Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-5315-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-5315-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ensemble streamflow data assimilation using WRF-Hydro and DART: novel localization and inflation techniques applied to Hurricane Florence flooding
Mohamad El Gharamti
CORRESPONDING AUTHOR
NCAR, Computational and Information Systems Laboratory (CISL), Boulder CO, USA
James L. McCreight
NCAR, Research Application Laboratory (RAL), Boulder CO, USA
Seong Jin Noh
Civil Engineering, Kumoh National Institute of Technology, Gumi, South Korea
Timothy J. Hoar
NCAR, Computational and Information Systems Laboratory (CISL), Boulder CO, USA
Arezoo RafieeiNasab
NCAR, Research Application Laboratory (RAL), Boulder CO, USA
Benjamin K. Johnson
NCAR, Computational and Information Systems Laboratory (CISL), Boulder CO, USA
Related authors
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024, https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.
Mohamad E. Gharamti, Johan Valstar, Gijs Janssen, Annemieke Marsman, and Ibrahim Hoteit
Hydrol. Earth Syst. Sci., 20, 4561–4583, https://doi.org/10.5194/hess-20-4561-2016, https://doi.org/10.5194/hess-20-4561-2016, 2016
Short summary
Short summary
The paper addresses the issue of sampling errors when using the ensemble Kalman filter, in particular its hybrid and second-order formulations. The presented work is aimed at estimating concentration and biodegradation rates of subsurface contaminants at the port of Rotterdam in the Netherlands. Overall, we found that accounting for both forecast and observation sampling errors in the joint data assimilation system helps recover more accurate state and parameter estimates.
Boujemaa Ait-El-Fquih, Mohamad El Gharamti, and Ibrahim Hoteit
Hydrol. Earth Syst. Sci., 20, 3289–3307, https://doi.org/10.5194/hess-20-3289-2016, https://doi.org/10.5194/hess-20-3289-2016, 2016
Short summary
Short summary
We derive a new dual ensemble Kalman filter (EnKF) for state-parameter estimation. The derivation is based on the one-step-ahead smoothing formulation, and unlike the standard dual EnKF, it is consistent with the Bayesian formulation of the state-parameter estimation problem and uses the observations in both state smoothing and forecast. This is shown to enhance the performance and robustness of the dual EnKF in experiments conducted with a two-dimensional synthetic groundwater aquifer model.
Arezoo Rafieeinasab, Amir Mazrooei, Thomas Enzminger, Ishita Srivastava, Aubrey Dugger, David Gochis, Nina Omani, Joe Grim, Kevin Sampson, Yongxin Zhang, Jacob LaFontaine, Roland Viger, Yuqiong Liu, and Tim Schneider
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-262, https://doi.org/10.5194/hess-2024-262, 2024
Preprint under review for HESS
Short summary
Short summary
Integrated Water Availability Assessments is a national initiative to characterize water availability in the U.S. The WRF-Hydro model is used to generate an estimate of hydrological fluxes and storage across the conterminous United States. The streamflow performance is reasonable especially in the eastern and western U.S. Model performance in estimating snow, evapotranspiration and soil moisture is also reasonable with some differences against the verification datasets in certain areas.
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024, https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.
Luiz Bacelar, Arezoo ReifeeiNasab, Nathaniel Chaney, and Ana Barros
EGUsphere, https://doi.org/10.5194/egusphere-2023-2088, https://doi.org/10.5194/egusphere-2023-2088, 2023
Short summary
Short summary
The study explores a computationally efficient probabilistic precipitation forecast approach to generate multiple flood scenarios. It reveals the limitations in predicting flash floods accurately and the need for advanced ensemble methodologies to combine different sources of precipitation forecasts. It highlights the scale-dependency of flood predictions at higher spatial resolutions, shedding light on the relationship between river hydraulics and flood propagation in the river network.
