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Abstract. The effect of spatial resolution of digital terrain models (DTM) on topography and soil erosion modelling is well 

documented for low resolutions. Nowadays, the availability of high spatial resolution DTM from unmanned aerial vehicles 10 

(UAV) opens new horizons for detailed assessment of soil erosion with hydrological models, but effects of DTM resolution 

on model outputs at this scale have not been systematically tested. This study combines plot scale soil erosion measurements, 

UAV-derived DTM, and spatially explicit soil erosion modelling to select an appropriate spatial resolution based on 

allowable loss of information. 

During 39 precipitation events, sediment and soil samples were collected on five bounded and unbounded plots and four land 15 

covers (forest, fallow, maize, and eroded bare land). Additional soil samples were collected across a 220 ha watershed to 

generate soil maps. Precipitation was collected by two rain gauges and vegetation was mapped. Two UAV campaigns over 

the watershed resulted in a 0.60 m spatial resolution DTM used for resampling to 1, 2, 4, 8, and 15 m; and a multispectral 

orthomosaic to generate a land cover map. The OpenLISEM model was calibrated at plot level at 1 m resolution and then 

extended to the watershed level at the different DTM resolutions. 20 

Resampling the 1 m DTM to lower resolutions resulted in an overall reduction of slope. This reduction was driven by 

migration of pixels from higher to lower slope values; its magnitude was proportional to resolution. At the watershed outlet, 

1 and 2 m resolution models exhibited the largest hydrograph and sedigraph peaks, total runoff and soil loss; they 

proportionally decreased with resolution. Sedigraphs were more sensitive than hydrographs to spatial resolution, particularly 

at the highest resolutions. The highest resolution models exhibited a wider range of predicted soil loss due to their larger 25 

number of pixels and steeper slopes. The proposed evaluation method showed to be appropriate and transferable for soil 

erosion modelling studies, indicating that 4 m resolution (< 5 % loss of slope information) was sufficient for describing soil 

erosion variability at the study site. 

1 Introduction 

The expansion of the agricultural frontier has been identified as one of the factors driving the increase in global agricultural 30 

production (FAO, 2013), but this increase has a cost. Removal of natural vegetation due to agricultural expansion results in 

loss of soil, soil biota, organic matter and nutrients ultimately reducing the productivity of ecosystems (Palm et al., 2007). 

Up to 24 Pg (1 Pg = 1bn Mg) of topsoil are lost annually and globally through land degradation (UNCCD, 2017), mainly due 

to soil erosion costing more than US$40 billion in lost productivity (UNEP, 2012). 

There are two main approaches to assess soil erosion: measurement and estimation. Measurement is time and energy 35 

consuming and hence often limited to a small number of experimental plots (Wischmeier and Smith, 1978). Estimation, on 
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the other hand, requires information about influencing factors (precipitation, soil properties, soil surface and topography). To 

estimate erosion, two types of simulation models, empirical and physically based, are distinguished (Batista et al., 2019; 

Pandey et al., 2016). Physically based models such as OpenLISEM (Jetten, 2018) or LUCIA (Lippe et al., 2014) aim at 

capturing relevant processes from two-dimensional plots to three-dimensional landscapes, and from minutes to days in 40 

temporal resolution. 

Model input parameters can be measured in situ or in the laboratory or remotely sensed. At the landscape level, a cost-

effective and reliable technique for data acquisition is remote sensing. In hydrologic and soil erosion modelling, required 

remote sensing datasets include topography (e.g. digital terrain model (DTM)) and spectral imagery to derive land cover 

maps. Currently, the highest resolution DEM sets, which are free and publicly available, are 30 m (i.e. SRTM and ASTER) 45 

with almost global coverage. 

UAV technology has been successfully applied in agriculture for crop health monitoring (Loladze et al., 2019), crop height 

estimation, vegetation segmentation (Hassanein et al., 2018), weed management (Castaldi et al., 2017), crop row detection 

(Comba et al., 2015), crop phenology, among others, aiming at a cost-effective, low environmental impact agriculture 

(Hassanein et al., 2018). Current UAV technology offers an increase in spatial resolution of spectral imagery products 50 

(tenths of cm) compared to satellite datasets (tenths of meters). 

Hydrologic modelling of relatively large areas using high spatial resolution DTM often implies vast calculations, resulting in 

large modelling time and storage size. An option to reduce both is to resample to lower resolutions finding a balance 

between a well-represented topography and realistic modelled processes. Resampling of high resolution DTM to lower 

resolutions involves loss of information (Olson, 2007), and the magnitude of this loss depends on the heterogeneity of 55 

topography and geomorphology(Laso Bayas et al., 2015). Several studies mostly working with SRTM / ASTER and 

airborne-LIDAR (Hoang et al., 2018; Olson, 2007; Wang et al., 2012; Wu et al., 2005) have shown that spatial resolution of 

DTM has a significant effect on maximum, mean and standard deviation of elevation and slope: as resolution progressively 

decreases, ranges of elevation and slope narrow. This impacts hydrological (Hoang et al., 2018) and soil erosion modelling 

(Wu et al., 2005). The availability of high resolution DTM allows for the evaluation of the effects of different spatial 60 

resolutions on topographic characteristics, hydrologic and soil erosion modelling against measured high resolution data. The 

present study pioneers in the use of both high resolution DTM and multispectral imagery generated from a UAV at hundreds 

of hectares, combined with plot scale measurements and OpenLISEM modelling, aiming to assess the effect of spatial 

resolution on modelled soil erosion. 

The objectives of this study were to: a) assess the effect of DTM resolution on hydrologic and soil erosion modelling; and b) 65 

propose a method to identify an appropriate spatial resolution. To reach these objectives, the three tasks were: (i) calibrate / 

validate OpenLISEM at the plot level using a 1 m resolution DTM; (ii) adjust the calibrated / validated parameters to the 

watershed level at five different DTMs’ spatial resolution (1, 2, 4, 8 and 15 m); and (iii) identify an appropriate spatial 

resolution for modelling of the study area. 

2 Materials and methods 70 

2.1 Description of the study area 

Field data were collected in a 219.6 ha watershed known for severe erosion. Cuauhtemoc watershed lies within Santa 

Catarina Tayata (S.C. Tayata) municipality in the Mixteca Alta region, Oaxaca, Mexico (Fig. 1), where serious soil erosion 

has been described as an “ecological disaster” (Guerrero-Arenas et al., 2010). The severity of soil erosion is presumably 

caused by highly erodible soils and inadequate land use / farming practices since precolonial times (Palacio-Prieto et al., 75 

2016). 
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Figure 1. Cuauhtemoc watershed (study units, rain gauges, soil samples, soil and geology). Source: (INEGI, 2002, 2013) 

The watershed area is dominated by silty and clayey continental sediments (Ferrusquia Villafranca, 1976), which form the 

highly erodible Yanhuitlan formation (Palacio-Prieto et al., 2016). Dominant reference soil groups in the watershed are (i) 80 

Leptosols, i.e. shallow soils formed by erosion, occupying the largest proportion, (ii) Vertisols, deep clayey soils and (iii) 

Luvisols, soils with Bt horizon of clay illuviation and relatively high base saturation (INEGI, 2014) (Fig. 1). The climate is 

temperate sub-humid with mean annual temperature between 12 and 18° C and a rainy season from late June to late 

September (INEGI, 2008). 

Land cover types within the watershed are representative of those at the municipality level, mainly mature natural forest, 85 

eroded bare land, cultivated area, and other covered areas (buildings, roads). Five soil erosion monitoring study units (SU) 

represented the four main land covers (Fig. 1): Forest (SUFO), eroded bare land (SUEL), maize cultivation on two different 

slopes and soil types (SUM1 and SUM2), and fallow (SUFA). The term study units includes bounded Wischmeier and Smith 

plots (4 x 22.1 m) (Wischmeier and Smith, 1978) for SUFO and SUFA and unbounded micro catchments delineated by GPS 

for SUM1, SUM2 and SUEL. 90 

The SUFO plot was installed on a steep slope (29 %) on a Luvisol, slightly outside the watershed under dense pine (Pinus 

sp.) and understory shrub vegetation. The SUFA plot was installed on a former maize field fallowed in 2017. The plot was 

located on a 15 % slope on a Luvisol 1.7 km from the watershed as it had been installed prior to watershed delineation. 

SUM1 and SUM2 micro catchments were located on 6 and 12 % slopes and had an area of 1024 and 1061 m
2
, respectively. 

Soil in SUM1 was less cohesive than in SUM2 (3 and 10 kPa, respectively). Both were mono-cropped with maize of the 95 

local variety “Blanco”, planted at 90 x 25 cm on 8 May 2017 and not weeded. SUEL micro catchment had an area of 110.1 

m
2
, was located on a 13 % slope, had very low soil cohesion and been bare for many years. Table 1 provides the study units’ 

characteristics. 

