir and then operated together with the
limited freshwater resources in the remaining 24 reservoirs
to supply water to four water plants, i.e., Daobei, Hongqiao,
Lincheng, and Pingyangpu. Data for this study include his-
torical inflow and state of reservoirs, water demand of wa-
ter plants, and climate forcing data over 2002–2008. The cli-
mate data, including daily precipitation and evaporation, are
observed at one meteorological station and three rainfall sta-
tions. The characteristics of the reservoirs are listed in Ta-
ble 1.

3.2 Problem formulation

Figure 5 shows the simplified schematic diagram of the wa-
ter supply system in Zhoushan Islands, including reservoirs,
pumping stations, pipelines, and water plants. The pipeline
arrow indicates the direction of the water flow. It covers the
processes associated with water abstraction from resources,
water distribution through the network involving the use of
pumping stations and pipelines, and main activities relevant
to water flow. In this study, water resources include local sur-
face water and imported water. The surface water is the water
stored in local reservoirs (a number of 24 reservoirs), while
the imported water is the water transferred from the city of
Ningbo (stored in Huangjinwang Reservoir). The imported
water is transferred from the city of Ningbo to Zhoushan
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Figure 3. Schematization of the parameterized MORDM methods.

Figure 4. Location of the Zhoushan Islands.

Islands through Lixidu and Lanshan pumping stations. End
users within the water supply system are generally divided
into the household, industry, agriculture, and environmental
use. This study mainly considers household and industry use,
which water plants can supply. The agriculture and environ-
mental use are satisfied through operating the reservoir stor-
age above a specific value. That is to say, the main goal of
the water allocation plan is to ensure sufficient water flows
into the four plants in Zhoushan Islands. They are Daobei,
Lincheng, Hongqiao, and Pingyangpu plants, respectively.
Releases from the reservoirs (Huangjinwan Reservoir and the
remaining 24 local reservoirs) must meet the requirements of
water plants. As observed in Fig. 5, the reservoirs supplying
plants can be divided into two categories. Some reservoirs
can directly release water into the plants or reservoirs, includ-
ing Longtan, Ludong, Shatianao, Nanao, Chenao, Cengang,
Tuanjie, and Changchunling reservoirs. In contrast, the other

reservoirs can only release water into the plants or reservoirs
using pumping stations. In such a way, the pumping flow can
be obtained by summing reservoir releases through the cor-
responding pumping station, using the following equation.

Q
p
t,j =

N1∑
n=1

Qr
t,n, (35)

whereQp
t,j denotes the j th pumping flow at the t th time step

(m3 s−1), Qr
t,n denotes the release of the nth reservoir at the

t th time step (m3 s−1), and N1 is the number of reservoirs
pumped by the j th pumping station.

It can be noted in Fig. 5 that there are no specific hy-
draulic connections between most of the reservoirs, while
Chahe, Hongwei, Chengbei, and Xiamen reservoirs can re-
lease water into Hongqiao Reservoir (the largest reservoir in
Zhoushan Islands). With a water plant as a center, the whole
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Figure 5. Schematic diagram of the Zhoushan Islands.

islands are divided into four districts, i.e., Daobei, Lincheng,
Hongqiao, and Dongbu. The dashed line represents the dis-
trict boundary. Each district includes a water plant, several
pumping stations, and reservoirs to supply water for the wa-
ter plant. The hydraulic connection between such a water
plant and corresponding pumping stations and reservoirs can
be expressed as

W s
t =

J∑
j=1

Q
p
t,j1t +

N2∑
n=1

Qr
t,n1t, (36)

where W s
t is the amount of water supply for a water plant

at the t th time step (m3), J is the number of pumping sta-
tions flowing into the water plant, and N2 is the number of
reservoirs directly releasing into the water plant.

In Fig. 5, every two system elements are connected by the
pipelines, e.g., reservoir and reservoir, reservoir and pump-
ing station, and pumping station and water plant. In some
cases, more than one reservoir or pumping station share one
pipeline, leading to competition on channel flow. However,
the multi-objective optimization problem is operated on a
daily time step in our study, and we assume reservoir re-
leases or pumping station flows to the water plant without
considering the channel flow limitation, thereby regardless
of the specific hydrologic connections between channels or
pipelines.

Three objectives are identified to evaluate the performance
of the strategies. The conflicting objectives are to mini-
mize the water deficiency ratio of the Daobei Plant, mini-

mize the water deficiency ratio of the remaining three plants
(Hongqiao, Lincheng, and Pingyangpu), and maximize the
net benefits. The three plants can feed each other and thus
are considered together in our study. A decision maker would
consider a different suite of costs depending on whether an
existing system is being managed or a completely new sys-
tem is being designed. As water supply occurs in an existing
system, costs considered in this study are the operating costs.
These objective functions are given as follows:

Min Obj1(x)=

(
T∑
t=1

W
n,db
t −

T∑
t=1

W
s,db
t

)/
T∑
t=1

W
n,db
t × 100%, (37)

Min Obj2(x)=

(
3∑
k=1

T∑
t=1

W
n,th
t,k −

3∑
k=1

T∑
t=1

W
s,th
t,k

)/
3∑
i=1

T∑
t=1

W
n,th
t,k × 100%, (38)

Min Obj3(x)=
(
M lw

c +M
iw
c

)
−Mr, (39)

where Obj1 and Obj2 are the water deficiency ratio of Daobei
Plant and the sum of the remaining three plants, respec-
tively (%); Obj3 denotes the net operating costs (RMB);
W
s,db
t and W n,db

t are the amount of water supply and de-
mand for Daobei Plant at the t th time step, respectively (m3);
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Table 1. Reservoir characteristics in the Zhoushan Islands.

District Reservoir Reservoir Dead Normal Drainage Mean Standard COV
name storage storage storage area flow deviation

(104 m3) (104 m3) (104 m3) (km2) (m3 s−1) of flow
(m3 s−1)

Hongqiao

Hongqiao 1307 12 1015 13.4 0.15 0.77 5.08
Chahe 254 35.08 185 8 0.11 0.49 4.34
Hongwei 85 36 76.1 1.94 0.10 0.21 2.06
Chengbei 123 45 111.1 4.98 0.10 0.33 3.34
Mahuangshan 354 17.15 286.4 4.87 0.10 0.32 3.28
Xiamen 281 42 240 4 0.10 0.29 2.92
Cenggang 733 14.2 627 6.6 0.10 0.41 3.91
Longtan 160 9 133.6 2.27 0.10 0.22 2.18

Daobei

Dongaonong 185 3.4 159.84 2.6 0.10 0.23 2.28
Changmenli 205 49.49 179.5 2.3 0.10 0.22 2.17
Tuanjie 122 30.4 106.6 2.05 0.10 0.21 2.09
Changchunling 410 34.3 368.3 5.41 0.10 0.35 3.53
Yaojiawan 124 31.09 105 1.46 0.10 0.22 2.23
Jinlin 154 40.48 125.9 2.42 0.10 0.20 1.96
BaiquanLing 204 12.56 177.4 3 0.10 0.24 2.44
Chenao 236 59 195.2 4.13 0.10 0.29 2.99

