Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-5315-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-5315-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ensemble streamflow data assimilation using WRF-Hydro and DART: novel localization and inflation techniques applied to Hurricane Florence flooding
Mohamad El Gharamti
CORRESPONDING AUTHOR
NCAR, Computational and Information Systems Laboratory (CISL), Boulder CO, USA
James L. McCreight
NCAR, Research Application Laboratory (RAL), Boulder CO, USA
Seong Jin Noh
Civil Engineering, Kumoh National Institute of Technology, Gumi, South Korea
Timothy J. Hoar
NCAR, Computational and Information Systems Laboratory (CISL), Boulder CO, USA
Arezoo RafieeiNasab
NCAR, Research Application Laboratory (RAL), Boulder CO, USA
Benjamin K. Johnson
NCAR, Computational and Information Systems Laboratory (CISL), Boulder CO, USA
Related authors
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024, https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.
Mohamed Hamitouche, Giorgia Fosser, Arezoo RafieeiNasab, and Alessandro Anav
EGUsphere, https://doi.org/10.5194/egusphere-2025-2752, https://doi.org/10.5194/egusphere-2025-2752, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Predicting how much water flows from rivers into the Mediterranean is challenging due to climate change and human impacts. We compared two computer models—CaMa-Flood and WRF-Hydro—to see which performs better. We found that WRF-Hydro, especially after calibration, more accurately simulates river discharge and seasonal flow changes. These results can help improve future water forecasts and support planning for floods and droughts in the region.
Arezoo Rafieeinasab, Amir Mazrooei, Thomas Enzminger, Ishita Srivastava, Aubrey Dugger, David Gochis, Nina Omani, Joe Grim, Kevin Sampson, Yongxin Zhang, Jacob LaFontaine, Roland Viger, Yuqiong Liu, and Tim Schneider
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-262, https://doi.org/10.5194/hess-2024-262, 2024
Manuscript not accepted for further review
Short summary
Short summary
Integrated Water Availability Assessments is a national initiative to characterize water availability in the U.S. The WRF-Hydro model is used to generate an estimate of hydrological fluxes and storage across the conterminous United States. The streamflow performance is reasonable especially in the eastern and western U.S. Model performance in estimating snow, evapotranspiration and soil moisture is also reasonable with some differences against the verification datasets in certain areas.
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024, https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.
Luiz Bacelar, Arezoo ReifeeiNasab, Nathaniel Chaney, and Ana Barros
EGUsphere, https://doi.org/10.5194/egusphere-2023-2088, https://doi.org/10.5194/egusphere-2023-2088, 2023
Preprint archived
Short summary
Short summary
The study explores a computationally efficient probabilistic precipitation forecast approach to generate multiple flood scenarios. It reveals the limitations in predicting flash floods accurately and the need for advanced ensemble methodologies to combine different sources of precipitation forecasts. It highlights the scale-dependency of flood predictions at higher spatial resolutions, shedding light on the relationship between river hydraulics and flood propagation in the river network.
Aaron Heldmyer, Ben Livneh, James McCreight, Laura Read, Joseph Kasprzyk, and Toby Minear
Hydrol. Earth Syst. Sci., 26, 6121–6136, https://doi.org/10.5194/hess-26-6121-2022, https://doi.org/10.5194/hess-26-6121-2022, 2022
Short summary
Short summary
Measurements of channel characteristics are important for accurate forecasting in the NOAA National Water Model (NWM) but are scarcely available. We seek to improve channel representativeness in the NWM by updating channel geometry and roughness parameters using a large, previously unpublished, dataset of approximately 48 000 gauges. We find that the updated channel parameterization from this new dataset leads to improvements in simulated streamflow performance and channel representation.
Erin Towler and James L. McCreight
Hydrol. Earth Syst. Sci., 25, 2599–2615, https://doi.org/10.5194/hess-25-2599-2021, https://doi.org/10.5194/hess-25-2599-2021, 2021
Short summary
Short summary
We present a wavelet-based approach to quantify streamflow timing errors for model evaluation and development. We demonstrate the method using real and simulated stream discharge data from several locations. We show how results can be used to identify potential hydrologic processes contributing to the timing errors. Furthermore, we illustrate how the method can document model performance by comparing timing errors across versions of the National Water Model.
Yong-Fei Zhang, Cecilia M. Bitz, Jeffrey L. Anderson, Nancy S. Collins, Timothy J. Hoar, Kevin D. Raeder, and Edward Blanchard-Wrigglesworth
The Cryosphere, 15, 1277–1284, https://doi.org/10.5194/tc-15-1277-2021, https://doi.org/10.5194/tc-15-1277-2021, 2021
Short summary
Short summary
Sea ice models suffer from large uncertainties arising from multiple sources, among which parametric uncertainty is highly under-investigated. We select a key ice albedo parameter and update it by assimilating either sea ice concentration or thickness observations. We found that the sea ice albedo parameter is improved by data assimilation, especially by assimilating sea ice thickness observations. The improved parameter can further benefit the forecast of sea ice after data assimilation stops.
