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Abstract. Predicting major floods during extreme rainfall
events remains an important challenge. Rapid changes in
flows over short timescales, combined with multiple sources
of model error, makes it difficult to accurately simulate in-
tense floods. This study presents a general data assimilation
framework that aims to improve flood predictions in chan-
nel routing models. Hurricane Florence, which caused catas-
trophic flooding and damages in the Carolinas in Septem-
ber 2018, is used as a case study. The National Water Model
(NWM) configuration of the WRF-Hydro modeling frame-
work is interfaced with the Data Assimilation Research
Testbed (DART) to produce ensemble streamflow forecasts
and analyses. Instantaneous streamflow observations from
107 United States Geological Survey (USGS) gauges are as-
similated for a period of 1 month.

The data assimilation (DA) system developed in this pa-
per explores two novel contributions, namely (1) along-the-
stream (ATS) covariance localization and (2) spatially and
temporally varying adaptive covariance inflation. ATS local-
ization aims to mitigate not only spurious correlations, due
to limited ensemble size, but also physically incorrect corre-
lations between unconnected and indirectly connected state
variables in the river network. We demonstrate that ATS lo-
calization provides improved information propagation during
the model update. Adaptive prior inflation is used to tackle
errors in the prior, including large model biases which of-
ten occur in flooding situations. Analysis errors incurred dur-
ing the update are addressed using posterior inflation. Results

show that ATS localization is a crucial ingredient of our hy-
drologic DA system, providing at least 40 % more accurate
(root mean square error) streamflow estimates than regular,
Euclidean distance-based localization. An assessment of hy-
drographs indicates that adaptive inflation is extremely use-
ful and perhaps indispensable for improving the forecast skill
during flooding events with significant model errors. We ar-
gue that adaptive prior inflation is able to serve as a vigor-
ous bias correction scheme which varies both spatially and
temporally. Major improvements over the model’s severely
underestimated streamflow estimates are suggested along the
Pee Dee River in South Carolina, and many other locations in
the domain, where inflation is able to avoid filter divergence
and, thereby, assimilate significantly more observations.

1 Introduction

Affecting nearly a 100 million people worldwide per year,
flooding is the most common natural disaster (Guha-Sapir
et al., 2013). Flooding impacts human life, livelihood, and
property. Improved streamflow flood forecasts can benefit
the public in a variety of ways, from planning to emergency
management. The topic of flood forecasting remains an area
of active of research and operational development. This
study contributes to improving short-term (hourly) stream-
flow flooding forecasts by minimizing error in their initial
conditions through streamflow data assimilation. We focus
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on the rainfall-driven streamflow flooding caused by Hurri-
cane Florence in 2018. Within the context of an operational
and spatially distributed hydrologic model, we examine the
data assimilation (DA) challenges of dominant errors (bias)
arising from the precipitation boundary conditions (forcings)
and of improving information propagation from the observa-
tions into the model ensemble (background).

Streamflow is one of the most commonly observed hydro-
logic variables. Its earliest measurements date back to the late
19th century (Ashman et al., 2004). In more recent decades,
the assimilation of streamflow observations into hydrologic
models has followed various DA approaches and covered the
gamut of applications (e.g., Wood and Szöllösi-Nagy, 1978;
Kitanidis and Bras, 1980; Moradkhani et al., 2005; Weerts
and El Serafy, 2006; Clark et al., 2008; Pauwels and De Lan-
noy, 2009; Seo et al., 2009; DeChant and Moradkhani, 2012;
Noh et al., 2013; McMillan et al., 2013; Rafieeinasab et al.,
2014; Lee and Seo, 2014; Sun et al., 2015; Ercolani and
Castelli, 2017; Abbaszadeh et al., 2018; Ziliani et al., 2019,
and references therein). Meanwhile, hydrologic models have
evolved from lumped to high resolution and spatially dis-
tributed, given the increase in computational resources and
the availability of high-resolution terrain and forcing data.

While research studies have shown success of streamflow
and even multivariate data assimilation, operational flood
forecasting systems do not typically employ data assimila-
tion (Emerton et al., 2016). Liu et al. (2012) detail the hurdles
between hydrologic forecasting research and operations. The
authors provide a wealth of recommendations on transition-
ing DA into hydrologic forecasting. A primary reason DA
research is not commonly applied in operational settings is
that the methods can perform poorly in the presence of large
model errors. Probabilistic DA approaches are optimal only
when the model is unbiased (Dee, 2005). When large biases
or systematic errors are present, the methods commonly re-
sult in filter divergence, which is the case when observations
are unable to provide state updates to the model background
(e.g., DeChant and Moradkhani, 2012). In advocating for the
adoption of DA methods in operational hydrologic forecast-
ing, Seo et al. (2009) and Liu et al. (2012) suggest blending
DA procedures with other kinds of interventions in order to
balance the need for operational robustness against the multi-
ple advantages (skill improvements, reproducibility, etc.) of-
fered by automated DA methods.