Dongbu

Dashiao 293 49.1 254 2.8 0.10 0.23 2.37
Pingdi 317 1 317.2 0.6 0.10 0.19 1.87
Dongao 457.8 47.5 384 6.4 0.10 0.40 3.87
Goushan 194 4.59 170 2.73 0.10 0.23 2.34
Nanao 73 15.8 66.7 1.21 0.10 0.20 1.94
Ludong 142 54 118.5 3.7 0.10 0.27 2.75
Yingjiawan 124 31.09 105 1.46 0.10 0.31 3.17
Shatianao 127 20.8 116.5 4.54 0.10 0.19 1.89

W
n,th
t,k and W n,th

t,k are the amount of water supply and de-
mand for the kth plant (one of the remaining three plants)
at the t th time step, respectively (m3); M lw

c and M iw
c are the

operating costs for water supply using local reservoir water
and imported water, respectively (RMB); and Mr is the rev-
enue (RMB). The costs and revenue can be obtained accord-
ing to the following:

1. operating costs for water supply using local reservoir
water (M lw

c , RMB),

M lw
c =M

lw
c,1+M

lw
c,2+M

lw
c,3 (40)

M lw
c,1 = c

lw
1 ×

T∑
t=1

W
s,lw
t , (41)

M lw
c,2 = c

lw
2 ×

T∑
t=1

W
s,lw
t (42)

M lw
c,3 = c

lw
3 ×

J∑
j=1

T∑
t=1

Q
p,lw
t,j ×P

lw
j

Q
p,lw
j,max

, (43)

whereM lw
c,1,M lw

c,2, andM lw
c,3 represent the water resource

fees paid to the government, water fees paid to reser-

voir managers, and the electricity fees in Zhoushan Is-
lands, respectively (RMB); clw

1 , clw
2 , and clw

3 denote the
constant vectors, representing the unit price of water
resources, water, and electricity in Zhoushan Islands,
respectively (RMB per m3). 1t is the time step; i is
the index of a reservoir; j is the index of a pump-
ing station; I denotes the number of reservoirs; J de-
notes the number of pumping stations in Zhoushan
Islands; W s,lw

t denotes the amount of water supply
for plants using local reservoir water at the t th time
step (m3); P lw

j denotes the supporting motor power of

the j th pumping station (Kw); Qp,lw
t,j denotes the flow

through the j th pumping station at the t th time step
(m3 s−1); Qp,lw

j,max denotes the upper flow boundary of
the j th pumping station in Zhoushan Islands (m3 s−1).

2. operating costs for water supply using imported water
(M iw

c , RMB),

M iw
c =M

iw
c,1+M

iw
c,2+M

iw
c,3, (44)

M iw
c,1 = c

iw
1 ×

T∑
t=1

W
s,iw
t , (45)
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M iw
c,2 = c

iw
2 ×

T∑
t=1

W
s,iw
t , (46)

M iw
c,3 = c

iw
3 ×

J∑
j=1

T∑
t=1

Lj +Q
p,iw
t,j

Q
p,iw
j,max

, (47)

where M iw
c,1, M iw

c,2, and M iw
c,3 represent the water re-

sources fees paid to the government, water fees paid
to the river managers, and electricity fees in the city of
Ningbo, respectively (RMB); ciw

1 , ciw
2 , and ciw

3 denote
the constant vectors, representing the unit price of water
resources, water, and electricity in the city of Ningbo,
respectively (RMB/m3); W s,iw

t denotes the amount of
water supply for plants using imported water at the
t th time step (m3); Qp,iw

t,j denotes the flow through the
j th pumping station at the t th time step, and J is the
number of pumping stations transferring water from the
city of Ningbo, J = 2, Qp,iw

t,1 =Q
p,iw
t,2 . Lj denotes the

length of the continental diversion pipeline using the
j th pumping station (m), and Qp,iw

i,max denotes the up-
per flow boundary of the ith pumping station for water
transfer (m3 s−1).

3. revenues (Mr, RMB),

Mr = b×

(
T∑
t=1

W
s,db
t +W

s,th
t

)
, (48)

where b denotes the unit price of water supply revenue
(RMB per m3).

The optimization model is subject to the following con-
straints:

(1) water balance : Vt+1,i = Vt,i +
(
It,i −Q

r
t,i

)
1t, (49)

(2) reservoir storage limits : Vt,i,min ≤ Vt,i ≤ Vt,i,max, (50)
(3) reservoir release limits : Qr

t,i ≤Q
r
t,i,max, (51)

(4) pumping station limits : Qp
t,j ≤Q

p
max,j , (52)

where It,i is the inflow of the ith reservoir at the t th time
step (m3 s−1); Vt,i is the storage of ith reservoir at the
t th time step (m3); Vmin and Vmax are the lower and upper
storage boundaries, respectively (m3); Qr

t,i,max is the maxi-
mum release of the ith reservoir at the t th time step (m3 s−1).
In some cases, Qp

t,j obtained by the RBF policies can be
greater than Qp

j,max, and we will do the following step to
modify Qr

t,n.

Q′
r
t,n =

Qr
t,n

Nj∑
n

Qr
t,n

×Q
p
j,max (53)

Table 2. Five input combination scenarios.

ID Scenario Input combination

1 S1 Qa
2 S2 Pa, Ea
3 S3 Qa, Pa, Ea
4 S4 Pa, Pf, Ea, Ef
5 S5 Qa, Pa, Pf, Ea, Ef

3.3 Model development

In this study, five input combination scenarios are considered
to investigate whether the use of data-driven methods with
climate forcing is efficient in inflow forecasts or not. These
scenarios are described in Table 2. Pa represents antecedent
precipitation, Ea represents antecedent evaporation, Qa rep-
resents antecedent streamflow, Pf represents forecast precip-
itation, and Ef represents forecast evaporation.

Several strategies have been proposed in the literature to
tackle a multi-step-ahead forecast task (Kline, 2004), such
as the recursive, direct combination of direct and recursive
strategies. In this study, we chose one of the most carried out
strategies, i.e., the direct strategy (Ben Taieb et al., 2012),
to forecast multi-step streamflow over the short-term horizon
(1–7 d). In this case, the streamflow is forecasted using the
following equations, using S3 as an example.

1d : Qf
t+1 =f (Qt ,Qt−1, . . ., Qt−k,Et ,Et−1, . . .,

Et−k,Pt−1, . . ., Pt−k)

2d : Qf
t+2 =f (Qt ,Qt−1, . . ., Qt−k,Et ,Et−1, . . .,

Et−k,Pt−1, . . ., Pt−k)

. . .

7d : Qf
t+7 =f (Qt ,Qt−1, . . ., Qt−k,Et ,Et−1, . . .,

Et−k,Pt−1, . . ., Pt−k) , (54)

where f (·) is the mapping function between inputs and out-
puts, which can be modeled by LSTM, GRU, and GWO-
LSSVM in our case. The hydrological variables normalized
to the same scale of [0, 1] are used as the inputs in the three
ML methods. The normalization equation is given as follows:

x′ =
x− xmin

xmax− xmin
, (55)

where x and x′ are the original and normalized values, re-
spectively. xmin and xmax are the minimum and maximum
values of the original series, respectively.