 

Table 1: Soil properties at the study units 100 

Soil sample Horizon1 Textural 

class2 

Sand [-] Silt [-] Clay [-] ρbulk [g cm–3] α [cm–1] n 

SUFO 1 CL 0.35 0.38 (+/- 0.06) 0.27 (+/- 0.02) 1.30 (+/- 0.04) 0.0096 1.5116 

2 CL 0.27 0.34 (+/- 0.02) 0.39 (+/- 0.03) 1.23 (+/- 0.03) 0.0135 1.4106 

SUFA 1 CL 0.38 0.26 (+/- 0.02) 0.36 (+/- 0.04) 1.39 (+/- 0.08) 0.0153 1.3774 

2 C 0.26 0.34 (+/- 0.03) 0.40 (+/- 0.05) 1.33 (+/- 0.06) 0.0134 1.3967 

SUM1 1 SCL 0.55 0.22 (+/- 0.04) 0.23 (+/- 0.02) 1.39 (+/- 0.02) 0.0178 1.4236 
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2 SCL 0.54 0.19 (+/- 0.02) 0.27 (+/- 0.02) 1.27 (+/- 0.04) 0.0179 1.4145 

SUM2 1 CL 0.30 0.32 (+/- 0.03) 0.38 (+/- 0.02) 1.25 (+/- 0.07) 0.0137 1.4110 

2 C 0.24 0.35 (+/- 0.03) 0.40 (+/- 0.07) 1.22 (+/- 0.01) 0.0137 1.3970 

SUEL 1 C 0.39 0.21 (+/- 0.02) 0.40 (+/- 0.06) 1.76 (+/- 0.01) 0.0240 1.1817 

2 C 0.39 0.20 (+/- 0.03) 0.41 (+/- 0.05) 1.82 (+/- 0.05) 0.0265 1.1600 

 

Table 1: Soil properties at the study units (cont.) 

Soil 

sample 

Horizon1 Φ 

[cm3 

cm–3] 

θres 

[cm3 

cm–3] 

Ksat 

[cm 

day–1] 

Surface 

roughness 

[cm] 

Cohesion 

at 

saturation 

[kPa] 

d50 [µm] Sf [cm] Overland Manning´s 

roughness coefficient 

[-] 

SUFO 1 0.51 0.0772 17.58 0.7 10 13 40 0.130 (N. rangeland) 

2 0.54 0.0942 26.64  10 6 40  

SUFA 1 0.47 0.0852 12.16 0.7 10 12 40 0.040 (C. Maize s.) 

2 0.50 0.0923 15.31  12 5 35  

SUM1 1 0.48 0.0670 25.79 1.0 3 70 25 0.070 (C. plough) 

2 0.52 0.0763 38.75  3 70 25  

SUM2 1 0.53 0.0924 23.95 1.0 10 7 40 0.070 (C. plough) 

2 0.54 0.0961 28.03  12 5 35  

SUEL 1 0.34 0.0712 2.31 0.1 3 (33) 9 1 0.020 (B. Soil, r.d. <  

2 0.31 0.0694 1.80  3 (33) 9 1 25 mm) 

1 Horizon 1 from 0-40 cm, horizon 2 from 40-100 cm 

2 C: Clay; CL: Clay Loam, SCL: Sandy Clay Loam 

Notes: 

1. Sand, silt and clay fractions and ρbulk were averages of the subsamples 10 cm depth increments per horizon 

    (soil properties / surface roughness in section 2.2.2) 

2. f, Van Genuchten parameters (α and n), Φ, θres, and Ksat were derived from Rosetta using texture and ρbulk as inputs  

3. Cohesion at saturation, Sf, and d50 were derived from texture 

4. Surface roughness is the average of 5 vertical measurements (soil properties / surface roughness in section 2.2) 

5. Overland Manning’s roughness coefficient were obtained by primary land use using OpenLISEM Documentation and 

    User Manual (Jetten 2018) 
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2.2 Data collection and processing 105 

2.2.1 Weather 

Two automatic rain gauges were installed (Fig. 1), C1 being a Decagon ECRN – 100 connected to a Decagon Em50 data 

logger and C2 a Pessl iMETOS connected to a HOBO UA-003-64 logger. The volumetric resolution of both rain gauges was 

0.2 mm and the logging interval was set to 2 min. The collection period was from 14 May to 10 August 2017. For modelling, 

a precipitation event was defined as a minimum of 2.0 mm (Miralles et al., 2010) with minimum hiatus of 60 min between 110 

events. 

Global radiation, air temperature, and relative humidity at 10 min intervals were measured with a Davis weather station 

model Vantage Pro2 installed in the town of S.C. Tayata, 3 km north of the watershed. Daily global radiation was summed, 

while air temperature and relative humidity were averaged. Actual evaporation and transpiration were estimated based on the 

vegetation crop coefficient (KC), exposed and vegetated soil fractions and the reference crop evapotranspiration (ETO), 115 

calculated using the FAO Penman–Monteith equation (Allen et al., 1998). 

2.2.2 Soil properties / surface roughness 

One soil profile and two disturbed auger samples at 10 cm depth increments down to 100 cm were collected per study unit in 

addition to 15 augers throughout the watershed (Fig. 1), based on observation of soil surface characteristics and existing soil 

maps from INEGI. All samples were analysed for texture, volumetric (θ) and gravimetric (θm) soil moisture, bulk density 120 

(ρbulk), and stone surface cover. Derived soil properties were saturated hydraulic conductivity (Ksat), average suction at the 

wetting front (Sf), porosity (Φ), residual soil moisture (θres), and van Genuchten parameters (f, α and n), cohesion, median 

particle diameter (d50) and overland/channel Manning’s roughness coefficient. Surface roughness was measured in the field. 

Early in the campaign and for a brief period, volumetric soil moisture (θ) at 20 cm depth was measured at SUFO and SUFA 

to calibrate infiltration. 125 

For profile description, two soil horizons were determined: 0-40 and 40-100 cm depth given OpenLISEM setting. Texture 

and volumetric soil moisture were averaged per sampling point and horizon. Soil texture was derived by Pipette method 

(Black, 1965; Palmer and Troeh, 1977). Gravimetric soil moisture was estimated by the difference between wet and oven-

dry samples. Bulk density was calculated as proposed by (Lal and Shukla, 2004; Miyazaki, 2006). 

Cohesion values were derived from textural classes based on (Morgan et al., 1998). Median particle diameter was 130 

determined by using the 50
th

 percentile in a distribution curve of cumulative particle size interpolating from proportions of 

texture classes of clay < 2 µm, silt 2-50 µm, and sand 50-2000 µm (Bittelli et al., 2015). Overland and channel Manning’s 

roughness coefficients were derived from OpenLISEM documentation (Jetten, 2018). Aggregate stability, the median 

number of drops required to decrease the soil aggregate mass by 50 %, was model calibrated. 

A set of three 0.9 x 0.9 m sampling squares was installed randomly on every study unit where surface roughness (cm) was 135 

determined as average of five vertical measurements from the horizontal profile line to the soil surface at the beginning of 

the collection period (Lehrsch et al., 1988). As INEGI-based soil units contained a range of soil physical measurements, a 

soil reclassification was performed by merging both our own transect data and the INEGI soil map (Fig. 1) as described in 

Appendix A. The resulting map is shown in Fig. 7c. 

2.2.3 Vegetation 140 

Fraction of vegetation cover (fCover) and leaf area index (LAI) were derived from Sentinel-2 satellite images processed in 

Sen2Agri version 2.0.1 (Defourny et al., 2019). Eleven images of bottom of atmosphere reflectance (L2A) between 24 April 
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and 26 September 2017 were processed  to generate fCover and LAI maps using a non-linear regression model established 

by (Weiss et al., 2002). Average values per study unit were plotted against the day of the year (DOY) and least squares 

polynomial regression equation fitted with NumPy 1.13.3 (Oliphant, 2006). Canopy water storage was estimated as a 145 

function of LAI as proposed in OpenLISEM (Jetten, 2018). Vegetation height in SUM and SUFA was measured with a 

measuring tape as average of all plants within sampling squares at 2-weeks intervals and interpolated with a least square 

polynomial regression between sampling dates. In SUFO, a constant height of 12 m was visually estimated. 

2.2.4 Sediment 

One sediment collection station was installed at the outlet of each study unit, consisting of a 0.5 m high, 2.0 m wide L-150 

shaped plastic sheet attached to the soil and wooden poles, to trap sediment. Sediments were processed the day after each 

precipitation event: ponding excess water was removed; wet sediment was weighed to 0.5 kg precision. Above a minimum 

of 0.25 kg, small sediment amounts (250 to 1 000 g) were collected in plastic bags. Above 3 kg of wet soil, one sub sample 

of 100 g was taken from every impair sample number. Samples were oven-dried at 105° C until constant weight. 