Cited articles
Anderson, J. L.: A non-Gaussian ensemble filter update for data assimilation, Mon. Weather Rev., 138, 4186–4198, 2010. a
Ashman, M. S., Socolow, R. S., Zanca, J. L., and Bonito, M. V.: One Hundred Years of Streamflow Measurements in Massachusetts and Rhode Island, US Department of the Interior, US Geological Survey, 2004. a
Bauser, H. H., Berg, D., Klein, O., and Roth, K.: Inflation method for ensemble Kalman filter in soil hydrology, Hydrol. Earth Syst. Sci., 22, 4921–4934, https://doi.org/10.5194/hess-22-4921-2018, 2018. a
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., and Manikin, G. S.: A North American hourly assimilation and model forecast cycle: The Rapid Refresh, Mon. Weather Rev., 144, 1669–1694, 2016. a
Berner, J., Ha, S.-Y., Hacker, J., Fournier, A., and Snyder, C.: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations, Mon. Weather Rev., 139, 1972–1995, 2011. a
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., and Uddstrom, M. J.: Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model, Adv. Water Resour., 31, 1309–1324, 2008. a, b, c
Coxon, G., Freer, J., Westerberg, I., Wagener, T., Woods, R., and Smith, P.: A novel framework for discharge uncertainty quantification applied to 500 UK gauging stations, Adv. Water Resour., 51, 5531–5546, 2015. a
DART team: DART, Data Assimilation Research Section (DAReS) National Center for Atmospheric Research (NCAR), DAReS/CISL/NCAR [code], https://doi.org/10.5065/D6WQ0202, 2021. a
DeChant, C. M. and Moradkhani, H.: Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting, Water Resour. Res., 48, W04518, https://doi.org/10.1029/2011WR011011, 2012. a, b
Dee, D. P.: Bias and data assimilation, Q. J. Roy. Meteor. Soc., 131, 3323–3343, 2005. a
Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of observation, background and analysis-error statistics in observation space, Q. J. Roy. Meteor. Soc., 131, 3385–3396, 2005. a
Drécourt, J.-P., Madsen, H., and Rosbjerg, D.: Bias aware Kalman filters: Comparison and improvements, Adv. Water Resour., 29, 707–718, 2006. a
El Gharamti, M.: HydroDART Research Data, Zenodo [data set], https://doi.org/10.5281/zenodo.5532569, 2021. a
Emerton, R. E., Stephens, E. M., Pappenberger, F., Pagano, T. C., Weerts, A. H., Wood, A. W., Salamon, P., Brown, J. D., Hjerdt, N., Donnelly, C., Baugh, C. A., and Cloke, H. L.: Continental and global scale flood forecasting systems, WIREs Water, 3, 391–418, 2016. a
Emery, C. M., Biancamaria, S., Boone, A., Ricci, S., Rochoux, M. C., Pedinotti, V., and David, C. H.: Assimilation of wide-swath altimetry water elevation anomalies to correct large-scale river routing model parameters, Hydrol. Earth Syst. Sci., 24, 2207–2233, https://doi.org/10.5194/hess-24-2207-2020, 2020a. a, b
Emery, C. M., David, C. H., Andreadis, K. M., Turmon, M. J., Reager, J. T., Hobbs, J. M., Pan, M., Famiglietti, J. S., Beighley, E., and Rodell, M.: Underlying Fundamentals of Kalman Filtering for River Network Modeling, J. Hydrometeorol., 21, 453–474, 2020b. a
Ercolani, G. and Castelli, F.: Variational assimilation of streamflow data in distributed flood forecasting, Water Resour. Res., 53, 158–183, 2017. a
Furrer, R. and Bengtsson, T.: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants, J. Multivariate Anal., 98, 227–255, 2007. a
Gaspari, G. and Cohn, S. E.: Construction of correlation functions in two and three dimensions, Q. J. Roy. Meteor. Soc., 125, 723–757, 1999. a
Gharamti, M., Ait-El-Fquih, B., and Hoteit, I.: An iterative ensemble Kalman filter with one-step-ahead smoothing for state-parameters estimation of contaminant transport models, J. Hydrol., 527, 442–457, 2015. a
Gharamti, M., Samuelsen, A., Bertino, L., Simon, E., Korosov, A., and Daewel, U.: Online tuning of ocean biogeochemical model parameters using ensemble estimation techniques: Application to a one-dimensional model in the North Atlantic, J. Marine Syst., 168, 1–16, 2017. a