An issue with the ML methods is that they can easily over-
fit training data. To avoid this, the entire data are divided into
three subsets in RNNs: (i) a training set, which is used to
compute the gradient and update the weights and biases of
the network; (ii) a validation set, over which the errors are
monitored during the training process and is used to decide
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when to stop training; and (iii) a test set, which is used to
assess the expected performance in the future. In addition,
dropout is a regularization method where input and recurrent
connections to LSTM and GRU units are probabilistically
excluded from activation and weight updates while training
a network. The strategies mentioned above have the effect
of reducing overfitting and improving model performance in
RNNs. Both LSTM and GRU are trained based on truncated
backpropagation through time (BPTT) (Cheng et al., 2020),
which uses a backpropagation network to update the param-
eters in iterations. The NSE function is used as the loss func-
tion to calibrate the LSTM and GRU models. As for LSSVM,
we avoid overfitting by minimizing the NSE during the cal-
ibration and validation periods, while the test period is also
used to assess the performance. In this study, January 2002 to
December 2006 is used as the training period, while the val-
idation and tests extend from January–December 2007 and
January–December 2008, respectively.

The multi-reservoir operation optimization using in-
flow forecasts is performed over 1 year (1 April 2007–
31 March 2008) with 25 reservoirs. The period is selected
to ensure that it does not cover the calibration datasets. For
the short-term forecasting and reservoir operation purpose,
a forecast horizon of 1–7 d ahead is chosen. In this study,
we use the parameterized MORDM approach to design op-
erating policies for the multi-objective reservoir operations
under uncertainty. The optimized operations are regulated
based on both deterministic and uncertain forecast inflow. To
keep it fair, we perform a simulation to generate determinis-
tic and observed ensemble forecasts, which are each repeated
900 times. Using the uncertain streamflow forecasts (BMA,
deterministic or observed ensemble forecasts) as policy in-
puts in the parameterized MORDM method, we can gener-
ate alternative RBF policies that are subject to all the con-
straints, and the objectives are evaluated over stochastic in-
flows. Under the parameterized MORDM, the decision vari-
ables in the optimization problem are not the volumes of wa-
ter to be transferred from the city of Ningbo and the remain-
ing 24 reservoirs each day. Instead, the decision variables
are the parameters of the RBF policies. The best operation
is obtained by conditioning the operating policies upon the
following two input variables, e.g., the initial forebay wa-
ter level and current inflow of reservoir. The optimization is
solved at each time step (a particular forecast horizon, e.g.,
1–7 d) by applying NSGA-II to search the space of decision
variables and identify the islands’ water allocation trajecto-
ries.

3.4 Results and discussion

3.4.1 Multi-step deterministic forecasts based on
ML methods

We consider five different input scenarios described in
Sect. 3.3. Table 3 demonstrates the forecast analysis carried

out with the different configurations (input combination and
forecast model), tabulating the NSE ranges for lead times
from 1 to 7 d ahead over all reservoirs during the calibration,
validation, and test periods. It can be seen that S1 using only
the flow variables and S2 using only the antecedent climate
variables are inferior to the other scenarios. The performance
is generally improved when the flow variables are used in
combination with the antecedent precipitation and evapora-
tion under S3. However, in this case, the antecedent vari-
ables succeed in forecasting only 1 d ahead. The forecast per-
formance decreases significantly as the forecast horizon in-
creases from 1 to 7 d ahead. Herein, we suppose that the fol-
lowing precipitation and evaporation have been forecasted. It
is clear that S4 and S5, with the forecast climate variables,
make significant increments in streamflow forecasting. The
NSE can remain relatively stable at different horizons. There
are no apparent differences between the three forecast mod-
els during the calibration period. However, the two RNNs
perform better than GWO-LSSVM during the validation pe-
riod, while GWO-LSSVM outperforms during the test peri-
ods. Besides, given that GRU has more superficial structures
and fewer parameters and requires less time for model train-
ing, it may be the preferred method for short-term stream-
flow forecast compared with LSTM. The same results have
been obtained in Gao et al. (2020) when they used LSTM and
GRU to model short-term rainfall–runoff relationships.

We aim to compare how the forecasted climate variables
impact the streamflow forecast and reservoir operation per-
formance. For the sake of brevity, S3 and S5 are compared in
detail in the following section. Recall that S3 uses flow vari-
ables, antecedent precipitation, and evaporation as inputs,
while S5 uses flow variables as well as the antecedent and
forecast climate forcing. After assessing model validity, the
next step is to compare the performance across the 24 reser-
voirs. The coefficient of variation (COV), defined as the ratio
of the standard deviation of the inflow time series, is used to
capture the varying characteristics of the incoming flow into
the reservoir. Figure 6 reveals a strong negative relationship
between COV and forecast performance under S3 at all lead
times. The forecast performance decreases as the COV in-
creases for all forecast models. This indicates that the more
variation the flow has, the harder it is for data-driven meth-
ods to learn the flow pattern when there is not enough input
information. However, the negative signal under S5 (Fig. 7)
with forecasted climate variables (precipitation and evapo-
ration in this study) is not as strong as that under S3, indi-
cating that the forecast climate variables can help AI-based
models’ mapping functions between inputs and outputs. The
improvements are more significant for the two RNN models,
i.e., LSTM and GRU, than LSSVM. This result demonstrates
that the efficiency of deep-learning RNN methods is better
and more accurate than LSSVM.
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Figure 6. NSE values at lead times of 1 to 7 d plotted against the coefficient of variation (COV) for all the 24 reservoirs during the period of
(a) calibration, (b) validation, and (c) test under S3.

3.4.2 Multi-step stochastic forecasts based on BMA
method

Based on the forecast results of three data-driven models in
the calibration period, the BMA method determines weights
for LSTM, GRU, and GWO-LSSVM models. The weights
reflecting the performance of the ensemble models during
the calibration period are shown only for lead times of 1 and
7 d for the sake of brevity under S3 and S5 in Fig. 8. The
model weights reflect the comparative importance of all the
competitive modeling predictions on one level. Figure 8 in-
dicates that it is difficult to conclude which individual model
provides the best prediction. For example, GRU outperforms
the remaining two models for Hongqiao Reservoir, while
LSTM performs best for Cenggang Reservoir in Fig. 8a1.
Similar results can be obtained from Fig. 8b1. Compara-
tively, Fig. 8a2 shows that LSTM and GWO-LSSVM influ-
ence the BMA model more than GRU. This higher weight
is assigned because the forecasts are more similar to ob-
servations than those less similar to observations using the
BMA posterior processor. However, observed from Fig. 8b2,
the prediction accuracy of GWO-LSSVM is seriously af-

fected and much less than that of GRU. It is consistent with
the results obtained in Fig. 7, indicating that RNNs outper-
form GWO-LSSVM when there is more input information
under S5. Overall, model uncertainty always exists whether
forecast climate variables are involved or not, and it is neces-
sary to analyze and evaluate the model uncertainty involved
using BMA.