2.3 UAV flight campaign and imagery processing: Digital Terrain Model (DTM) and multispectral imagery 155 

The flight campaigns were carried out using a SenseFly fixed-wing eBee plus, equipped with either a multispectral Parrot 

Sequoia camera, which acquired images in four wavelengths: green (550 nm, 40 nm Full Width at Half Maximum, FWHM), 

red (660 nm, 40 nm FWHM), red-edge (735 nm, 10 nm FWHM), and near-infrared (790 nm, 40 nm FWHM) with a 

resolution of 1.2 MP, or an RGB camera SODA with a resolution of 20.0 MP. The two cameras were mounted separately, 

and each flight campaign was conducted with different cameras. 160 

The first campaign was flown in April 2016, before the rainy season, acquiring images during sunny conditions using the 

SODA camera, to obtain the DTM while most agricultural areas were not cropped. The flight covered the entire S.C. Tayata 

municipality (39.2 km
2
) including Cuauhtemoc watershed (2.20 km

2
), flying at 425 m above ground acquiring images with 

65 % lateral (sidelap) and 75 % longitudinal (frontlap) overlaps flying east/west, resulting in a ground resolution of approx. 

0.12 m. 165 

The second campaign was flown in early October 2017 during high vegetation cover to obtain a multispectral orthomosaic 

and derive a land cover classification. The flight at 320 m above ground acquired images with 60 % lateral and 80 % 

longitudinal overlaps flying east/west, resulting in a ground resolution of approx. 0.40 m. 

For both flight campaigns, high-accuracy corrections of the geolocation data measured with the UAV global navigation 

satellite system (GNSS) were calculated in the post-processing stage using the position of a fixed pre-established real-time 170 

kinematic (RTK) base station as a reference. Post-processing kinematic (PPK) correction was then implemented during 

imagery geotagging processing (Benassi et al., 2017; Forlani et al., 2018; Volpato et al., 2021). 
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Figure 2. Study unit set up: (a) SUFO (forest), (b) SUFA (fallow), (c) SUM1 (maize), (d) SUM2 (maize), and (e) SUEL (eroded bare 

land). Arrows indicate the main flow direction. Image source: 2016 UAV flight campaign. 175 
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UAV images were processed using Pix4D Mapper software (Pix4D, n.d.). Due to a reduction in spatial resolution when 

processing the DTM due to the Pix4D algorithm, which requires a minimum resolution of 5 times the ground sampling 

distance (GSD), DTM resolution was reduced to approx. 0.60 m. 

2.4 DTM resampling and land cover classification 

DTM resampling consisted of two steps: (i) resampling the original DTM with a spatial resolution of approx. 0.60 m to a 180 

baseline resolution of 1 m and (ii) resampling the baseline 1 m spatial resolution DTM to resolutions of 2, 4, 8 and 15 m. For 

resampling OSGeoShell4W, the Geospatial Data Abstraction Library (GDAL) (GDAL/OGR contributors, 2020) and the 

average resampling method were used. 

For land cover classification, the multispectral orthomosaic was processed using the Orfeo Toolbox plug-in (Grizonnet et al., 

2017) version 5.0.0 in QGIS 2.18.13 (QGIS Development Team, 2009). The land use classification procedure consisted of: 185 

(i) creation of in situ data polygons for training and validation using both, the orthomosaic and ground observations; (ii) 

training the random forest algorithm; (iii) performing the classification of the orthomosaic using the derived trained model 

(iv) validation of the previous classification using the validation polygons. The classification was performed with the classes: 

mature forest, eroded bare land, maize, and fallow following FAO’s Land Cover Classification System (di Gregorio and 

Jansen, 1998). An additional class for permanent structures (i.e. roads) was added during post-classification. 190 

Forest, maize, eroded bare land, fallow, and roads accounted for 60, 32, 4, 4, and <1 % of the watershed area, respectively. 

The overall accuracy index was 0.98 while the precision, recall, and F score of the first three land covers ranged from 0.71-

1.0, 0.86-1.0, and 0.80-1.0, respectively. Table B2 shows the confusion matrix of the classification. 

2.5 Soil erosion modelling 

We used OpenLISEM 4.96 (Jetten, 2018), a physically based, dynamic and distributed model that predicts event-based 195 

runoff and erosion via the following processes: overland and channel flow, detachment, deposition, sediment in transport, 

and soil loss. OpenLISEM was selected because 1) it is an open source software (routines are transparent); 2) most input 

parameters are required in a grid format, i.e. respond to spatial resolution (our research question), and 3) its temporal 

resolution is user-defined, i.e. can make full use of detailed rainfall measurements. A detailed description of processes 

simulated by OpenLISEM is given by Jetten (2018). Input parameters were either directly measured on site (on the ground or 200 

by UAV), derived using other software based on own measurements, or calibrated. Figure 3 provides an overview on data 

sources by OpenLISEM category. 
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Figure 3. Overview of measured / derived input data used for modelling. Soil loss measurements on the ground were used for 205 

model validation. 

Each study unit belonged to a single soil and land use class with homogeneous soil and vegetation properties (Fig. 2), while 

at the watershed scale soil and land cover maps, including their soil and vegetation properties, differed with resolution. 

For study unit parameterization precipitation data were obtained from the nearest rain gauge and temporal resolution of 1 

min. Slope, local drain direction, and outlet positions were calculated from the DTM. 210 

Dynamic soil moisture and infiltration, used to determine initial soil moisture before measured events were modeled using 

MODFLOW 2005 (Winston, 2009) and the package Unsaturated Flow Zone (UFZ) with a time step of 1 day, requiring soil 

physical properties, daily precipitation and evapotranspiration as inputs. Initial values of Ksat and Φ were estimated for every 

soil type using Rosetta, a software to estimate soil hydraulic parameters (Schaap et al., 1998), which required measured soil 

texture and bulk density (ρbulk) as inputs (Fig. 3). The selected infiltration model in OpenLISEM (Green and Ampt) requires 215 

Sf, which was derived from texture according to (Rawls et al., 1983). To reduce computation time, we stopped event 

simulations once 95 % of the runoff had reached the outlet. The reason being, to set sediment in transport ~ 0, and Soilloss ~ 

Detachment – |Deposition|. 

Calibration / validation of water balance components followed a two-step procedure: 1) Infiltration was estimated in 

MODFLOW using Ksat, and the infiltration / precipitation ratio computed for the collection period; 2) infiltration was then 220 

calibrated / validated in OpenLISEM using Ksat against the ratio infiltration / precipitation found in the first step. The events 

were split into 2/3 for calibration and 1/3 for validation. 

Sediment balance components were calibrated and validated with soil cohesion and d50, selected out of eight parameters after 

a sensitivity analysis. Collected sediment was compared against modelled Soilloss per event and study unit. Again, 2/3 of the 

events were used for calibration and 1/3 for validation. Table B4 and B5 show the final parameterization per land cover, soil 225 
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type and channel. To evaluate model performance at the study unit level, root mean square error (RMSE), coefficient of 

determination (CD), and model efficiency (EF) were computed as proposed by (Loague and Green, 1991). 

Our model scenarios consisted of watershed level map sets at resolutions of 1, 2, 4, 8 and 15 m. An additional map of 

channels per resolution was created based on the local drain direction assuming that a channel initiates when it accumulates 

1 ha of area upstream. Assigned values of channel width / depth, Manning’s roughness coefficient, cohesion and Ksat were 230 

typical of channels in mountainous headwaters. Figure 4 shows a flow chart of upscaling from the study unit to the 

watershed level starting with calibration / validation of water and sediment balance components at the study unit level. 

 

 
Figure 4. Process of upscaling from study unit to watershed level. 235 

Afterwards the DTM was resampled to the different spatial resolutions, followed by the creation of slope, local drain 

direction and outlet maps. All spatially explicit soil and vegetation maps were subsequently produced for each resolution. 
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To assess effects of different spatial resolution on hydrological and soil erosion, modelling results were compared in two 

categories: (i) event hydrographs (L s
–1

) and sedigraphs (kg min
–1

) at the watershed outlet using three distinctive 

precipitation magnitudes: low (2.6 mm), mid (8.4 mm), and high (23.0 mm) based on the distribution of all the events during 240 

the collection period, and cumulative sediment yield during the collection period; and (ii) watershed wide and land cover 

wise spatially distributed cumulative soil loss (Mg ha
–1

) during the collection period. 