Aaron Heldmyer, Ben Livneh, James McCreight, Laura Read, Joseph Kasprzyk, and Toby Minear
Hydrol. Earth Syst. Sci., 26, 6121–6136, https://doi.org/10.5194/hess-26-6121-2022, https://doi.org/10.5194/hess-26-6121-2022, 2022
Short summary
Short summary
Measurements of channel characteristics are important for accurate forecasting in the NOAA National Water Model (NWM) but are scarcely available. We seek to improve channel representativeness in the NWM by updating channel geometry and roughness parameters using a large, previously unpublished, dataset of approximately 48 000 gauges. We find that the updated channel parameterization from this new dataset leads to improvements in simulated streamflow performance and channel representation.
Erin Towler and James L. McCreight
Hydrol. Earth Syst. Sci., 25, 2599–2615, https://doi.org/10.5194/hess-25-2599-2021, https://doi.org/10.5194/hess-25-2599-2021, 2021
Short summary
Short summary
We present a wavelet-based approach to quantify streamflow timing errors for model evaluation and development. We demonstrate the method using real and simulated stream discharge data from several locations. We show how results can be used to identify potential hydrologic processes contributing to the timing errors. Furthermore, we illustrate how the method can document model performance by comparing timing errors across versions of the National Water Model.
Yong-Fei Zhang, Cecilia M. Bitz, Jeffrey L. Anderson, Nancy S. Collins, Timothy J. Hoar, Kevin D. Raeder, and Edward Blanchard-Wrigglesworth
The Cryosphere, 15, 1277–1284, https://doi.org/10.5194/tc-15-1277-2021, https://doi.org/10.5194/tc-15-1277-2021, 2021
Short summary
Short summary
Sea ice models suffer from large uncertainties arising from multiple sources, among which parametric uncertainty is highly under-investigated. We select a key ice albedo parameter and update it by assimilating either sea ice concentration or thickness observations. We found that the sea ice albedo parameter is improved by data assimilation, especially by assimilating sea ice thickness observations. The improved parameter can further benefit the forecast of sea ice after data assimilation stops.
Ali Aydoğdu, Timothy J. Hoar, Tomislava Vukicevic, Jeffrey L. Anderson, Nadia Pinardi, Alicia Karspeck, Jonathan Hendricks, Nancy Collins, Francesca Macchia, and Emin Özsoy
Nonlin. Processes Geophys., 25, 537–551, https://doi.org/10.5194/npg-25-537-2018, https://doi.org/10.5194/npg-25-537-2018, 2018
Short summary
Short summary
This study presents, to our knowledge, the first data assimilation experiments in the Sea of Marmara. We propose a FerryBox network for monitoring the state of the sea and show that assimilation of the temperature and salinity improves the forecasts in the basin. The flow of the Bosphorus helps to propagate the error reduction. The study can be taken as a step towards a marine forecasting system in the Sea of Marmara that will help to improve the forecasts in the adjacent Black and Aegean seas.
Roland Baatz, Harrie-Jan Hendricks Franssen, Xujun Han, Tim Hoar, Heye Reemt Bogena, and Harry Vereecken
Hydrol. Earth Syst. Sci., 21, 2509–2530, https://doi.org/10.5194/hess-21-2509-2017, https://doi.org/10.5194/hess-21-2509-2017, 2017
Short summary
Short summary
Soil moisture is a major variable that affects regional climate, weather and hydrologic processes on the Earth's surface. In this study, real-world data of a network of cosmic-ray sensors were assimilated into a regional land surface model to improve model states and soil hydraulic parameters. The results show the potential of these networks for improving model states and parameters. It is suggested to widen the number of observed variables and to increase the number of estimated parameters.
Mohamad E. Gharamti, Johan Valstar, Gijs Janssen, Annemieke Marsman, and Ibrahim Hoteit
Hydrol. Earth Syst. Sci., 20, 4561–4583, https://doi.org/10.5194/hess-20-4561-2016, https://doi.org/10.5194/hess-20-4561-2016, 2016
Short summary
Short summary
The paper addresses the issue of sampling errors when using the ensemble Kalman filter, in particular its hybrid and second-order formulations. The presented work is aimed at estimating concentration and biodegradation rates of subsurface contaminants at the port of Rotterdam in the Netherlands. Overall, we found that accounting for both forecast and observation sampling errors in the joint data assimilation system helps recover more accurate state and parameter estimates.