To access model validity, the evaluation of the modeled
streamflow is performed over calibration, validation, and test
periods using NSE, RMSE, and MAE metrics. Table 4 shows
the performance metric ranges for all 24 reservoirs of BMA
methods under S3 and S5. Apparently, both the replica-
tive (forecast performance in calibration sets) and predictive
(forecast performance in validation and test sets) validity un-
der S5 for forecast horizons are significantly better than those
under S3. For example, Fig. 9 demonstrates the improvement
rates in terms of NSE, RMSE, and MAE of the BMA model
compared with the three individual models. BMA produces
the maximum NSE, minimum RMSE, and minimum MAE
during the calibration period for both two scenarios, indicat-
ing that BMA has the best goodness of fit. This is because
the weights are derived according to the individual forecast
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Figure 7. NSE values at lead times of 1 to 7 d plotted against the coefficient of variation (COV) for all the 24 reservoirs during the period of
(a) calibration, (b) validation, and (c) test S5.

model in this period. With respect to validation and test pe-
riods, the BMA method shows better forecasts than the three
comparative models except for the GRU modeling validation
datasets under S5. Thus, it is shown that the BMA model
matches the actual streamflow well.

The model validity is then assessed using (i) hydrographs
and (ii) scatter plots of observed and modeled streamflow, as
shown in Figs. 10 and 11. Herein, we only show three reser-
voirs, i.e., Hongqiao (the largest reservoir), Goushan (the
medium reservoir), and Nanao (the smallest reservoir), for
the sake of brevity. From Fig. 10, it is clearly shown that the
modeled streamflow deviates gradually from the 1 : 1 line,
and the forecast skill decreases with the increase of lead time
under S3 as expected, which is consistent with the statisti-
cal results shown in Table 4. In contrast, the scatters of the
observed and modeled streamflow implemented with fore-
casted climate variables fit well across the 1 : 1 line at dif-
ferent lead times under S5, observed from Fig. 11. The per-
formance for Hongqiao Reservoir is affected explicitly by an
extreme peak event that hit the reservoir during the calibra-
tion period shown in Fig. 10, which does not occur over the
training set of data. This causes heavy underestimations in

the streamflow forecast. A more extended calibration period
is required to improve the performance over such extreme
peak flow events. However, the BMA method performs well
on this extreme peak flow in Hongqiao Reservoir at all lead
times when the forecast climate forcing is applied as inputs.
This is because the reservoirs in Zhoushan Islands have rela-
tively small drainage areas, and thus the flow is concentrated
in a very short time after an extreme rain event.

We use the Monte Carlo simulation method to generate
BMA ensemble forecasts. The number of simulations is set
as 1000 in this study. To demonstrate the optimization re-
sults of multi-reservoir operations based on the data-driven
forecast models under uncertainty, 90 % confidence intervals
associated with the deterministic predictions at BMA are fur-
ther calculated. The confidence interval provides more alter-
natives that are possibly useful for a tradeoff between mul-
tiple objectives, such as flood control, hydropower genera-
tion, and improved navigation (Zhang et al., 2015). The in-
terval performance metrics of Cr andD described in Sect. 2.3
are adopted to assess the performance of uncertain forecasts.
Table 5 displays the averaged metrics for all the 24 reser-
voirs under S3 and S5. Both indicators under S5 are supe-
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Figure 8. Weights of three individual forecast models for the BMA model for all reservoirs under (a) S3 and (b) S5.

rior to those under S3. The 90 % streamflow interval be-
tween the 5th and 95th percentiles of some representative
reservoirs, e.g., Hongqiao, Goushan, and Nanao reservoirs,
are presented in Figs. 12 and 13. The results are consistent
with those in Figs. 10 and 11. It is observed from Fig. 12 that
the streamflow interval fails to capture the extreme peak flow
for Hongqiao Reservoir under S3. The BMA performs grad-
ually worse with increasing lead times for the three reser-
voirs. However, in Fig. 13, the red dots represent the ob-
served streamflow, most of which are covered by the 90 %
interval at both 1 and 7 d ahead. Therefore, the forecast cli-
mate variables will be conducive to reducing the predictive
uncertainty of real-time streamflow forecasting.

3.4.3 Multi-objective reservoir operation performance
evaluation

The optimized operations are regulated based on both deter-
ministic and uncertain forecast inflow. To demonstrate the re-
lationship between the conflicting objectives, a set of Pareto
solutions over a 7 d horizon at different periods under S5 is
given as an example, as shown in Fig. 14. The optimization
using the Pareto concept allows the operator to choose an ap-
propriate solution depending on the prevailing circumstances

and analyze the tradeoff between the conflicting objectives.
In each of the plots, the water deficiency ratio of Daobei Plant
and the sum of the remaining plants are plotted on the x and
y axes, respectively. The color of the markers indicates the
net operating costs, with colors ranging from red, represent-
ing low value, to blue, representing high value. Thus, an ideal
solution should be located at the left corner (low value of the
water deficiency ratio of Daobei Plant and the sum of the
remaining three plants) of the plot and represented by a red
(low net operating costs) marker. The black arrows have been
added in the figure to guide the reader in understanding the
directions of optimization. Generally, the water deficiency ra-
tio of Daobei Plant has an inverse relationship with that of
the sum of the remaining plants (inverse relationship; i.e., the
former decreases with the increase of the latter). In contrast,
the water deficiency ratio of the remaining three plants has a
positive relationship with the net costs (positive relationship;
i.e., the former increases with the increase of the latter).

It is interesting to compare the performances associated
with deterministic and uncertain forecasts. Uncertain con-
ditions (Fig. 14b) show a much broader scale on the three
objectives than deterministic conditions (Fig. 14a). For in-
stance, uncertain forecasts produce the water deficiency ra-
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Figure 9. Improvement rates in terms of averaged (a) NSE, (b) RMSE, and (c) MAE of the BMA model for forecasts as compared with the
three individual models.

tio of Daobei Plant, ranging from −40 % to 80 %, during
12 to 18 August 2007, while deterministic forecasts have a
smaller range, with a value from 30 % to 100 %. The water
supply deficits under deterministic forecasts are due to the
high demand happening in August, which can be mitigated
when informing the reservoir operations with uncertain fore-
casts. In this way, we expect that if the ensemble streamflow
forecasts are used in a stochastic optimization scheme, the
reservoir operation could be further enhanced because the
optimization considers possible uncertainty provided by un-
certain forecasts and thus takes advantage of correcting the
influences of uncertainty.

1. Performance evaluation with different forecast skills. In
general, forecasts are always useful for reservoir opera-
tions. The annual revenues, costs, and water supply re-
liability are chosen as metrics to compare the perfor-
mance of the operating policies derived from different
configurations. Reliability is a measure of how well the
water demand for users is met in a water transfer sys-
tem. In this case, reliability is expressed as a percent-
age. The system performances are averaged over a set

of solutions. The annual values during the period from
1 April 2007 to 31 March 2008 at various configurations
are provided in Table 6 with two decision horizons of
1 and 7 d. The multi-reservoir operation based on ob-
servation is designed as a benchmark. It can be seen
from Table 6 that the performance indicators from the
1 d forecast horizon are better than those from 7 d using
deterministic inflows (in the case of observed and fore-
casted inflows). Two scenarios (S3 and S5) with the 1 d
forecast horizon show similar operating performance,
which is consistent with the performance of the inflow
forecast listed in Table 3. Recall again that S3 uses flow
variables, antecedent precipitation, and evaporation as
forecast inputs, while S5 uses flow variables as well as
the antecedent and forecast climate forcing. In contrast
to S3, the operating results of S5 with a 7 d forecast hori-
zon are closest to that of the observation. This is due
to the improved inflow forecast performance under S5.
However, it is depicted in Table 6 that the indicator of
water supply reliability and net costs under S5 are infe-
rior to those under S3. As for the stochastic forecasts,
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Figure 10. Forecast results of (a) Hongqiao, (b) Goushan, and (c) Nanao reservoirs under S3.