Gochis, D., Barlage, M., Cabell, R., Dugger, A., Fanfarillo, A., FitzGerald, K., McAllister, M., McCreight, J., RafieeiNasab, A., Read, L., Frazier, N., Johnson, D., Mattern, J. D., Karsten, L., Mills, T. J., and Fersch, B.: WRF-Hydro® v5.1.1, Zenodo [data set], https://doi.org/10.5281/zenodo.3625238, 2020. a, b
Gochis, J. and Chen, F.: Hydrological enhancements to the community Noah land surface model, University Corporation for Atmospheric Research, NCAR Scientific Technical Report No. NCAR/TN-454+STR, https://doi.org/10.5065/D60P0X002003, 2003. a
Guha-Sapir, D., Santos, I., Borde, A. (Eds.): The economic impacts of natural disasters, Oxford University Press, New York, NY, ISBN: 978-0-19-984193-6, 2013. a
Hodyss, D. and Nichols, N.: The error of representation: Basic understanding, Tellus A, 67, 24822, https://doi.org/10.3402/tellusa.v67.24822, 2015. a
Hoteit, I., Pham, D.-T., Gharamti, M., and Luo, X.: Mitigating observation perturbation sampling errors in the stochastic EnKF, Mon. Weather Rev., 143, 2918–2936, 2015. a
Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev., 129, 123–137, 2001. a
Jamal, A. and Linker, R.: Inflation method based on confidence intervals for data assimilation in soil hydrology using the ensemble Kalman filter, Vadose
Zone J., 19, e20000, https://doi.org/10.1002/vzj2.20000, 2020. a
Jozaghi, A., Nabatian, M., Noh, S., Seo, D.-J., Tang, L., and Zhang, J.: Improving Multisensor Precipitation Estimation via Adaptive Conditional Bias–Penalized Merging of Rain Gauge Data and Remotely Sensed Quantitative Precipitation Estimates, J. Hydrometeorol., 20, 2347–2365, 2019. a
Kitanidis, P. K. and Bras, R. L.: Real-time forecasting with a conceptual hydrologic model: 2. Applications and results, Water Resour. Res., 16, 1034–1044, 1980. a
Lee, H. and Seo, D.-J.: Assimilation of hydrologic and hydrometeorological data into distributed hydrologic model: Effect of adjusting mean field bias in radar-based precipitation estimates, Adv. Water Resour., 74, 196–211, 2014. a
Lee, H., Shen, H., Noh, S. J., Kim, S., Seo, D.-J., and Zhang, Y.: Improving flood forecasting using conditional bias-penalized ensemble Kalman filter, J. Hydrol., 575, 596–611, 2019. a
Li, Y., Ryu, D., Western, A. W., and Wang, Q.: Assimilation of stream discharge for flood forecasting: The benefits of accounting for routing time lags, Water Resour. Re., 49, 1887–1900, 2013. a
Liu, Y., Weerts, A. H., Clark, M., Hendricks Franssen, H.-J., Kumar, S., Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith, P., van Dijk, A. I. J. M., van Velzen, N., He, M., Lee, H., Noh, S. J., Rakovec, O., and Restrepo, P.: Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities, Hydrol. Earth Syst. Sci., 16, 3863–3887, https://doi.org/10.5194/hess-16-3863-2012, 2012. a, b
McMillan, H. K., Hreinsson, E. Ö., Clark, M. P., Singh, S. K., Zammit, C., and Uddstrom, M. J.: Operational hydrological data assimilation with the recursive ensemble Kalman filter, Hydrol. Earth Syst. Sci., 17, 21–38, https://doi.org/10.5194/hess-17-21-2013, 2013. a
Moradkhani, H., Hsu, K.-L., Gupta, H., and Sorooshian, S.: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter, Water Resour. Res., 41, W05012, https://doi.org/10.1029/2004WR003604, 2005. a
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements, J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011. a
Noh, S. J., Tachikawa, Y., Shiiba, M., and Kim, S.: Ensemble Kalman filtering and particle filtering in a lag-time window for short-term streamflow forecasting with a distributed hydrologic model, J. Hydrol. Eng., 18, 1684–1696, 2013. a
Pauwels, V. R. and De Lannoy, G. J.: Improvement of modeled soil wetness conditions and turbulent fluxes through the assimilation of observed discharge, J. Hydrometeorol., 7, 458–477, 2006. a
Pauwels, V. R. and De Lannoy, G. J.: Ensemble-based assimilation of discharge into rainfall-runoff models: A comparison of approaches to mapping observational information to state space, Water Resour. Res., 45, W08428, https://doi.org/10.1029/2008WR007590, 2009. a
Ponce, V. M. and Lugo, A.: Modeling looped ratings in muskingum-cunge routing, J. Hydrol. Eng., 6, 119–124, 2001. a