3. Results and discussion 

3.1 Data collection and processing – variables for model parameterization 

3.1.1 Weather 245 

Sums of event precipitation during the collection period (14 May to 10 August 2017) in C1 (n=37) and C2 (n=38) were 

428.4 and 460.4 mm, respectively, during 39 rain events. Minimum, mean, and maximum of event precipitation were 2.2, 

11.6, and 35.4 mm at C1; and 2.2, 12.1, and 36.2 mm at C2, respectively. Minimum, mean, and max of total global radiation 

were 6.20, 15.71 and 24.21 MJ m
–2 

day
–1

, respectively. Mean air temperature and relative humidity were 18.9° C and 82.1 %, 

respectively. Maximum and minimum air temperature were 31.2 and 7.9° C, respectively. Assuming the 2017 rainy season 250 

followed the distribution of the long-term normal precipitation in Mexico’s Hydro-Administrative Region V (Table B1), the 

precipitation in 2017 was between 8 and 15 % lower than in the long term (1981-2010). 

3.1.2 Soil properties / surface roughness 

Among topsoil properties, texture in the study units (USDA - Soil Science Division Staff, 2017) was clay loam in SUFO, 

SUFA, and SUM2; sandy clay loam in SUM1, and clay in SUEL. Average bulk densities ranged between 1.22 to 1.39 g cm
–

255 
3
, except for SUEL (1.76 to 1.82 g cm

–3
), characterized by highly compacted to consolidated material. Ksat ranged between 

12 and 26 cm day
–1

, except in SUEL where it was 2 cm day
–1

 (Table 1). Figure 7c further below and Table A2 respectively 

show the reclassified soil map and a summary of soil properties after reclassification. 

3.1.3 Vegetation 

In SUFO, soil cover (fCover) detected by Sentinel-2 (only photosynthetically active vegetation) was constant at ~0.5. In 260 

SUFA, cover in mid-May started at 0.17, reaching a maximum at 0.57 by the end of July and decreasing thereafter. SUM1 

and SUM2 were averaged in one land use (SUM) in which cover in mid-May started at 0.04, reaching a maximum at 0.65 by 

the end of the collection period. Over time, canopy water storage from Sentinel-2 LAI data followed a similar pattern than 

soil cover. Largest values were estimated in SUM (2.43 mm), followed by SUFA (1.44 mm) and the coniferous SUFO (1.60 

mm) (Table B3). Vegetation heights was constantly 12 m in SUFO. SUM1 and SUM2 reached a maximum of 2.1 m and 265 

SUFA of 0.15 m towards the end of the season. 

3.1.4 Sediment 

Sediment yield was highly variable both in occurrence and magnitude amongst study units. During the collection period 

there were 0, 1, 6, 22 and 24 events that produced > 250 g of sediment) in SUFO, SUFA, SUM1, SUM2 and SUEL, 

respectively (the latter being shown in Fig. 5). 270 
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Figure 5. Event-based sediment yield (Mg ha–1 event–1) in relation to rainfall amount and duration in (a) SUEL, (b) SUM2, and (c) 

SUM1. 

For most combinations of event intensities, sediment yield in SUEL (max. 2.99 Mg ha
–1

 event
–1

) was by far the largest 

corresponding to rain gauge C2. Likewise, sediment yield in SUM2 (max. 0.32 Mg ha
–1

 event
–1

) was generally larger than in 275 

SUM1 (max. 0.04 Mg ha
–1

 event
–1

) corresponding to rain gauge C1. 

Total erosion during the collection period was 19.1, 1.5, and 0.1 Mg ha
–1

 at SUEL, SUM2 and SUM1, respectively. 

Considering the annual historical precipitation, these figures could be 31.0, 2.0, and 0.2 Mg ha
–1

 yr
–1

, respectively. SUEL 

was amongst the largest values globally (Pimentel et al. 1998; Panagos et al. 2015) and locally (SEMARNAT, 2008). SUM2 

was moderate to high, while SUM1 were in the null to slight category according to (Pimentel and Kounang, 1998) and 280 

(SEMARNAT, 2008). SUFO and SUFA (<< 1 Mg ha
–1

) were in the null category. Table B6 shows a summary of collected 

sediment. 

3.2 UAV flight campaign and imagery processing 

3.2.1 Study unit level: Setup, DTM and slope 

The probability density function (PDF) of slopes at the study units (Fig. 6) was extracted from the DTM of the 2016 UAV 285 

flight campaign. SUFO exhibited the largest proportion of steep pixels (mean of 0.29 m m
–1

), followed by SUFA (0.15 m m
–

1
), SUEL (0.13 m m

–1
), SUM2 (0.12 m m

–1
), and SUM1 (0.06 m m

–1
). SUFO was located near the watershed divide with 

steep slopes. SUFA, SUEL, and SUM2 were located between ridges and flat agricultural areas and SUM1 in a typical flat 

agricultural area (Fig. 7d). 

  290 

3.0
1.0

0.1
0.01

[Mg ha-1]

a) b) c)
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Figure 6. Probability density function (PDF) of slope of study units based on UAV data. 

3.2.2 Watershed level: DTM and slope 

Cuauhtemoc watershed DTM and slope at 1 m spatial resolution are shown in Fig. 7. Maximum elevation was 2 503 m 

above sea level (m asl) in the southwest and minimum 2 043 m asl in the northeast at the watershed outlet. East-West 295 

extension was approx. 3.6 km. Relief is diverse with > 20 % of the watershed area having slopes > 0.2 (Fig. 8b). Steeper 

slopes were found in the southwest and along most of the divide and moderate to lower slopes towards the middle and 

northeast parts of the watershed. 
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Figure 7. (a) Elevation, (b) slope, (c) reclassified soil map (c), and (d) land cover classification of Cuauhtemoc watershed. 300 

3.2.3 DTM resampling 

Resampling to lower resolutions smoothened peak elevation (in the range 2 175 to 2 275 m asl, Fig. 8a) and slope values (in 

the ranges 0.45 to 0.65 m m
–1

, Fig. 8b). 

  

a) b)

c)

d)

Map data © 2020 Google Map data © 2020 Google

Map data © 2020 Google

Map data © 2020 Google
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Figure 8. Probability density functions (PDF) of resampled (a) elevation, (b) slope, and (c) difference of slopes between 1 m and 305 

other resolutions of Cuauhtemoc watershed. 

The difference in slope PDF between 1 m and the resampled lower resolutions (Fig. 8c) shows a frequency reduction 

(negative sign in Fig. 8c) at both extremes (between 0 to 0.06 m m
–1

 and 0.25 to 0.65 m m
–1

 and a frequency increase in the 

range 0.06 and 0.25 m m
–1

, and such difference increased with decreasing resolution. In other words, the downgrading 

caused a migration of pixels from the lower and upper end regions to the middle region. Differences (area below or above 310 

the curve) in slope PDF are shown in Table 1. 

 

Table 2. Difference in slope PDF between 1 m and lower resolutions 

Res. [m] Difference in slope 

PDF [m m
-1

] 

1 0.0 

2 0.015 

4 0.041 

8 0.079 

15 0.134 

 

The largest difference, 0.134 corresponds to the 15 m resolution and it reduced proportionally until 0.015 corresponding to 315 

the 2 m resolution. The mean slope decreased with resolution (0.227, 0.225, 0.221, 0.216, and 0.207 m m
–1

 in decreasing 

order from 1 to 15 m resolutions), which has also been observed in other studies. Olson (2007) found for a topographically 

diverse watershed in Minnesota, USA, that the slope’s PDF aggressively shifted to a smaller magnitude when comparing a 2 

m (peak of the PDF at 74°) LIDAR-generated digital elevation model (DEM) and a 30 m (peak of the PDF at 8°) DEM. 

Wang et al. (2012) found for six study areas in China with contrasting topographical reliefs that the mean slope was 320 

proportionally reduced as resolution decreased when comparing 10, 25, 50 and 100 m DEM. The authors also found that the 

reduction was larger in more (25 to 15°) than in less diverse topographies (10 to 7°). 

Wu et al. (2005) working on a watershed in Virginia, USA, found that mean slope length and steepness factor (LS, non-

dimensional) of the RUSLE equation, which summarize the effect of topography on erosion, was proportionally reduced 

from 5.8 to 2.9 as resolution decreased when comparing 10, 30, 60, 100, 150, 200, and 250 m DEM. Finally, Hoang et al. 325 

(2018) working on a watershed in New York, USA, found that mean slope was proportionally reduced from 0.16 to 0.13 m 

m
–1

 as resolution decreased when comparing much higher resolution DEMs: 1, 3, 10, and 30 m. 

a) b) c)
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Amongst these studies, variation in slopes can be attributed to at least two factors: range of spatial resolutions (1-250 m) and 

degree of topographical diversity (from highly diverse mountainous regions to less diverse mostly flat agricultural regions) 

across the studies. 330 

When comparing the difference in slope (or slope related parameter) between highest and lowest resolution and the range of 

spatial resolutions, the difference tends to decrease when the highest resolution tends to 1 m and the lowest resolution is 

close to approx. 30 m but not coarser. In Hoang et al. (2018), the difference in slope between the highest (1 m) and lowest 

resolution (30 m) was about 0.2. On the other end, in Wu et al. (2005), the difference in the slope length and steepness (LS) 

factor between the highest (10 m) and lowest resolution (250 m) was about 0.5. In our study, the difference in slope between 335 

the highest (1 m) and lowest resolution (15 m) was 0.13, which was lower than in Hoang et al. (2018) probably due to the 

lower resolution (30 m) of their lowest resolution as compared to our study (15 m) or to differences in topography diversity 

amongst the two study areas. 