S5 outperforms S3 with lower net costs and approxi-
mate water supply reliability. In this case, the improved
performance may not lead to improved decisions in de-
terministic forecasts.

The results obtained in Table 6 show that system perfor-
mance derived from the observed inflows is inferior to
that from other configurations. This finding cannot con-
firm the effectiveness of inflow forecasts. The reason for
that is the forecast inflows may overestimate the actual
inflows. For example, the mean value (0.14 m3 s−1) of
the observed inflow of Hongqiao Reservoir is lower than
that of the forecasted inflow (0.17 m3 s−1). In this case,
the good performance presented in Table 6 is “fake”.
That is to say, although decision makers can follow the

strategies determined by the forecasted inflows, the sys-
tem performance should be assessed using the actual in-
flows (i.e., observed inflows). We further re-evaluate the
operating strategies optimized from different configura-
tions mentioned above using the observed inflows. The
performance metrics are listed in Table 7. It is expected
that the results can reveal the maximum efficiency and
reliability that could be achieved based on accurate in-
formation. In general, the indicator values under deter-
ministic forecasts in Table 7 are reduced compared with
those in Table 6. The reason is that reservoir operating
decisions in Table 6 are optimized based on a higher in-
flow series.
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Figure 11. Forecast results of (a) Hongqiao, (b) Goushan, and (c) Nanao reservoirs under S5.

In terms of both deterministic and uncertain forecasts,
net operating costs of S5 are improved significantly
compared with that of S3, while water supply reliabil-
ity is increased slightly. This result may suggest that
improved forecasts are more skillful in making deci-
sions when using forecast climate variables as inputs.
We highlight that this result we obtained is specific to
the Zhoushan Islands. Indeed, many studies show that
higher forecast performance did not lead to better opera-
tion decisions (Chiew et al., 2003; Goddard et al., 2010;
Turner et al., 2017). However, some researchers draw
the same conclusions as us. For instance, Anghileri et
al. (2016) declared that inflow forecasts with accurate
weather components would produce much smaller wa-

ter supply deficits. Moreover, Anghileri et al. (2019)
found that preprocessed forecasts (higher performance)
were more valuable than the raw forecasts (less perfor-
mance) regarding two operation performance metrics,
i.e., mean annual revenues and spilled water volume.

There is also an interesting finding that the operat-
ing performance upon deterministic forecasts deterio-
rates, while the performance upon uncertain forecasts
can stay relatively stable. This implies that the use of
uncertain forecasts in reservoir operation can be more
efficient and reliable than that of deterministic fore-
casts. The reason is that in a stochastic optimization
scheme, the value can be further enhanced because the
optimization can account for the total uncertainty pro-
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Figure 12. The 90 % streamflow interval of the BMA method under S3.

vided by the ensemble forecasts. Similar results were
obtained by Roulston and Smith (2003), who reported
that the hydroelectric power production derived from
the ensemble forecasts was increased compared with
the deterministic forecasts. Boucher et al. (2012) also
found that stochastic forecasts outperformed determin-
istic ones with the lower turbinate flow, higher genera-
tion production, and less spillage during a flood period.
Overall, in most cases, a noticeable improvement can

be achieved through the use of the stochastic decision-
making assistance tool.

We then assess the performance metrics of water supply
reliability over different seasons. It is noted in Fig. 15
that the deterministic forecasts are less skillful than the
uncertain forecast when used in spring (JFM), sum-
mer (AMJ), autumn (JAS), and winter (OND) with the
two forecast horizons. Although the operating perfor-
mance using the deterministic forecast is lower due to
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Figure 13. The 90 % streamflow interval of the BMA method under S5.

its deterministic character, the main characteristics of
the relationship between the forecast quality and value
remain unchanged. That is to say, the benefits of consid-
ering the forecasts are more significant when the fore-
cast quality is higher. It indicates that the optimiza-
tion is capable of exploiting efficient information to im-
prove reservoir operations. In our multi-objective op-
timization modeling, we would like to make the best
use of water resources and maximize water supply.

However, the operating performance in autumn shows
a lower value with respect to that in other seasons.
This is because the water demand in autumn is usu-
ally much higher. The shortage does not imply the non-
effectiveness of our proposed forecast-based manage-
ment framework but is due to the limitation of available
water and pumping station capacity.
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Figure 14. A set of Pareto solutions at different periods over a 7 d horizon under (a) deterministic and (b) uncertain forecasts.

2. Performance evaluation with different forecast hori-
zons. The impact of different forecast horizons on the
operation performance is further evaluated under dif-
ferent configurations, as shown in Fig. 16. It is noted
that the operating policy optimized from uncertain fore-
cast inflows upon S5 outperforms that from S3. In terms
of deterministic conditions, S5 improves the operation
on the metrics of water supply reliability of Daobei
Plant, water supply reliability of the other plants, and
net costs with a variation of 2.11 %–13.58 %, 2.74 %–
7.38 %, and −19.94 % to −10.30 %, respectively, com-
pared with S3. As for uncertain conditions, S5 improves
by 0.24 %–1.90 %, 0.06 %–1.32 %, and −59.45 % to
−176.19 %, respectively. Although the increments in
water supply reliability are not insignificant, S5 can se-
cure water demand with much lower operating costs
than S3, which decision makers value most. Further-
more, uncertain forecasts produce an improved ratio
of 31.52 %–65.01 %, 19.98 %–46.60 %, and−116.45 %
to −56.95 % than deterministic forecasts regarding the
three metrics, respectively. Our results again highlight
that uncertain forecasts are more valuable than de-
terministic forecasts when designing forecast-informed
reservoir operations.

With an increase in forecast horizon from 1 to 7 d, the
performance in water supply reliability and net oper-

ating costs upon deterministic conditions are generally
reduced. This suggests that considering a longer fore-
cast horizon (up to 7 d) does not necessarily improve
reservoir operation without future forecast climate vari-
ables as inputs (low forecast quality). The reduced per-
formance in water supply reliability might be due to the
fact that the optimization explores strategies to secure
the whole water demand in a longer horizon, which re-
sults in a sacrifice in reliability on some particular days.
This result is similar to the finding proposed in Xu et
al. (2014), who argued that the use of longer horizon (an
efficient forecast horizon longer than 1 d) inflows could
not improve hydropower performance when they set
the forecast horizon as 1–5 d. Nevertheless, the increas-
ing forecast horizon may not generate improved or de-
creased water supply reliability in uncertain conditions.
Approximate water supply volume can lead to similar
revenues or fees paid to the government and managers
(water fees and water resources fees). Accordingly, the
growing trend in net costs is caused by the increased
operating costs, mainly dominated by electricity prices,
when the multi-reservoir is operated to supply the de-
mand in a longer horizon. In this case, the operation
performance varies at different conditions. This demon-
strates that the relationship between the forecast horizon
and reservoir operation is rather complex and depends
not only on the configurations (i.e., inflow forecast qual-
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S5
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S2
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S4
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(d)

