Articles | Volume 25, issue 10
https://doi.org/10.5194/hess-25-5561-2021
https://doi.org/10.5194/hess-25-5561-2021
Research article
 | 
25 Oct 2021
Research article |  | 25 Oct 2021

Effects of spatial resolution of terrain models on modelled discharge and soil loss in Oaxaca, Mexico

Sergio Naranjo, Francelino A. Rodrigues Jr., Georg Cadisch, Santiago Lopez-Ridaura, Mariela Fuentes Ponce, and Carsten Marohn

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by editor) (09 Aug 2021) by Graham Jewitt
AR by Sergio Naranjo on behalf of the Authors (12 Aug 2021)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to technical corrections (17 Aug 2021) by Graham Jewitt
AR by Sergio Naranjo on behalf of the Authors (23 Aug 2021)  Manuscript 
Download
Short summary
We integrate a spatially explicit soil erosion model with plot- and watershed-scale characterization and high-resolution drone imagery to assess the effect of spatial resolution digital terrain models (DTMs) on discharge and soil loss. Results showed reduction in slope due to resampling down of DTM. Higher resolution translates to higher slope, denser fluvial system, and extremer values of soil loss, reducing concentration time and increasing soil loss at the outlet. The best resolution was 4 m.