Boujemaa Ait-El-Fquih, Mohamad El Gharamti, and Ibrahim Hoteit
Hydrol. Earth Syst. Sci., 20, 3289–3307, https://doi.org/10.5194/hess-20-3289-2016, https://doi.org/10.5194/hess-20-3289-2016, 2016
Short summary
Short summary
We derive a new dual ensemble Kalman filter (EnKF) for state-parameter estimation. The derivation is based on the one-step-ahead smoothing formulation, and unlike the standard dual EnKF, it is consistent with the Bayesian formulation of the state-parameter estimation problem and uses the observations in both state smoothing and forecast. This is shown to enhance the performance and robustness of the dual EnKF in experiments conducted with a two-dimensional synthetic groundwater aquifer model.
Juli I. Rubin, Jeffrey S. Reid, James A. Hansen, Jeffrey L. Anderson, Nancy Collins, Timothy J. Hoar, Timothy Hogan, Peng Lynch, Justin McLay, Carolyn A. Reynolds, Walter R. Sessions, Douglas L. Westphal, and Jianglong Zhang
Atmos. Chem. Phys., 16, 3927–3951, https://doi.org/10.5194/acp-16-3927-2016, https://doi.org/10.5194/acp-16-3927-2016, 2016
Short summary
Short summary
This work tests the use of an ensemble prediction system for aerosol forecasting, including an ensemble adjustment Kalman filter for MODIS AOT assimilation. Key findings include (1) meteorology and source-perturbed ensembles are needed to capture long-range transport and near-source aerosol events, (2) adaptive covariance inflation is recommended for assimilating spatially heterogeneous observations and (3) the ensemble system captures sharp gradients relative to a deterministic/variational system.
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Uncertainty analysis
Using the classical model for structured expert judgment to estimate extremes: a case study of discharges in the Meuse River
Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India
Sediment and nutrient budgets are inherently dynamic: evidence from a long-term study of two subtropical reservoirs
Performance and robustness of probabilistic river forecasts computed with quantile regression based on multiple independent variables
Using high-frequency water quality data to assess sampling strategies for the EU Water Framework Directive
Future changes in extreme precipitation in the Rhine basin based on global and regional climate model simulations
Uncertainty in computations of the spread of warm water in a river – lessons from Environmental Impact Assessment case study
Assessing rating-curve uncertainty and its effects on hydraulic model calibration
Guus Rongen, Oswaldo Morales-Nápoles, and Matthijs Kok
Hydrol. Earth Syst. Sci., 28, 2831–2848, https://doi.org/10.5194/hess-28-2831-2024, https://doi.org/10.5194/hess-28-2831-2024, 2024
Short summary
Short summary
This study proposes a new method for predicting extreme events such as floods on the river Meuse. The current method was shown to be unreliable as it did not predict a recent flood. We developed a model that includes information from experts and combines this with measurements. We found that this approach gives more accurate predictions, particularly for extreme events. The research is important for predictions of extreme flood levels that are necessary for protecting communities against floods.
Somil Swarnkar, Anshu Malini, Shivam Tripathi, and Rajiv Sinha
Hydrol. Earth Syst. Sci., 22, 2471–2485, https://doi.org/10.5194/hess-22-2471-2018, https://doi.org/10.5194/hess-22-2471-2018, 2018
Short summary
Short summary
Several rivers basins in the Ganga plains suffer from very high sediment production in their catchment and there are no good estimates of sediment yield from these basins due to a lack of gauge data. The RUSLE model offers an alternative approach and the same has been applied in a small basin in the Ganga plains. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in soil erosion and sediment yield estimates at ungauged basins.
Katherine R. O'Brien, Tony R. Weber, Catherine Leigh, and Michele A. Burford
Hydrol. Earth Syst. Sci., 20, 4881–4894, https://doi.org/10.5194/hess-20-4881-2016, https://doi.org/10.5194/hess-20-4881-2016, 2016
Short summary
Short summary
Long-term catchment sediment and nutrient budgets are important for managing soil and nutrient resources for more sustainability. Here we construct a 14-year budget of water, sediment and nutrients across two subtropical reservoirs. A major flood in January 2011 dominated flow and loads in and out of both reservoirs. Sediment and nutrient budgets are inherently dynamic, and our results demonstrate that meaningful reservoir budgets require reliable estimates of uncertainty and variability.