C
alibration

1
[0.11,0.87

]
[0.57,0.94

]
[0.61,0.97

]
[0.8,0.96

]
[0.93,0.99

]
[0.18,0.87

]
[0.57,0.87

]
[0.53,0.98

]
[0.66,0.96

]
[0.89,0.99

]
[0.17,0.91

]
[0.54,0.86

]
[0.58,0.97

]
[0.87,0.97

]
[0.96,0.99

]

2
[0.05,0.58

]
[0.27,0.72

]
[0.34,0.93

]
[0.82,0.95

]
[0.91,0.99

]
[0.07,0.58

]
[0.29,0.66

]
[0.36,0.87

]
[0.78,0.96

]
[0.87,0.99

]
[0.08,0.58

]
[0.27,0.72

]
[0.31,0.83

]
[0.87,0.97

]
[0.94,0.97

]

3
[0.03,0.48

]
[0.11,0.55

]
[0.13,0.63

]
[0.75,0.94

]
[0.91,0.98

]
[0.05,0.51

]
[0.10,0.52

]
[0.14,0.62

]
[0.79,0.95

]
[0.92,0.98

]
[0.05,0.51

]
[0.13,0.55

]
[0.11,0.59

]
[0.86,0.94

]
[0.93,0.96

]

4
[0.03,0.44

]
[0.08,0.49

]
[0.10,0.56

]
[0.84,0.95

]
[0.94,0.98

]
[0.04,0.45

]
[0.08,0.45

]
[0.12,0.56

]
[0.80,0.95

]
[0.90,0.98

]
[0.05,0.45

]
[0.1,0.8

]
[0.09,0.54

]
[0.87,0.92

]
[0.92,0.95

]

5
[0.01,0.17

]
[0.02,0.16

]
[0.03,0.22

]
[0.74,0.95

]
[0.94,0.98

]
[0.02,0.17

]
[0.02,0.17

]
[0.05,0.22

]
[0.86,0.95

]
[0.89,0.98

]
[0.03,0.16

]
[0.05,0.46

]
[0.03,0.23

]
[0.87,0.93

]
[0.93,0.95

]

6
[0.01,0.39

]
[0.06,0.39

]
[0.07,0.44

]
[0.83,0.95

]
[0.93,0.98

]
[0.02,0.4

]
[0.05,0.38

]
[0.09,0.46

]
[0.8,0.95

]
[0.91,0.98

]
[0.03,0.41

]
[0.07,0.87

]
[0.05,0.45

]
[0.87,0.90

]
[0.89,0.94

]

7
[0.01,0.18

]
[0.04,0.19

]
[0.04,0.24

]
[0.84,0.96

]
[0.94,0.97

]
[0.02,0.19

]
[0.04,0.19

]
[0.07,0.26

]
[0.86,0.95

]
[0.93,0.97

]
[0.02,0.19

]
[0.06,0.81

]
[0.06,0.25

]
[0.84,0.88

]
[0.85,0.94

]

V
alidation

1
[0.09,0.90

]
[0.45,0.93

]
[0.50,0.92

]
[0.79,0.96

]
[0.82,0.97

]
[0.11,0.87

]
[0.47,0.87

]
[0.51,0.98

]
[0.34,0.96

]
[0.81,0.99

]
[0.04,0.79

]
[0.5,0.95

]
[0.58,0.88

]
[0.70,0.93

]
[0.76,0.90

]

2
[0.08,0.85

]
[0.01,0.87

]
[0.01,0.90

]
[0.42,0.95

]
[0.64,0.95

]
[0.09,0.58

]
[0.09,0.66

]
[0.07,0.87

]
[0.54,0.96

]
[0.76,0.99

]
[0.00,0.74

]
[0.01,0.83

]
[0.03,0.86

]
[0.70,0.93

]
[0.67,0.95

]

3
[0.08,0.83

]
[0.02,0.83

]
[−

0
.01,0.87

]
[0.79,0.96

]
[0.68,0.96

]
[0.09,0.51

]
[0.09,0.52

]
[0.08,0.62

]
[0.52,0.95

]
[0.77,0.98

]
[0.00,0.74

]
[0.02,0.8

]
[0.03,0.83

]
[0.74,0.94

]
[0.76,0.95

]

4
[0.08,0.83

]
[0.01,0.84

]
[0.02,0.89

]
[0.80,0.96

]
[0.68,0.95

]
[0.09,0.45

]
[0.08,0.45

]
[0.07,0.56

]
[0.52,0.95

]
[0.78,0.98

]
[0.00,0.74

]
[0.01,0.81

]
[0.04,0.84

]
[0.73,0.94

]
[0.77,0.95

]

5
[0.08,0.81

]
[0.01,0.82

]
[0.01,0.85

]
[0.75,0.96

]
[0.67,0.96

]
[0.08,0.17

]
[0.07,0.17

]
[0.06,0.22

]
[0.52,0.95

]
[0.74,0.98

]
[0.00,0.72

]
[−

0
.01,0.78

]
[0.02,0.81

]
[0.70,0.94

]
[0.76,0.94

]

6
[0.08,0.80

]
[0.00,0.80

]
[0.00,0.84

]
[0.80,0.95

]
[0.67,0.94

]
[0.09,0.4

]
[0.07,0.38

]
[0.05,0.46

]
[0.51,0.95

]
[0.80,0.98

]
[0.01,0.71

]
[0.00,0.77

]
[0.02,0.79

]
[0.73,0.94

]
[0.76,0.94

]

7
[0.07,0.78

]
[0.01,0.79

]
[0.00,0.82

]
[0.76,0.96

]
[0.69,0.95

]
[0.08,0.19

]
[0.07,0.19

]
[0.06,0.26

]
[0.53,0.95

]
[0.76,0.97

]
[0.00,0.70

]
[0.00,0.76

]
[0.02,0.79

]
[0.77,0.95

]
[0.77,0.95

]

Test

1
[−

0
.04,0.69

]
[0.50,0.73

]
[0.56,0.89

]
[0.58,0.77

]
[0.54,0.87

]
[−

0
.09,0.71

]
[0.48,0.74

]
[0.54,0.87

]
[0.54,0.76

]
[0.65,0.89

]
[0.04,0.72

]
[0.53,0.71

]
[0.58,0.88

]
[0.69,0.79

]
[0.76,0.90

]

2
[−

0
.13,0.69

]
[0.04,0.62

]
[0.03,0.75

]
[0.41,0.78

]
[0.63,0.85

]
[−

0
.16,0.66

]
[0.04,0.59

]
[0.03,0.7

]
[0.58,0.77

]
[0.61,0.86

]
[−

0
.01,0.71

]
[0.03,0.63

]
[0.03,0.78

]
[0.69,0.79

]
[0.75,0.86

]

3
[0.01,0.20

]
[0.48,0.65

]
[0.50,0.72

]
[0.58,0.73

]
[0.56,0.83

]
[0.03,0.2

]
[0.51,0.65

]
[0.48,0.71

]
[0.61,0.78

]
[0.69,0.82

]
[0.03,0.2

]
[0.50,0.63

]
[0.58,0.70

]
[0.67,0.74

]
[0.73,0.81

]