This trend suggests that, independently of topographical diversity, a small difference is achievable with resolutions much 

coarser than 1 m given that the resolution of the base dataset is at least 1 m. This difference has implications on the selection 340 

of an appropriate spatial resolution in hydrological and soil erosion modeling as discussed later in this study. 

3.3 Soil erosion modelling at the study unit level 

Early campaign soil moisture measurements in SUFO and SUFA at 20 cm depth were used to calibrate infiltration in 

MODFLOW. Model performance at SUFO and SUFA were: CD=0.93 and 0.03, EF=0.92 and –28.68 and RMSE=1.91 and 

1.57, respectively. Better performance at SUFO was probably due to a wider range of measurements (0.26-0.31 θ) as 345 

opposed to the narrow range / short period at SUFA (0.341-0.343 θ), which made it unsuitable for calibration as shown by 

the poor model performance at SUFA but rather small RMSE. A reduction in the range 15-25 % of initial values of Ksat 

(Table 1) calculated with Rosetta was required for calibration of infiltration. For the remaining study units, reductions of 

initial Ksat values in this range were applied. 

As a second step, the ratio infiltration / precipitation obtained from MODFLOW was used for infiltration calibration in 350 

OpenLISEM. A reduction in the range 0.6-1.3 % of MODFLOW values of Ksat (Table 1) was required for calibration. Grum 

et al. (2017) achieved good agreement (Nash–Sutcliffe Efficiency (NSE) > 0.6) between observed and predicted runoff by 

modifying Ksat in the range 0.2-7 % of the estimated Ksat, Hessel et al. (2006) by 0.8-3.6 % (NSE > 0.5). and de Barros et al. 

(2014) by 5 % (NSE > 0.6). This suggests that the model over-predicts infiltration when parametrizing Ksat values in normal 

ranges. Possible causes are that the infiltration routine in the model’s structure requires some tuning or that processes other 355 

than the ones considered in the model are relevant (i.e. sealing or crusting of the soil surface). 

Figure 9 shows observed and predicted sediment yield at SUM2 and SUEL during calibration and validation. For SUM1 

only 6 rain events produced > 250 g of sediments. 
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Figure 9. (a) Calibration and (b) validation of sediment yield at the study units SUM2 and SUEL. 360 

The best model performance in SUM2 and SUEL was achieved by modifying soil cohesion in the range 10
3
-10

4
 and d50 in 

the range 10
1
-10

4
 of the measured / estimated values (Table 1). Calibration and validation parameters were: for SUM2: EF = 

0.46, 0.52; CD = 3.95, 4.12; and RMSE = 154 and 133; for SUEL: EF = 0.10, 0.06; CD = 4.54, 5.06; and RMSE = 114, 137. 

Parameters for SUFO, SUFA and SUM1 were non-acceptable under modeling criteria. The reason for this was the narrow 

range of observed values (sediment yield << 1 Mg ha
–1

). OpenLISEM realistically predicted soil erosion in highly erodible 365 

soils (SUEL) and low to mild slopes (SUEL / SUM2). On the other hand, it had limitations in predicting soil erosion in 

highly cohesive soils (SUFO / SUFA), high slope terrains (SUFO) and low cohesive soils in combination with low slopes 

(SUM1, results not shown). 

The below-mentioned studies calibrated sediment yield with soil cohesion and d50. Grum et al. (2017) achieved good model 

fit (R
2
 > 0.5, n=27) for sediment yield by modifying soil cohesion by 10

4
 and d50 by 10

3
. Similarly, de Barros et al. (2014) 370 

achieved good agreement on some events (NSE > 0.5, n=5) modifying soil cohesion by 10
4
. In both studies the model 

generally overpredicted erosion. Calibration of sediment balance components in these studies was challenging since the 

model performed satisfactorily for some events but poorly for others. The authors unanimously assumed that certain 

processes may not be adequately represented in the model. In these studies model calibration was done either per event 

(Grum et al., 2017) or per class of events (de Barros et al., 2014), that is different values of selected calibration parameters 375 

for every event or class of events. In our study, we calibrated the selected parameters using a single value for all events 

because we wanted to isolate the effect of different spatial resolutions and to achieve this, all the other parameters had to 

remain constant. 

OpenLISEM performance was satisfactory for SUM2 and SUEL given the fact that its final parametrization, as it was 

mentioned above, evenly distributes over- and under-estimated predictions which, over the collection period averages 380 

observed erosion. Table B4 and B5 lists OpenLISEM parameters and calibrated values at the watershed level. 
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3.4 Soil erosion modelling at the watershed level with different spatial resolutions 

For scenario modelling, watershed simulations with a distributed model based exclusively on plot data would not be good 

practice without additional downstream sampling points for validation. However, the main goal of our study was to 

determine the relative effect of DTM resolutions without validation to absolute values. Maps of model input parameters are 385 

shown in Fig. B1. 

3.4.1 Modelled discharge and sediment yield at the watershed outlet 

Event hydrograph (L s
–1

) and sedigraph (kg min
–1

) at the watershed outlet for three selected events with low, medium and 

high precipitation events are shown in Fig. 10. 

 390 

 
Figure 10. Hydrographs (top row) and sedigraphs (bottom) at the watershed outlet at low (2.6 mm, left), medium (8.4 mm, centre), 

and high (23.0 mm, right) precipitation events. Note different scaling of x and y axes between figures. 

Hydrographs and sedigraphs differed significantly across resolutions with a trend: largest peak values occurred at the highest 

resolution and decreased with resolution (Fig. 10). Discharge at all three events started earlier (rising limb) and at a higher 

rate the higher the resolution was, while this ranking was reversed towards the end of the falling limb. The low and mid 395 

precipitation events exhibited a characteristic double peak (bimodal) hydrograph at 1 m resolution which was gradually 

smoothened, shifting to one peak (unimodal) at lower resolutions. 
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Relative differences between peak discharge of the highest and lowest resolutions were not proportional across magnitudes 

of precipitation. While the highest peak at 15 m resolution was about 60 and 40 % to that of 1 m resolution in the low and 

high precipitation events, respectively, this ratio was about 80 % in the mid precipitation event suggesting a significant 400 

influence of rainfall intensity. Total runoff (area under the hydrograph) was 4.51, 4.44, 4.26, 4.07 and 3.78 x 10
3
 m

3
 in the 

low precipitation event; 11.78, 11.74, 11.56, 11.34 and 10.95 x 10
3
 m

3
 in the mid precipitation event; and 44.24, 44.19, 

43.64, 40.83 and 42.14 x 10
3
 m

3
 in the high precipitation event in the 1, 2, 4, 8 and 15 m resolutions respectively. The ratio 

runoff15m / runoff1m was 0.84, 0.93 and 0.95 for the low, mid and high precipitation events respectively. 

Hessel et al. (2006) observed that at low temporal resolution (15 min) the model did not predict bimodal hydrographs and 405 

attributed this to smoothened rainfall intensities. Grum et al. (2017) assumed that asynchronous rainfall distribution in the 

watershed (3 rain gauges in ~12 km
2
) was overriding temporal discharge peaks. In contrast, de Barros et al. (2014) reported a 

good prediction even for multimodal hydrographs, and attributed this performance, amongst others, to the high spatial 

discretization of parameters. Our model time step of 1 min was not limiting for detecting bimodal discharge patterns and thus 

allowed us to explore the effects of spatial resolution on temporal discharge patterns. 410 

Sedigraphs as product of discharge and sediment concentration exhibited larger differences across resolutions than 

hydrographs. Rising limbs started much earlier and rates of sediment discharge were larger in the 1 and 2 m resolution as 

compared to the remaining resolutions and to their hydrographs. At the same time bimodal patterns were much more 

pronounced than in hydrographs. Total sediment yield was 0.98, 0.63, 0.19, 0.12 and 0.09 Mg in the low precipitation event; 

0.53, 0.33, 0.14, 0.06 and 0.05 Mg in the medium precipitation event; and 18.28, 12.63, 18.76, 4.24 and 5.21 Mg in the high 415 

precipitation event in the 1, 2, 4, 8 and 15 m resolutions respectively. The ratio sediment yield15m / sediment yield1m was 

0.09, 0.09 and 0.29 for the low, medium and high precipitation events, respectively. 