F. Hoss and P. S. Fischbeck
Hydrol. Earth Syst. Sci., 19, 3969–3990, https://doi.org/10.5194/hess-19-3969-2015, https://doi.org/10.5194/hess-19-3969-2015, 2015
Short summary
Short summary
This paper further develops the method of quantile regression (QR) to generate probabilistic river stage forecasts. Besides the forecast itself, this study uses the rate of rise of the river stage in the last 24 and 48h and the forecast error 24 and 48h before as predictors in QR configurations. When compared to just using the forecast as an independent variable, adding the latter four predictors significantly improved the forecasts, as measured by the Brier skill score and the CRPS.
R. A. Skeffington, S. J. Halliday, A. J. Wade, M. J. Bowes, and M. Loewenthal
Hydrol. Earth Syst. Sci., 19, 2491–2504, https://doi.org/10.5194/hess-19-2491-2015, https://doi.org/10.5194/hess-19-2491-2015, 2015
Short summary
Short summary
The EU Water Framework Directive requires rivers to be of good chemical and ecological quality. Chemical quality is assessed by sampling and analysing the water. Normal sampling regimes might involve taking a sample monthly or weekly. This paper uses high-frequency data from rivers to assess how accurate these regimes are at assessing the true chemical quality. Weekly sampling was more accurate than monthly, but there were still large uncertainties. We suggest ways to improve sampling accuracy.
S. C. van Pelt, J. J. Beersma, T. A. Buishand, B. J. J. M. van den Hurk, and P. Kabat
Hydrol. Earth Syst. Sci., 16, 4517–4530, https://doi.org/10.5194/hess-16-4517-2012, https://doi.org/10.5194/hess-16-4517-2012, 2012
M. B. Kalinowska and P. M. Rowiński
Hydrol. Earth Syst. Sci., 16, 4177–4190, https://doi.org/10.5194/hess-16-4177-2012, https://doi.org/10.5194/hess-16-4177-2012, 2012
A. Domeneghetti, A. Castellarin, and A. Brath
Hydrol. Earth Syst. Sci., 16, 1191–1202, https://doi.org/10.5194/hess-16-1191-2012, https://doi.org/10.5194/hess-16-1191-2012, 2012
Cited articles
Anderson, J. L.: A non-Gaussian ensemble filter update for data assimilation, Mon. Weather Rev., 138, 4186–4198, 2010. a
Ashman, M. S., Socolow, R. S., Zanca, J. L., and Bonito, M. V.: One Hundred Years of Streamflow Measurements in Massachusetts and Rhode Island, US Department of the Interior, US Geological Survey, 2004. a
Bauser, H. H., Berg, D., Klein, O., and Roth, K.: Inflation method for ensemble Kalman filter in soil hydrology, Hydrol. Earth Syst. Sci., 22, 4921–4934, https://doi.org/10.5194/hess-22-4921-2018, 2018. a
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., and Manikin, G. S.: A North American hourly assimilation and model forecast cycle: The Rapid Refresh, Mon. Weather Rev., 144, 1669–1694, 2016. a
Berner, J., Ha, S.-Y., Hacker, J., Fournier, A., and Snyder, C.: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations, Mon. Weather Rev., 139, 1972–1995, 2011. a
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., and Uddstrom, M. J.: Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model, Adv. Water Resour., 31, 1309–1324, 2008. a, b, c
Coxon, G., Freer, J., Westerberg, I., Wagener, T., Woods, R., and Smith, P.: A novel framework for discharge uncertainty quantification applied to 500 UK gauging stations, Adv. Water Resour., 51, 5531–5546, 2015. a
DART team: DART, Data Assimilation Research Section (DAReS) National Center for Atmospheric Research (NCAR), DAReS/CISL/NCAR [code], https://doi.org/10.5065/D6WQ0202, 2021. a