Divergence and other filter-related issues are often pro-
nounced in rainfall-driven flooding systems. This is because
the large errors arising at the model boundary are often not
part of the prognostic state of the system, have no mem-
ory, and cannot be constrained during the analysis. To over-
come this, multiple bias correction strategies have been pur-
sued in the context of DA for flood forecasting. Joint state–
parameter estimation is often applied to help mitigate model
errors (e.g., Abbaszadeh et al., 2018). Multiplicative bias cor-
rection parameters, to adjust forcing errors, are sometimes
estimated alongside the physical state and parameters (e.g.,

Seo et al., 2003). Bias-aware Kalman filters are applied to
estimate model and observation bias by implementing a sepa-
rate update for two moments, i.e., the mean and the bias (e.g.,
Drécourt et al., 2006; Rasmussen et al., 2016; Ridler et al.,
2018). In addition, a conditional bias-penalized Kalman fil-
ter was developed for improved estimation and prediction
of hydrologic extremes. The filter operates by minimizing
a weighted sum of error variances and type II squared er-
rors, which are different from the conventional Kalman fil-
ter which is based on least square minimization (Seo et al.,
2018; Lee et al., 2019; Jozaghi et al., 2019). In a recent
study, Emery et al. (2020a) proposed updating the bound-
ary fluxes based on the differences between observed and
prior streamflow. The authors rerun the assimilation forecast
step with the updated boundary conditions to produce a sec-
ond prior without involving the streamflow state in the up-
date. In this study, we explore the use of spatially and tem-
porally varying adaptive covariance inflation (El Gharamti,
2018) as a way to mitigate bias in the context of extreme
flood simulations. Inflation helps restore spread in the en-
semble, which can yield a better fit to the observations during
the analysis. In addition, spatially varying inflation can help
enhance the rank of the sample background covariance ma-
trix (El Gharamti, 2018). In soil and groundwater hydrology,
using inflation was reported successful by multiple studies
(e.g., Bauser et al., 2018; Jamal and Linker, 2020). In surface
water hydrology, however, the impact of inflation on stream-
flow predictions is not fully understood. This is the first study
of its kind where spatially and temporally adaptive inflation
are applied to streamflow forecasting. This study further ex-
plores the use of prior versus posterior inflation and inves-
tigates the effect of each scheme on the performance of the
flood prediction ensemble framework. We note that the ap-
proach of Emery et al. (2020a), a temporally fixed inflation
parameter (scalar) as a means of tuning static background
error covariances, is significantly different from the tempo-
rally and spatially adaptive inflation applied to time evolving
background error covariances in this paper.

It is no surprise that many hydrologic and flood fore-
casting DA studies have highlighted the importance of es-
timating accurate background error covariances. Model bias,
as discussed above, and sampling error hinders proper esti-
mation of error covariances. The nonlinear relationship be-
tween variables in hydrologic modeling makes it more chal-
lenging to update unobserved state variables. Filtering ap-
proaches only consider the instantaneous error covariances.
Smoothers, on the other hand, can be applied to remedy this
problem (e.g., Pauwels and De Lannoy, 2006; Li et al., 2013).
Even when employing an ensemble smoother for flood fore-
casting, Rakovec et al. (2015) concluded that the elimina-
tion of the strongly nonlinear relation between soil moisture
and discharge observations improved flood forecasts. Clark
et al. (2008) commented that modeled error correlations were
much larger than observed error correlations and that inad-
equacies in modeling the spatial variability in hydrological
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processes hindered the transfer of observational information
to ungauged basins. In this study, we revisit the spatial basis
for information propagation of observations via error covari-
ances. We investigate updating distributed hydrologic states
and propose a new topologically based localization strategy
for stream networks. The method is called along-the-stream
(ATS) covariance localization, and it confines state updating
to directly connected (defined below) hydrological states. In-
formation propagation to ungauged basins (e.g., Sivapalan
et al., 2003) within our strategy requires such basins to be
upstream of observations.

The development of the data assimilation framework
in this paper begins from NOAA’s National Water
Model (NWM; https://water.noaa.gov/about/nwm, last ac-
cess: 27 September 2019) configuration of the WRF-Hydro
hydrological framework (Gochis et al., 2020). The NWM is
a spatially distributed hydrologic model that produces opera-
tional forecasts and analyses of distributed hydrologic states,
including streamflow, over the continental USA (also, more
recently, with separate implementations in various other re-
gions). The operational products are not evaluated in this
study. However, the real-time NWM forcing fields from Hur-
ricane Florence are run through a model configuration very
close to the operational analysis configuration, providing an
open-loop (no DA) deterministic analysis very close to what
the NWM would have produced in real-time (if such an
open-loop run were operational). Using one-way fluxes from
this analysis, we drive a channel+bucket submodel of the
NWM that includes streamflow and conceptual bucket stor-
age states. The reduced computational cost of this submodel,
the perturbation of its parameters, and the time-varying per-
turbations applied to the deterministic fluxes from the land
surface model provide an ensemble basis for our DA ex-
periments. The resulting NWM channel+bucket modeling
system is interfaced with the Data Assimilation Research
Testbed (DART). DART, developed and maintained at the
(United States) National Center for Atmospheric Research,
is an open-source community facility that provides software
tools for data assimilation research, development, and educa-
tion (Anderson et al., 2009). Streamflow observations from
the United States Geological Survey (USGS) gauges, re-
trieved from the (United States) National Water Information
System (NWIS; https://waterdata.usgs.gov/nwis, last access:
20 August 2019), are used to update the spatially distributed
ensemble states of streamflow and groundwater bucket head.
The resulting analyses could serve as the initial conditions
for short-term flood forecasts. The analyses are evaluated in
terms of the assimilation priors (i.e., the 1 h forecast). Hy-
drographs and other time series assessment tools (including
errors, bias, ensemble spread, etc.) are utilized to investigate
the performance of the DA framework. Streamflow distribu-
tion in space, resulting from DA, is also studied and com-
pared to the model’s estimate.