Sedigraphs imposed more challenge in achieving a good fit between predicted and observed values. However, sedigraphs 

were more sensitive than hydrographs to spatial resolution (lower ratios sediment yield15m / sediment yield1m than runoff15m / 

runoff1m). This sensitivity, particularly in the three highest resolutions (Fig. 10d-10f), provides an opportunity for studies 420 

aiming at detailed sedigraphs. 

 

 

Figure 11. Event sediment yield (SY) at watershed outlet across resolutions. 

The difference in event sediment yield between the 1 m and the remaining resolutions fluctuates from close to 0 up to ~1 425 

order of magnitude as event precipitation increases (Fig. 11). Cumulative sediment yield at the outlet during the collection 
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period was 191.9, 128.4, 38.1, and 39.7 Mg in the 1, 2, 8 and 15 m resolutions. Four events in the 4 m resolution (one of 

them in Fig. 10f) were excessively large driving the cumulative sediment yield to an unmatched 440.9 Mg. The four extreme 

sediment yield events occurred during high precipitation events, even though the hydrograph (Fig. 10c) followed an 

intermediate trend between resolutions. This suggest that OpenLISEM’s numerical routine for sediment balance find an 430 

unexpected combination of values when processing the 4 m resolution in combination with high precipitation events. 

3.4.2 Spatial distribution of soil loss in the watershed 

Spatial distribution of cumulative soil loss during the study period for three selected spatial resolutions and a box plot of its 

distribution per land use are shown in Fig. 12. 

 435 

 
Figure 12. Cumulative soil loss (Mg ha–1) during the collection period at: (a): 1 m, (b): 4 m, (c): 15 m resolution, and (d) box-plot 

per resolution. 

Watershed-wide median soil loss (Fig. 12d) increased from 9.2 to 10.2 Mg ha
-1 

from 1 m to 15 m resolution. The 

proportional shifting upwards of the quartiles as resolution decreased (Fig. 12d) might be due to a combination of number of 

pixels and hence, pixel diversity. In this study, the highest resolution map (1 m) had 225 times (15
2
) more pixels than the 440 

d)

a) b)

c)

Map data © 2020 Google Map data © 2020 Google

Map data © 2020 Google



21 

 

lowest resolution map (15 m), following a quadratic behavior. The highest resolution map (1 m) contained much higher 

diversity of values (e.g. soil loss) due to 2.196 x 10
6
 pixels than a lowest resolution map (15 m) with 0.009 x 10

6
 pixels. This 

diversity of pixels widened the distribution of the highest resolution map while narrowing it in the lowest resolution map. 

The fact that the quartiles shifted downwards as resolution increased may be due to the effect of a larger number of pixels 

with low slope (Fig. 8b / 8c in the range 0 to 0.06 m m
–1

) which translated in low soil loss. On the other hand, Fig. 12d also 445 

showed that the highest soil loss values in particular areas were obtained at the highest resolution (highest variation) as 

expected due to higher slopes in some pixels. 

Independently of spatial resolution, along the watershed we found hotspots of soil loss in some areas in the southwest end, in 

some areas along the watershed divide (typical high slope areas, Fig. 7b) and in the eroded bare land (Fig. 7c, SC4: highly 

erodible soil). Likewise, negligible soil loss occurred where slope was lower (Fig. 7b) e.g. on agricultural terraces in the 450 

middle of the watershed. Setting aside the eroded bare land, there appeared to be a good correlation between slope (Fig. 7b) 

and soil loss (Fig. 12), which supports the well-known influence of slope on flow velocity and net soil transport. Hessel et 

al., 2006 also report similar erosion patterns (although of different magnitude) between the predicted soil loss map from the 

model and a soil erosion assessment map based on a survey conducted in the same rainy season, suggesting the ability of 

OpenLISEM to adequately capture spatial patterns of erosion. 455 

Land cover-wise (Fig. 13a–13d) the range of soil loss tended to decrease with resolution as depicted by the envelope of 

values from the highest to the subsequent lower resolutions. Another characteristic was the loss of continuity in values as 

resolution decreased: while 1 and 2 m resolution showed continuity between the highest and lowest soil loss value in all 

resolutions, 4 m showed quasi-continuity, 8 m shows continuity in forest and maize but not in fallow and eroded bare land, 

while 15 m showed discontinuity in all land cover except forest. This characteristic is most probably due to pixel diversity 460 

discussed earlier given the land cover area proportions in the watershed: 60, 32, 4 and 4 % corresponding to forest, maize, 

fallow and eroded bare land, respectively. 
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Figure 13. Cumulative soil loss (Mg ha–1) of: (a) forest, (b) maize, (c) fallow, and (d) eroded bare land cover across resolutions. 

Resolutions 1 and 2 m for maize and fallow (Fig. B2), exhibited a larger share of pixels in the vicinity of low soil loss (≤ 5 465 

Mg ha
–1

) as compared to the remaining resolutions and land covers. On the other end, 8 and 15 m resolutions at all land uses 

exhibited a larger share of pixels in the upper range (≥ 10 Mg ha
–1

). A key message is that transition zones between 

agricultural lands (e.g. maize and fallow) and forest / eroded bare land represent candidate areas for preventive action. In this 

context, (Koomson et al., 2020) highlighted the importance of critical slope length to control soil erosion. Moreover, 

corrective actions can also be promoted by locating and estimating erosion hotspots within the region and encouraging land 470 

use interventions to change eroded bare land back to agricultural land / forest. 

The fact that higher resolution sets did not exhibit larger overall soil loss (Fig. 12), even though exhibiting larger sediment 

yield at the watershed outlet (Fig. 11) may appear contradictory, but we propose two explanations. One argument is the 

contribution of pixels with extreme values to overall sediment regime. Extreme soil loss (Fig. 12d) in the 1, 2, 4, 8 and 15 m 

a) b)

c) d)
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resolution ranged from ~40 to ~3500, ~2000, ~1000, ~700 and ~800 Mg ha
–1

, respectively. In our study, extreme values 475 

contributed with large quantities to the watershed sediment, and their effect was larger in the higher resolutions due to their 

largest pixel diversity. In other words, despite pixel area, much more extreme pixels with higher magnitudes of soil loss in 

the higher resolution maps contributed overall more sediment to the watershed. 

The second argument is the effect of both slope and density of the fluvial system on the time of concentration and hence on 

the watershed’s sediment delivery ratio (SDR) which is the ratio sediment yield / gross sediment production. The time of 480 

concentration (time needed for water to flow from the most remote point in the watershed to the outlet) and the SDR are 

directly proportional to resolution: the higher the resolution, the higher the slope, and the higher density of the fluvial system 

(more channels as they are more clearly defined). For instance, the highest resolution (1 m) with its higher slope (Fig. 8b) 

promotes faster flow velocities, and its denser fluvial system (results not shown) promotes a more efficient transport system, 

reducing time of concentration. Hence, both larger sediment inputs and shorter time of concentration experienced by higher 485 

resolution sets exhibit a larger sediment yield (Fig. 10) as compared to their lower resolution counterparts. 

3.5 Selection of an appropriate spatial resolution 

Selection of an appropriate resolution in spatially distributed modeling depends, amongst others, on the spatio–temporal 

resolution of the process to be modeled. In soil erosion modelling, deposition is dependent on a detailed representation of 

both slope and fluvial system since these define flow velocity and path to the outlet, respectively. Detachment on the other 490 

hand is considered spatially independent since precipitation is assumed homogeneously distributed within the area 

represented by a rain gauge. An appropriate representation of both processes, however, depends on a high temporal 

resolution of precipitation and runoff. In this study, the temporal resolution was 1 min, which provided the highest possible 

temporal resolution in LISEM (mm min
-1

), coming closest to field conditions. Our purpose for choosing this time step was to 

focus on aspects of spatial resolution. For scenario modelling exercises, temporal resolution may be reduced to economize 495 

computing power. The study area was heterogeneous in topography with more than 20 % of the area exhibiting slopes > 0.2 

(Fig. 7b / 8b) as such, slope maps were selected as an evaluation parameter given the findings of previous sections regarding 

DTM resampling, i.e. slope magnitude and distribution dependence on resolution. 

The loss of information as a consequence of resampling is expressed by the difference in slope PDF (Table 1) between the 

highest resolution (1 m in our study) and the remaining resolutions, which can be interpreted as a deviation from reality, if 500 

we define the highest resolution as the reality. In this study we set the borderline between acceptable and unacceptable 

deviation from reality at 5 % (i.e. 0.05). The highest resolution that fulfilled this criterion was 4 m. 

Zhang et al. (1994) studied the effect of DEM resolution on hydrological simulations in two catchments in the western USA. 