DeChant, C. M. and Moradkhani, H.: Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting, Water Resour. Res., 48, W04518, https://doi.org/10.1029/2011WR011011, 2012. a, b
Dee, D. P.: Bias and data assimilation, Q. J. Roy. Meteor. Soc., 131, 3323–3343, 2005. a
Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of observation, background and analysis-error statistics in observation space, Q. J. Roy. Meteor. Soc., 131, 3385–3396, 2005. a
Drécourt, J.-P., Madsen, H., and Rosbjerg, D.: Bias aware Kalman filters: Comparison and improvements, Adv. Water Resour., 29, 707–718, 2006. a
El Gharamti, M.: HydroDART Research Data, Zenodo [data set], https://doi.org/10.5281/zenodo.5532569, 2021. a
Emerton, R. E., Stephens, E. M., Pappenberger, F., Pagano, T. C., Weerts, A. H., Wood, A. W., Salamon, P., Brown, J. D., Hjerdt, N., Donnelly, C., Baugh, C. A., and Cloke, H. L.: Continental and global scale flood forecasting systems, WIREs Water, 3, 391–418, 2016. a
Emery, C. M., Biancamaria, S., Boone, A., Ricci, S., Rochoux, M. C., Pedinotti, V., and David, C. H.: Assimilation of wide-swath altimetry water elevation anomalies to correct large-scale river routing model parameters, Hydrol. Earth Syst. Sci., 24, 2207–2233, https://doi.org/10.5194/hess-24-2207-2020, 2020a. a, b
Emery, C. M., David, C. H., Andreadis, K. M., Turmon, M. J., Reager, J. T., Hobbs, J. M., Pan, M., Famiglietti, J. S., Beighley, E., and Rodell, M.: Underlying Fundamentals of Kalman Filtering for River Network Modeling, J. Hydrometeorol., 21, 453–474, 2020b. a
Ercolani, G. and Castelli, F.: Variational assimilation of streamflow data in distributed flood forecasting, Water Resour. Res., 53, 158–183, 2017. a
Furrer, R. and Bengtsson, T.: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants, J. Multivariate Anal., 98, 227–255, 2007. a
Gaspari, G. and Cohn, S. E.: Construction of correlation functions in two and three dimensions, Q. J. Roy. Meteor. Soc., 125, 723–757, 1999. a
Gharamti, M., Ait-El-Fquih, B., and Hoteit, I.: An iterative ensemble Kalman filter with one-step-ahead smoothing for state-parameters estimation of contaminant transport models, J. Hydrol., 527, 442–457, 2015. a
Gharamti, M., Samuelsen, A., Bertino, L., Simon, E., Korosov, A., and Daewel, U.: Online tuning of ocean biogeochemical model parameters using ensemble estimation techniques: Application to a one-dimensional model in the North Atlantic, J. Marine Syst., 168, 1–16, 2017. a
Gochis, D., Barlage, M., Cabell, R., Dugger, A., Fanfarillo, A., FitzGerald, K., McAllister, M., McCreight, J., RafieeiNasab, A., Read, L., Frazier, N., Johnson, D., Mattern, J. D., Karsten, L., Mills, T. J., and Fersch, B.: WRF-Hydro® v5.1.1, Zenodo [data set], https://doi.org/10.5281/zenodo.3625238, 2020. a, b
Gochis, J. and Chen, F.: Hydrological enhancements to the community Noah land surface model, University Corporation for Atmospheric Research, NCAR Scientific Technical Report No. NCAR/TN-454+STR, https://doi.org/10.5065/D60P0X002003, 2003. a
Guha-Sapir, D., Santos, I., Borde, A. (Eds.): The economic impacts of natural disasters, Oxford University Press, New York, NY, ISBN: 978-0-19-984193-6, 2013. a
Hodyss, D. and Nichols, N.: The error of representation: Basic understanding, Tellus A, 67, 24822, https://doi.org/10.3402/tellusa.v67.24822, 2015. a
Hoteit, I., Pham, D.-T., Gharamti, M., and Luo, X.: Mitigating observation perturbation sampling errors in the stochastic EnKF, Mon. Weather Rev., 143, 2918–2936, 2015. a
Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev., 129, 123–137, 2001. a