4
[−

0
.01,0.15

]
[0.02,0.13

]
[0.01,0.17

]
[0.41,0.77

]
[0.63,0.83

]
[−

0
.02,0.13

]
[0.02,0.13

]
[0.01,0.15

]
[0.57,0.77

]
[0.60,0.83

]
[−

0
.01,0.13

]
[0.01,0.12

]
[0.02,0.18

]
[0.68,0.81

]
[0.74,0.83

]

5
[−

0
.01,0.14

]
[0.01,0.14

]
[−

0
.01,0.17

]
[0.63,0.78

]
[0.63,0.81

]
[−

0
.02,0.14

]
[−

0
.01,0.15

]
[0.00,0.18

]
[0.53,0.75

]
[0.62,0.80

]
[0.00,0.12

]
[0.01,0.15

]
[0.01,0.21

]
[0.65,0.77

]
[0.69,0.80

]

6
[−

0
.01,0.05

]
[0.01,0.08

]
[0.00,0.10

]
[0.62,0.76

]
[0.62,0.80

]
[−

0
.01,0.05

]
[0.01,0.08

]
[0.00,0.08

]
[0.56,0.82

]
[0.58,0.82

]
[−

0
.01,0.04

]
[0.02,0.07

]
[0.01,0.08

]
[0.59,0.75

]
[0.62,0.77

]

7
[−

0
.02,0.04

]
[0.23,0.40

]
[0.19,0.45

]
[0.57,0.74

]
[0.55,0.82

]
[−

0
.02,0.03

]
[0.22,0.47

]
[0.20,0.47

]
[0.59,0.81

]
[0.65,0.79

]
[−

0
.01,0.03

]
[0.24,0.34

]
[0.27,0.40

]
[0.69,0.82

]
[0.75,0.81

]

ity and uncertainty) used to determine operating rules,
but also on the performance metrics used to assess op-
eration.

4 Limitations and future work

Our work suffers from some limitations which could be over-
come in future studies. One of the limitations is that only
one single indicator was used to calibrate the forecast mod-
els, while multiple indicators were used in assessing the per-
formance of the models. It would be a more fair practice to
use multi-criteria to do both calibration and assessment, and
this could be interesting for future work. Another limitation
is that we used the average observed price to calculate the
revenues and operating costs. In an operational and dereg-
ulated market setting, the prices may fluctuate significantly
(Anghileri et al., 2019). For instance, forecasting electric-
ity prices is likely to improve short-term operation efficiency
significantly. The combined effects of price and streamflow
forecasts on water resource allocation are worth investigat-
ing in future studies. Our study also suffers from the draw-
back that instead of using the short-term weather forecasts
from the Global Forecast System (GFS) or European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) model
(Choong and El-Shafie, 2015; Schwanenberg et al., 2015;
Peng et al., 2018; Ahmad and Hossain, 2019; Liu et al.,
2019), we used the observed weather conditions as alterna-
tives, which may result in an overestimation in forecast qual-
ity. However, forecast uncertainty and error generally grow
with lead time. The usefulness of the forecast information is
reduced with the increase of the forecast horizon and thus
the operating performance. This may influence the finding
we highlight above that the relationship between the fore-
cast horizon and reservoir operation is not constant and spe-
cific. It would be interesting to analyze the reservoir opera-
tion performance when accounting for an ensemble numeri-
cal weather prediction.

5 Conclusions

In this study, we proposed an AI-based management method-
ology to assess forecast quality and forecast-informed reser-
voir operation performance together. The approach was
tested on a water resources allocation system in Zhoushan
Islands, China. Specifically, the findings are summarized be-
low.

A data-driven reservoir inflow forecasting system using
ML methods (LSTM, GRU, and GWO-LSSVM) was first de-
veloped with a comprehensive calibration–validation–testing
framework. The validity of the deterministic forecast was
demonstrated by applying it over 25 reservoirs with varying
climate and hydrological characteristics. Results showed that
the more variation the streamflow has (a high COV value),

Hydrol. Earth Syst. Sci., 25, 5951–5979, 2021 https://doi.org/10.5194/hess-25-5951-2021



Y. Guo et al.: AI-based techniques for multi-step streamflow forecasts 5973

Table 4. Performance metric ranges ([min, max]) for all 24 reservoirs of BMA methods under S3 and S5.

Period Forecast NSE RMSE (m3 s−1) MAE (m3 s−1)

horizon S3 S5 S3 S5 S3 S5
(d)

Calibration

1 [0.60, 0.98] [0.97, 0.99] [0.02, 0.36] [0.01, 0.09] [0.01, 0.09] [0.01, 0.03]
2 [0.36, 0.92] [0.96, 0.99] [0.04, 0.46] [0.02, 0.10] [0.02, 0.13] [0.01, 0.04]
3 [0.14, 0.63] [0.95, 0.98] [0.09, 0.53] [0.02, 0.11] [0.03, 0.15] [0.01, 0.04]
4 [0.12, 0.57] [0.94, 0.98] [0.10, 0.54] [0.02, 0.12] [0.04, 0.17] [0.01, 0.04]
5 [0.04, 0.23] [0.95, 0.98] [0.14, 0.56] [0.02, 0.12] [0.04, 0.17] [0.01, 0.04]
6 [0.07, 0.46] [0.94, 0.98] [0.11, 0.55] [0.02, 0.10] [0.04, 0.17] [0.01, 0.04]
7 [0.06, 0.25] [0.94, 0.97] [0.13, 0.52] [0.03, 0.11] [0.05, 0.15] [0.01, 0.04]

Validation

1 [0.60, 0.92] [0.84, 0.96] [0.08, 0.66] [0.06, 0.39] [0.02, 0.13] [0.02, 0.10]
2 [0.07, 0.93] [0.80, 0.96] [0.07, 1.09] [0.06, 0.33] [0.03, 0.19] [0.02, 0.09]
3 [0.06, 0.90] [0.82, 0.95] [0.09, 1.09] [0.06, 0.30] [0.04, 0.21] [0.02, 0.09]
4 [0.08, 0.91] [0.85, 0.96] [0.08, 1.07] [0.06, 0.34] [0.04, 0.19] [0.02, 0.09]
5 [0.09, 0.85] [0.85, 0.96] [0.11, 1.08] [0.05, 0.29] [0.05, 0.22] [0.02, 0.09]
6 [0.06, 0.83] [0.86, 0.95] [0.11, 1.08] [0.06, 0.34] [0.05, 0.21] [0.03, 0.09]
7 [0.04, 0.82] [0.87, 0.96] [0.12, 1.10] [0.06, 0.35] [0.05, 0.22] [0.02, 0.10]

Test

1 [0.60, 0.89] [0.76, 0.89] [0.08, 0.68] [0.08, 0.47] [0.03, 0.20] [0.03, 0.16]
2 [0.05, 0.76] [0.68, 0.87] [0.12, 1.05] [0.09, 0.50] [0.05, 0.27] [0.04, 0.16]
3 [0.59, 0.73] [0.68, 0.83] [0.13, 0.69] [0.10, 0.53] [0.05, 0.23] [0.04, 0.16]
4 [0.03, 0.18] [0.69, 0.83] [0.22, 1.06] [0.10, 0.54] [0.08, 0.29] [0.04, 0.16]
5 [0.01, 0.21] [0.68, 0.81] [0.21, 1.08] [0.11, 0.51] [0.08, 0.30] [0.04, 0.16]
6 [0.02, 0.09] [0.64, 0.81] [0.23, 1.07] [0.11, 0.63] [0.09, 0.30] [0.04, 0.18]
7 [0.25, 0.43] [0.67, 0.80] [0.19, 0.84] [0.12, 0.55] [0.09, 0.28] [0.05, 0.16]

Figure 15. Seasonal system performance of water supply reliability.

the harder it was for the ML methods to learn the flow pattern
when there was not enough input information. The forecast
skill deteriorated with increasing lead times under such sce-
narios. However, short-term forecast climate forcing was ef-
ficient and scalable in forecasting the multi-reservoir inflow
over the forecast horizon (1–7 d). LSTM and GRU models
generated comparable performance under different configu-

rations. Given that GRU has simpler structures and fewer pa-
rameters and required less time for modeling, it might be the
preferred method for streamflow forecasts than LSTM.