They report that 10 m resolution provided a substantial improvement over 30 and 90 m resolutions, while 2 and 4 m 

provided only marginal improvement over the 10 m. They suggested 10 m resolution as a compromise between detail and 505 

computer storage volume. Wu et al. (2005) suggested that the best resolution may not necessarily be the highest resolution, 

but that spatial variability ought to be adequately represented. 

Hoang et al. (2018) reported that 10 m resolution was the most appropriate in their study, since it provided a good 

representation of the landscape and was a compromise between too much detail in higher resolutions and lost information in 

coarser resolutions. Hessel et al. (2006) mentioned that a 20 m resolution was insufficient in their erosion modeling exercise 510 

given complex land use patterns occurring at small scales not captured by the resolution. On the other end, de Barros et al. 

(2014) working with a 5 m resolution mentioned that amongst the reasons for a good performance of OpenLISEM in 

predicting runoff was the high spatial discretization of the surface. 

The abovementioned studies with their particular topographies conclude that a spatial resolution of around 10 m may 

comprise a balance between a sufficiently detailed topography and allowable computational indicators (e.g. storage volume, 515 
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modeling time). The diverse topography in our study area required a further increase in resolution to 4 m to stay within the 5 

% deviation slope criteria chosen. 

4 Conclusions 

This study explored some of the effects that differences in spatial resolution have on modelling of hydrographs and 

sedigraphs at the outlet from different events predicted by a spatially distributed soil erosion model in a topographically 520 

diverse ~2.2 km
2
 tropical watershed in southeast Mexico. Furthermore, we explored effects on spatial distribution of soil loss 

during a period of ~3 months in the 2017 rainy season. 

Resampling resolution of DTM changed slope, with consequences for water residence time in the watershed (hydrograph) 

further influencing sediment transport and concentration in runoff (sedigraph). Effects on soil loss were most pronounced 

where the change in slope was most significant. A high-resolution map implies more pixels and hence higher diversity of 525 

values than a low-resolution map covering the same area. The higher the diversity of soil loss values, the more influence on 

overall sediment regime in a watershed. The results of this study allowed us to conclude the following: 

 Event-wise calibration of water balance components in OpenLISEM was more flexible and provided far better 

results than calibration of sediment balance components. Calibration of sediment balance components achieved 

better model fit in low cohesion / highly erodible soils than in high cohesion / low erodible soils. Model fit was also 530 

better for low to mild slopes / low flow velocity compared to steep slopes / high flow velocity. 

 At the watershed outlet, the highest resolutions (i.e. 1 and 2 m) exhibited the largest hydrograph and sedigraph 

peaks, total runoff and total soil loss; while these variables proportionally decreased with resolution. Sedigraphs 

were more sensitive than hydrographs to spatial resolution, particularly at the highest resolutions. Spatially 

distributed soil loss prediction fluctuated within a desirably narrow range across resolutions. The two highest 535 

resolutions exhibited a broader range of predicted soil loss due to their larger quantity of pixels and wider diversity 

of slopes; while slope proportionally decreased with resolution. 

 Resampling the DTM of a topographically diverse terrain from a fine resolution (1 m) to lower resolutions implied 

loss of information and a reduction in slope. This reduction was driven by the migration of pixels from the upper 

end (higher slope values) to lower values (the middle region) and its magnitude was proportional to resolution. 540 

There was also a less sensitive migration of pixels from the lower end (lower slope values) to higher values (the 

middle region), however insufficient to overcome the effect of the first mentioned migration. 

 The criterion for selection of an appropriate spatial resolution was based on the evaluation of loss of information (5 

% max) due to resampling as compared to the highest available resolution. The 4 m resolution proved to be 

sufficient for describing soil erosion at the studied area. 545 

Appendices 

Appendix A. Soil reclassification 

A summary of soil properties at the study units and at the 15 sampling locations is shown in Tables 1 (main text) and A1. 

The INEGI soil map (Fig. 1) was amended to include three more classes, based on the soil properties at the study units plus 

the sampling locations. It was clear that the boundary between Leptosols and Vertisols was located between samples S12 and 550 

S13 coinciding with the boundary between extrusive igneous and sedimentary rocks, which was verified with a transect 



25 

 

around the area, so it was decided to assign the boundary between SC1 (Leptosols) and SC2 (Vertisols) to match the one 

between igneous and sedimentary rocks. 

Within SC2, 10 samples were taken ranging between clay (S03, S06, S07, S08, and S10), clay loam (S11 and S12), and loam 

texture (S05 and S09). SUEL also had clay texture but differed from the clay group in its higher ρbulk (Table 1). SC2 soil 555 

properties matched average clay group properties, while two new soil types were created within SC2: SC5 whose soil 

properties were set to those of the average loam group, and SC4 whose soil properties were set to those of SUEL whose 

extension matched the eroded bare land area. Samples S11 and S12 were not considered in the reclassification because their 

properties differed from both, clay and loam groups. 

Within SC3 (Luvisols), 6 samples were taken and ranged between clay loam (SUM2, S02, S04 and SUFO) and sandy clay 560 

loam (S01 and SUM1). SC3 soil properties were set to those of SUM2. Within SC2 and SC3, one additional class was 

defined (SC6) which soil properties were set to those of SUM1. A summary of soil properties after reclassification is shown 

in Table A2. 

Table A1. Soil properties at transect points 

Soil sample Horizon1 Textural class2 Sand [-] Silt [-] Clay [-] ρbulk [g cm–3]  

S01 1 SC 0.48 0.16 0.36 1.22  

2 CL 0.44 0.18 0.38 1.26  

S02 1 CL 0.34 0.28 0.38 1.25  

2 C 0.28 0.30 0.42 1.27  

S03 1 C 0.18 0.34 0.48 1.35  

2 C 0.16 0.33 0.51 1.38  

S04 1 CL 0.41 0.22 0.36 1.38  

2 CL 0.37 0.24 0.39 1.35  

S05 1 L 0.40 0.34 0.26 1.42  

2 CL 0.35 0.36 0.29 1.45  

S06 1 C 0.32 0.28 0.40 1.47  

2 C 0.28 0.29 0.43 1.49  

S07 1 C 0.22 0.24 0.54 1.32  

2 C 0.18 0.26 0.56 1.35  

S08 1 C 0.26 0.28 0.46 1.40  

2 C 0.21 0.29 0.50 1.43  

S09 1 L 0.49 0.29 0.21 1.53  

2 L 0.46 0.32 0.22 1.45  

S10 1 C 0.22 0.26 0.52 1.30  

2 C 0.18 0.28 0.54 1.33  

S11 1 CL 0.35 0.25 0.39 1.45  

2 C 0.33 0.24 0.43 1.45  
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S12 1 CL 0.40 0.32 0.28 1.12  

2 SiL 0.37 0.33 0.30 1.22  

S13 1 SiL 0.28 0.58 0.14 1.15  

2 SiL 0.26 0.57 0.17 1.19  

S14 1 SL 0.66 0.28 0.06 1.32  

2 SL 0.60 0.32 0.08 1.36  

S15 1 L 0.42 0.46 0.12 1.26  

2 SiL 0.38 0.46 0.16 1.29  

1 Horizon 1 from 0-40 cm, horizon 2 from 40-100 cm 

2 L: Loam; C: Clay; CL: Clay loam; SCL: Sandy clay loam: SiL: Silt loam; SL: Sandy loam; SC: Sandy clay 

Notes: 

1. Sand, silt and clay fractions and ρbulk were the averages of the subsamples 10 cm depth increments per horizon 

    (soil properties / surface roughness in section 2.2.2) 

 565 
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Table A2. Soil properties per soil class in Cuauhtemoc watershed. 

Soil class Horizon1 Textural 

class2 

Sand 

[-] 

Silt 

[-] 

Clay 

[-] 

ρbulk 

[g cm–3] 

f  [-] α n 

SC1 1 L 0.42 0.46 0.12 1.26 0.48 0.0073 1.5918 

 2 L 0.38 0.46 0.16 1.29 0.41 0.0068 1.6042 

SC2 1 C 0.24 0.28 0.48 1.29 0.50 0.0170 1.3333 

 2 C 0.20 0.29 0.51 1.32 0.49 0.0171 1.3171 

SC3 1 CL 0.30 0.32 0.38 1.25 0.53 0.0137 1.4110 

 2 C 0.24 0.35 0.40 1.22 0.54 0.0137 1.3970 

SC4 1 C 0.39 0.21 0.40 1.76 0.34 0.0240 1.1817 

 2 C 0.39 0.20 0.41 1.82 0.31 0.0265 1.1600 

SC5 1 L 0.40 0.34 0.26 1.42 0.42 0.0116 1.4666 

 2 CL 0.35 0.36 0.29 1.45 0.42 0.0112 1.4541 

SC6 1 SCL 0.55 0.22 0.23 1.39 0.48 0.0178 1.4236 

 2 SCL 0.54 0.19 0.27 1.27 0.52 0.0179 1.4145 
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Table A2. Soil properties per soil class in Cuauhtemoc watershed (cont.). 