Jamal, A. and Linker, R.: Inflation method based on confidence intervals for data assimilation in soil hydrology using the ensemble Kalman filter, Vadose
Zone J., 19, e20000, https://doi.org/10.1002/vzj2.20000, 2020. a
Jozaghi, A., Nabatian, M., Noh, S., Seo, D.-J., Tang, L., and Zhang, J.: Improving Multisensor Precipitation Estimation via Adaptive Conditional Bias–Penalized Merging of Rain Gauge Data and Remotely Sensed Quantitative Precipitation Estimates, J. Hydrometeorol., 20, 2347–2365, 2019. a
Kitanidis, P. K. and Bras, R. L.: Real-time forecasting with a conceptual hydrologic model: 2. Applications and results, Water Resour. Res., 16, 1034–1044, 1980. a
Lee, H. and Seo, D.-J.: Assimilation of hydrologic and hydrometeorological data into distributed hydrologic model: Effect of adjusting mean field bias in radar-based precipitation estimates, Adv. Water Resour., 74, 196–211, 2014. a
Lee, H., Shen, H., Noh, S. J., Kim, S., Seo, D.-J., and Zhang, Y.: Improving flood forecasting using conditional bias-penalized ensemble Kalman filter, J. Hydrol., 575, 596–611, 2019. a
Li, Y., Ryu, D., Western, A. W., and Wang, Q.: Assimilation of stream discharge for flood forecasting: The benefits of accounting for routing time lags, Water Resour. Re., 49, 1887–1900, 2013. a
Liu, Y., Weerts, A. H., Clark, M., Hendricks Franssen, H.-J., Kumar, S., Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith, P., van Dijk, A. I. J. M., van Velzen, N., He, M., Lee, H., Noh, S. J., Rakovec, O., and Restrepo, P.: Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities, Hydrol. Earth Syst. Sci., 16, 3863–3887, https://doi.org/10.5194/hess-16-3863-2012, 2012. a, b
McMillan, H. K., Hreinsson, E. Ö., Clark, M. P., Singh, S. K., Zammit, C., and Uddstrom, M. J.: Operational hydrological data assimilation with the recursive ensemble Kalman filter, Hydrol. Earth Syst. Sci., 17, 21–38, https://doi.org/10.5194/hess-17-21-2013, 2013. a
Moradkhani, H., Hsu, K.-L., Gupta, H., and Sorooshian, S.: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter, Water Resour. Res., 41, W05012, https://doi.org/10.1029/2004WR003604, 2005. a
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements, J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011. a
Noh, S. J., Tachikawa, Y., Shiiba, M., and Kim, S.: Ensemble Kalman filtering and particle filtering in a lag-time window for short-term streamflow forecasting with a distributed hydrologic model, J. Hydrol. Eng., 18, 1684–1696, 2013. a
Pauwels, V. R. and De Lannoy, G. J.: Improvement of modeled soil wetness conditions and turbulent fluxes through the assimilation of observed discharge, J. Hydrometeorol., 7, 458–477, 2006. a
Pauwels, V. R. and De Lannoy, G. J.: Ensemble-based assimilation of discharge into rainfall-runoff models: A comparison of approaches to mapping observational information to state space, Water Resour. Res., 45, W08428, https://doi.org/10.1029/2008WR007590, 2009. a
Ponce, V. M. and Lugo, A.: Modeling looped ratings in muskingum-cunge routing, J. Hydrol. Eng., 6, 119–124, 2001. a
Ponce, V. M. and Yevjevich, V.: Muskingum-Cunge method with variable parameters, Journal of the Hydraulics Division, 104, 1663–1667, 1978. a
Rafieeinasab, A., Seo, D.-J., Lee, H., and Kim, S.: Comparative evaluation of maximum likelihood ensemble filter and ensemble Kalman filter for real-time assimilation of streamflow data into operational hydrologic models, J. Hydrol., 519, 2663–2675, 2014. a