Ponce, V. M. and Yevjevich, V.: Muskingum-Cunge method with variable parameters, Journal of the Hydraulics Division, 104, 1663–1667, 1978. a
Rafieeinasab, A., Seo, D.-J., Lee, H., and Kim, S.: Comparative evaluation of maximum likelihood ensemble filter and ensemble Kalman filter for real-time assimilation of streamflow data into operational hydrologic models, J. Hydrol., 519, 2663–2675, 2014. a
Rakovec, O., Weerts, A. H., Sumihar, J., and Uijlenhoet, R.: Operational aspects of asynchronous filtering for flood forecasting, Hydrol. Earth Syst. Sci., 19, 2911–2924, https://doi.org/10.5194/hess-19-2911-2015, 2015. a, b
Rasmussen, J., Madsen, H., Jensen, K. H., and Refsgaard, J. C.: Data assimilation in integrated hydrological modelling in the presence of observation bias, Hydrol. Earth Syst. Sci., 20, 2103–2118, https://doi.org/10.5194/hess-20-2103-2016, 2016. a
Ridler, M.-E., Zhang, D., Madsen, H., Kidmose, J., Refsgaard, J. C., and Jensen, K. H.: Bias-aware data assimilation in integrated hydrological modelling, Hydrol. Res., 49, 989–1004, 2018. a
Seo, D.-J., Koren, V., and Cajina, N.: Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting, J. Hydrometeorol., 4, 627–641, 2003. a
Seo, D.-J., Saifuddin, M. M., and Lee, H.: Conditional bias-penalized Kalman filter for improved estimation and prediction of extremes, Stoch. Env. Res. Risk A., 32, 183–201, 2018. a
Simon, E. and Bertino, L.: Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment, Ocean Sci., 5, 495–510, https://doi.org/10.5194/os-5-495-2009, 2009.
a
Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Lakshmi, V., Liang, X., McDonnell, J. J., Mendiondo, E. M., O'Connell, P. E., Oki, T., Pomeroy, J. W., Schertzer, D., Uhlenbrook, S., and Zehe, E.: IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences, Hydrolog. Sci. J., 48, 857–880, 2003. a
Sun, L., Nistor, I., and Seidou, O.: Streamflow data assimilation in SWAT model using Extended Kalman Filter, J. Hydrol., 531, 671–684, 2015. a
Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183–7192, 2001. a
Vrugt, J. A., Gupta, H. V., Nualláin, B., and Bouten, W.: Real-time data assimilation for operational ensemble streamflow forecasting, J. Hydrometeorol., 7, 548–565, 2006. a
Weerts, A. H. and El Serafy, G. Y.: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models, Water Resour. Res., 42, W09403, https://doi.org/10.1029/2005WR004093, 2006. a
Wood, E. F. and Szöllösi-Nagy, A.: An adaptive algorithm for analyzing short-term structural and parameter changes in hydrologic prediction models, Water Resour. Res., 14, 577–581, 1978. a
WRF-Hydro team: WRF-Hydro, RAL/NCAR [code], available at: https://ral.ucar.edu/projects/wrf_hydro, last access: 15 September 2021. a
Xia, Y., Sheffield, J., Ek, M. B., Dong, J., Chaney, N., Wei, H., Meng, J., and Wood, E. F.: Evaluation of multi-model simulated soil moisture in NLDAS-2, J. Hydrol., 512, 107–125, 2014. a
Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., Grams, H., Wang, Y., Cocks, S., Martinaitis, S., Arthur, A., Cooper, K., Brogden, J., and Kitzmiller, D.: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities, B. Am. Meteorol. Soc., 97, 621–638, 2016. a
Ziliani, M. G., Ghostine, R., Ait-El-Fquih, B., McCabe, M. F., and Hoteit, I.: Enhanced flood forecasting through ensemble data assimilation and joint
state-parameter estimation, J. Hydrol., 577, 123924, https://doi.org/10.1016/j.jhydrol.2019.123924, 2019. a, b
Short summary
The article introduces novel ensemble data assimilation (DA) techniques for streamflow forecasting using WRF-Hydro and DART. Model-related biases are tackled through spatially and temporally varying adaptive prior and posterior inflation. Spurious and physically incorrect correlations, on the other hand, are mitigated using a topologically based along-the-stream localization. Hurricane Florence (2018) in the Carolinas, USA, is used as a test case to investigate the performance of DA techniques.
The article introduces novel ensemble data assimilation (DA) techniques for streamflow...