Then we used BMA to generate stochastic inflow scenar-
ios for quantifying uncertainty based on LSTM, GRU, and
GWO-LSSVM deterministic forecasts. The results demon-
strated that it was difficult to conclude which individual
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Table 5. Ranges of interval performance metrics ([min, max]) for all the 24 reservoirs under S3 and S5.

Period Forecast Cr (%) D (m3 s−1)

horizon S3 S5 S3 S5
(d)

Calibration

1 [94.36, 99.86] [96.29, 99.86] [0.01, 0.06] [0.01, 0.03]
2 [93.67, 99.17] [94.91, 99.66] [0.01, 0.05] [0.01, 0.03]
3 [94.36, 98.21] [95.05, 99.59] [0.01, 0.04] [0.01, 0.03]
4 [92.98, 96.97] [95.67, 99.72] [0.02, 0.04] [0.01, 0.04]
5 [93.26, 96.22] [94.57, 99.79] [0.01, 0.04] [0.01, 0.04]
6 [93.26, 96.70] [95.74, 99.66] [0.02, 0.05] [0.01, 0.04]
7 [92.64, 96.15] [95.53, 99.72] [0.02, 0.05] [0.01, 0.03]

Validation

1 [92.88, 99.73] [96.44, 100.00] [0.01, 0.05] [0.01, 0.03]
2 [94.25, 99.45] [93.97, 100.00] [0.01, 0.05] [0.01, 0.03]
3 [92.33, 97.26] [94.52, 100.00] [0.01, 0.02] [0.01, 0.04]
4 [92.60, 96.16] [93.42, 99.73] [0.01, 0.06] [0.01, 0.04]
5 [91.78, 94.79] [95.07, 100.00] [0.01, 0.04] [0.01, 0.04]
6 [91.78, 94.79] [95.07, 100.00] [0.01, 0.04] [0.01, 0.04]
7 [90.68, 93.42] [93.70, 99.73] [0.00, 0.03] [0.01, 0.03]

Test

1 [90.83, 99.32] [93.84, 99.73] [0.03, 0.22] [0.03, 0.15]
2 [92.75, 97.95] [94.25, 99.73] [0.04, 0.26] [0.03, 0.16]
3 [92.48, 97.40] [94.39, 99.73] [0.05, 0.26] [0.03, 0.15]
4 [91.66, 95.35] [94.39, 99.59] [0.07, 0.28] [0.04, 0.16]
5 [90.70, 94.12] [94.66, 99.45] [0.07, 0.29] [0.04, 0.15]
6 [90.83, 93.98] [93.43, 99.45] [0.08, 0.29] [0.05, 0.18]
7 [89.88, 92.48] [93.57, 99.45] [0.08, 0.28] [0.04, 0.16]

Figure 16. Annual system performance with different forecast horizons.

model provided the best prediction, but the BMA did display
better forecast skills in comparison to the individual ones.
Including one scenario with antecedent conditions and one
scenario with both antecedent and forecast information, two
input combination scenarios were compared on the uncertain
forecast performance in detail. The comparison indicated that
forecast climate variables would help reduce the predictive
uncertainty of short-term streamflow forecasting.

The forecasting scheme was further coupled with a multi-
objective reservoir operation model to optimize water re-

sources allocation. Using a MORDM approach, we identi-
fied strategies that were useful for a tradeoff between water
supply reliability and operating costs in Zhoushan Islands. A
rolling horizon scheme was employed to obtain an optimal
operating policy over the horizon of 1–7 d. The long-term
assessment over a year based on deterministic and stochas-
tic forecasts showed quite different performances in terms of
water supply reliability and net operating costs. Our averaged
annual results showed that uncertain forecasts were more
valuable than deterministic forecasts. The operating benefits
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Table 6. Annual system performance using forecast inflow information.

Inflow Forecast Revenues Costs Net costs Reliability (%)

configuration horizon (104 RMB) (104 RMB) (104 RMB) Daobei Others
(d)

Observation 1 3228.38 3336.52 108.15 79.22 86.10
7 2651.01 2822.95 171.94 71.31 75.94

Deterministic

S3 1 3541.27 3633.50 92.23 79.68 96.90
S5 1 3596.23 3690.32 94.09 79.59 96.31
S3 7 3262.51 3401.53 139.02 80.93 91.84
S5 7 2945.42 3118.95 173.53 76.10 85.27

Uncertain

S3 1 3931.58 3837.88 −93.70 93.49 99.80
S5 1 3988.70 3791.54 −197.16 92.63 99.58
S3 7 3946.61 3902.59 −44.02 94.03 100.00
S5 7 3911.55 3846.44 −65.11 92.83 99.38

Table 7. Annual system performance using observed inflow information.

Inflow Forecast Revenues Costs Net costs Reliability (%)

configurations horizon (104 RMB) (104 RMB) (104 RMB) Daobei Others
(d)

Observation 1 3228.38 3336.52 108.15 79.22 86.10
7 2651.01 2822.95 171.94 71.31 75.94

Deterministic

S3 1 2597.17 2783.31 186.14 67.42 79.10
S5 1 2735.64 2884.66 149.02 71.79 82.00
S3 7 2159.05 2454.79 295.75 57.08 67.04
S5 7 2371.45 2631.57 260.11 64.15 71.80

Uncertain

S3 1 3788.08 3820.27 32.18 94.18 98.45
S5 1 3805.98 3781.46 −24.52 94.42 98.38
S3 7 3762.07 3884.75 122.68 93.64 98.28
S5 7 3785.55 3835.29 49.75 94.99 98.46

of considering the forecasts were more significant when the
forecast quality was higher. Similar results could be obtained
at a seasonal scale. While showing the unquestionable ben-
efit of implementing forecast-based reservoir operations, our
results also demonstrated that the relationship between the
forecast horizon and reservoir operation was complex and
depended on the operating configurations (forecast quality
and uncertainty) and performance measures for the Zhoushan
Islands system.

Overall, the developed AI-based management framework
has demonstrated a clear advantage in quantifying the uncer-
tainties of inflow forecasts to improve the overall system per-
formance of water allocation systems. Such a framework can
be further applied to other study sites with similar problems.
However, the results we obtained in this study are only spe-
cific to the Zhoushan Islands and should be applied to other
study sites with care.
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