Rakovec, O., Weerts, A. H., Sumihar, J., and Uijlenhoet, R.: Operational aspects of asynchronous filtering for flood forecasting, Hydrol. Earth Syst. Sci., 19, 2911–2924, https://doi.org/10.5194/hess-19-2911-2015, 2015. a, b
Rasmussen, J., Madsen, H., Jensen, K. H., and Refsgaard, J. C.: Data assimilation in integrated hydrological modelling in the presence of observation bias, Hydrol. Earth Syst. Sci., 20, 2103–2118, https://doi.org/10.5194/hess-20-2103-2016, 2016. a
Ridler, M.-E., Zhang, D., Madsen, H., Kidmose, J., Refsgaard, J. C., and Jensen, K. H.: Bias-aware data assimilation in integrated hydrological modelling, Hydrol. Res., 49, 989–1004, 2018. a
Seo, D.-J., Koren, V., and Cajina, N.: Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting, J. Hydrometeorol., 4, 627–641, 2003. a
Seo, D.-J., Saifuddin, M. M., and Lee, H.: Conditional bias-penalized Kalman filter for improved estimation and prediction of extremes, Stoch. Env. Res. Risk A., 32, 183–201, 2018. a
Simon, E. and Bertino, L.: Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment, Ocean Sci., 5, 495–510, https://doi.org/10.5194/os-5-495-2009, 2009.
a
Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Lakshmi, V., Liang, X., McDonnell, J. J., Mendiondo, E. M., O'Connell, P. E., Oki, T., Pomeroy, J. W., Schertzer, D., Uhlenbrook, S., and Zehe, E.: IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences, Hydrolog. Sci. J., 48, 857–880, 2003. a
Sun, L., Nistor, I., and Seidou, O.: Streamflow data assimilation in SWAT model using Extended Kalman Filter, J. Hydrol., 531, 671–684, 2015. a
Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183–7192, 2001. a
Vrugt, J. A., Gupta, H. V., Nualláin, B., and Bouten, W.: Real-time data assimilation for operational ensemble streamflow forecasting, J. Hydrometeorol., 7, 548–565, 2006. a
Weerts, A. H. and El Serafy, G. Y.: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models, Water Resour. Res., 42, W09403, https://doi.org/10.1029/2005WR004093, 2006. a
Wood, E. F. and Szöllösi-Nagy, A.: An adaptive algorithm for analyzing short-term structural and parameter changes in hydrologic prediction models, Water Resour. Res., 14, 577–581, 1978. a
WRF-Hydro team: WRF-Hydro, RAL/NCAR [code], available at: https://ral.ucar.edu/projects/wrf_hydro, last access: 15 September 2021. a
Xia, Y., Sheffield, J., Ek, M. B., Dong, J., Chaney, N., Wei, H., Meng, J., and Wood, E. F.: Evaluation of multi-model simulated soil moisture in NLDAS-2, J. Hydrol., 512, 107–125, 2014. a
Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., Grams, H., Wang, Y., Cocks, S., Martinaitis, S., Arthur, A., Cooper, K., Brogden, J., and Kitzmiller, D.: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities, B. Am. Meteorol. Soc., 97, 621–638, 2016. a
Ziliani, M. G., Ghostine, R., Ait-El-Fquih, B., McCabe, M. F., and Hoteit, I.: Enhanced flood forecasting through ensemble data assimilation and joint
state-parameter estimation, J. Hydrol., 577, 123924, https://doi.org/10.1016/j.jhydrol.2019.123924, 2019. a, b
Short summary
The article introduces novel ensemble data assimilation (DA) techniques for streamflow forecasting using WRF-Hydro and DART. Model-related biases are tackled through spatially and temporally varying adaptive prior and posterior inflation. Spurious and physically incorrect correlations, on the other hand, are mitigated using a topologically based along-the-stream localization. Hurricane Florence (2018) in the Carolinas, USA, is used as a test case to investigate the performance of DA techniques.
The article introduces novel ensemble data assimilation (DA) techniques for streamflow...