Soil class Φ 

[cm3 cm–3] 

θres 

[cm3 

cm–3] 

Ksat 

[cm d–1] 

Cohesion at 

saturation 

[kPa] 

Sf [cm] d50 [µm] 

SC1 0.48 0.05 26.30 3 25 30 

 0.46 0.06 29.70 3 25 21 

SC2 0.50 0.10 20.94 12 40 2.5 

 0.49 0.10 16.79 12 35 2.0 

SC3 0.53 0.09 23.95 10 40 7 

 0.54 0.10 28.03 12 35 5 

SC4 0.34 0.07 2.31 3 (33) 1 9 

 0.31 0.07 1.80 3 (33) 1 9 

SC5 0.50 0.07 10.15 3 40 11 

 0.49 0.08 7.84 10 35 12 

SC6 0.48 0.07 25.79 3 25 70 

 0.52 0.08 38.75 3 25 70 

1 Horizon 1 from 0-40 cm, horizon 2 from 40-100 cm 

2 L: Loam; C: Clay; CL: Clay loam; SCL: Sandy clay loam 

Notes: 

1. Sand and silt fractions and ρbulk were the average of the selected soil samples (soil profile and 

augers) within each soil class 

2. Clay fraction was calculated from sand and silt fractions 

3. f, Van Genuchten parameters (α and n), Φ, θres, and Ksat were derived from Rosetta using texture 

and ρbulk as inputs. 

4. Cohesion at saturation, Sf ,and d50 were derived from texture 

  570 
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Appendix B 

Table B1. Normal monthly precipitation for the period 1981-2010 in CONAGUA’s Hydro-Administrative Region V1. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sum 

mm 8 8 6 15 71 230 200 219 242 113 20 7 1139 

% 0.7 0.7 0.5 1.3 6.2 20.2 17.6 19.2 21.2 9.9 1.8 0.6 100 

 

1 Hydro-Administrative Region V includes the State of Oaxaca’s and part of the State of Guerrero’s basin flowing to the 

Pacific. Source: CONAGUA (2016) 

 

Table B2. Confusion matrix of land cover classification. 

  Reference label 

  Mature 

forest 

Eroded 

bare land 

Maize Fallow 

P
ro

d
u

ce
d

 l
ab

el
 Mature forest 1846 0 26 0 

Eroded bare land 0 147 0 0 

Maize 0 0 80 7 

Fallow 0 0 6 38 

 575 

Table B3. Land cover based OpenLISEM parameterization for Cuauhtemoc watershed 

 

Land use 

Soil surface Soil cover 

Surface 

roughness 

[cm] 

Manning’s 

rough. coef. 

[-] 

fCover [m2 

m–2] 

Veg. 

height 

[m] 

Canopy 

storage 

[mm] 

Forest 0.70 0.13 0.49 12 1.60 

Maize 1.0 0.07 0.04 to 0.65 0 to 2.12 0.19 to 2.43 

Fallow 1.0 0.07 0.17 to 0.57 0 to 0.15 0.48 to 1.44 

Eroded 

bare land 

0.1 0.02 0 0 0 
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Table B4. Soil type based OpenLISEM parameterization for Cuauhtemoc watershed 

 

Soil type 

Soil erodibility Infiltration 

Cohesion 

[kPa] 

Aggregate 

stability 

[-] 

d50 

[μm] 

Ksat 

[mm h–1] 

Sf 

[cm] 

Φ 

[cm3 cm–3] 

Initial 

moisture 

[cm3 cm–3] 

Depth of horizon 

[mm] 

SC1 500  

500 

200 h1: 0.078 

h2: 0.085 

h1: 25 

h2: 25 

h1: 0.48 

h2: 0.46 

h1: 0.24-0.37 

h2: 0.17-0.38 

 

h1: 400 

h2: 1000 SC2 500 700 h1: 0.019 

h2: 0.019 

h1: 40 

h2: 35 

h1: 0.50 

h2: 0.49 

h1: 0.23-0.42 

h2: 0.19-0.41 

SC3 500 700 h1: 0.02 

h2: 0.02 

h1: 40 

h2: 35 

h1: 0.53 

h2: 0.54 

h1: 0.23-0.42 

h2: 0.19-0.41 

SC4 300 9 h1: 0.0005 

h2: 0.0005 

h1: 40 

h2: 40 

h1: 0.34 

h2: 0.31 

h1: 0.07-0.09 

h2: 0.07-0.07 

SC5 500 700 h1: 0.02 

h2: 0.02 

h1: 40 

h2: 35 

h1: 0.50 

h2: 0.49 

h1: 0.23-0.42 

h2: 0.19-0.41 

SC6 5000 20000 h1: 0.08 

h2: 0.09 

h1: 25 

h2: 25 

h1: 0.48 

h2: 0.52 

h1: 0.24-0.37 

h2: 0.17-0.38 

 

Table B5. Channel OpenLISEM parameterization for Cuauhtemoc watershed 580 

Width 

[m] 

Depth 

[m] 

Side 

angle 

[°] 

Manning’s 

rough. 

coef. [-] 

Cohesion 

[kPa] 

Ksat 

[mm h–1] 

2.0 0.9 0 0.05 500 0.09 
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Table B6. Collected sediment at study units 

Date Event Collected sediment [kg] 

SUFO SUFA SUM1 SUM2 SUEL 

5/14/2017 

 

5/24/2017 

5/28/2017 

5/30/2017 

6/3/2017 

6/4/2017 

6/6/2017 

6/8/2017 

6/10/2017 

6/14/2017 

6/15/2017 

6/16/2017 

 

6/18/2017 

6/19/2017 

6/26/2017 

6/27/2017 

6/28/2017 

6/28/2017 

6/30/2017 

 

7/3/2017 

7/4/2017 

7/9/2017 

 

7/10/2017 

7/16/2017 

7/18/2017 

7/24/2017 

7/25/2017 

7/28/2017 

7/29/2017 

 

7/31/2017 

8/1/2017 

8/3/2017 

8/5/2017 

8/10/2017 

 

a 

b 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

b 

a 

a 

a 

a 

a 

a 

a 

b 

a 

a 

a 

b 

a 

a 

a 

a 

a 

a 

a 

b 

a 

a 

a 

a 

a 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

 

 

 

0.05 

0.05 

1.59 

1.27 

0.62 

1.49 

3.25 

0.05 

0.05 

0.05 

 

0.05 

0.3 

0.05 

0.4 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

 

 

16.34 

5.56 

12.8 

32.8 

26.2 

12.7 

21.7 

0.05 

2.49 

6.19 

4.61 

 

0.05 

0.3 

0.05 

0.28 

1.29 

1.12 

5.7 

0.05 

0.31 

0.41 

0.05 

0.75 

0.39 

0.05 

4.0 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

 

 

 

 

 

 

 

 

0.05 

0.05 

3.21 

3.9 

6.4 

0.05 

4.49 

6.39 

0.6 

18.6 

6.56 

2.81 

25.7 

0.05 

0.45 

0.58 

2.07 

0.05 

1.13 

0.4 

13.8 

2.55 

1.73 

1.73 

 

2.59 

28.2 

0.05 

23.0 

8.9 

30.8 

Total 

sediment 

yield 

[Mg ha–1] 

  

<< 1 

 

<< 1 

 

0.10 

 

1.52 

 

19.11 
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Figure B1. Maps of input parameters 

fCover [m2 m-2] (DOY=1611) Canopy storage [mm] (DOY=1611) Vegetation height [m] (DOY=1611)

Surface roughness [m] Overland Manning [-] Cohesion [kPa]

Aggregate stability [median # drops] d50 [μm] θ h1 [m3 m-3] (DOY=1611)

θ h2 [m3 m-3] (DOY=1611) Ksat h1 [cm d-1] Ksat h2 [cm d-1]

Sf h1 [cm] Sf h2 [cm] Φ h1 [m3 m-3]
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1 Day of the Year (DOY) 161 corresponds to June 10, 2017 and 34 days after maize in SUM was planted. 

Notes: 

1. Value of aggregate stability map per Table B4 

2. Maps of horizon depth 1 and 2 are constant (similar to aggregate stability map) per Table B4 590 

3. Values of channel depth, side angle, Manning’s roughness, cohesion, and Ksat are constant (sim. to channel width) per Table B5 

 

Figure B1. Maps of input parameters (cont.) 

  

Φ h2 [m3 m-3] Slope [m m-1] Outlet

Local drain direction Elevation (DTM) [m asl] Precipitation zones

Channels Channel width [m] Channel slope [m1 m-1]
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Figure B2. Cumulative soil loss (Mg ha–1) box-plot per land cover across resolutions 
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