The rest of the paper is organized as follows. Section 2
presents the Hurricane Florence subdomain, the NWM sub-

model and its components, the uncertainties incorporated
into the ensemble design, and the USGS observations assim-
ilated. DART is briefly introduced in Sect. 3, and then ATS
localization and adaptive inflation are described in Sects. 3.2
and 3.3, respectively. Spatial assessment with particular fo-
cus on bias correction is given in Sect. 3.6. A summary of the
findings and further discussions are found in Sect. 4.

2 Hydrologic model and data

2.1 National Water Model subdomain: Hurricane
Florence

In this study, we focus on a regional subdomain of the
NWM CONUS (Continental United States) domain affected
by Hurricane Florence in September 2018. Figure 1 shows
this domain located over the states of North Carolina and
South Carolina. Hurricane Florence reached Saffir–Simpson
category 4 strength on two separate dates prior to landfall.
Though it weakened to category 1 by the time it made land-
fall, it wreaked over USD 20 billion of damage largely at-
tributed to inland freshwater flooding resulting from extreme
rainfall. Many of the largest flood peaks occurred after the
dissipation of the hurricane on 19 September as water con-
centrated along its course to the sea. A timeline of observed
and modeled attributes is shown in Table 1.

Figure 1 shows the roughly 67 000 reaches of the NWM
stream channel network in this subdomain. The NWM chan-
nel network is based largely on USGS’s National Hydrog-
raphy Dataset, namely NHDPlus version 2 (McKay et al.,
2012). The rectangular extent of the subdomain indicates
the region over which atmospheric forcing data are used to
drive the Noah-MP (Niu et al., 2011) land surface model
(1 km) and its two-way coupling to lateral surface and sub-
surface flow routing schemes (250 m; Gochis and Chen,
2003) used by the NWM Analysis and short-range fore-
cast configurations (https://water.noaa.gov/about/nwm, last
access: 27 September 2019). As shown in Fig. 2, the lat-
eral flow components are one-way coupled to the streamflow,
reservoir, and bucket models of the NWM. Detailed descrip-
tion of this submodel can be found in following section.

All model code (https://github.com/NCAR/wrf_hydro_
nwm_public/releases/tag/nwm-v2.0, last access: 27 Septem-
ber 2019), domain data, and parameter sets (https:
//www.nco.ncep.noaa.gov/pmb/codes/nwprod/, last access:
27 September 2019) used in this study correspond to NWM
version 2.0. The single exception is the groundwater bucket
model formulation and parameters, which are based on
NWM version 2.1. We run the equivalent of the NWM stan-
dard analysis and assimilation cycle without the streamflow
nudging used by the NWM. This is the configuration also
used for the short- and medium-range forecast cycles. Dur-
ing the time of the study, the NWM extended analysis cycle
had not yet been implemented.
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Figure 1. Hurricane Florence model domain showing the river network with locations of the main Cape Fear and Neuse rivers in North
Carolina. The assimilated 107 gauges, from USGS, are denoted by gray dots. The red markers denote 12 gauges that are used for diagnostic
and validation purposes. The borders between the states of Virginia, North Carolina, and South Carolina are also shown in black. The
thickness of the river reaches denote the strength of streamflow (resulting from an open-loop run and averaging over the month of September
in 2018), such that larger thickness means higher streamflow.

Table 1. Hurricane Florence timeline in the Carolinas, USA, 2018. NLDAS-2 denotes the forcing data for phase 2 of the North American
Land Data Assimilation System.

Observed and modeled timeline

Modeled NLDAS2-based restart; advance with operational forcings 1 August
Observed Hurricane forms at sea 31 August
Modeled Hourly data assimilation starts 1 September
Observed Hurricane landfall 14 September
Observed Hurricane dissipates 19 September
Modeled End of simulation 15 October

The major rivers in this region are labeled in Fig. 1. To the
west, the Pee Dee River has its headwaters between Char-
lotte and Winston–Salem and flows from North Carolina
into South Carolina. Its major tributary, the Lumber River,
meets Pee Dee just before reaching the edge of the domain.
The Cape Fear River, with its headwaters near Greensboro
and joining the sea near Wilmington, is seen in the center
of the domain. Further to the east, the Neuse River flows
by Durham and Raleigh (the capital of North Carolina) and

flows in to the Pamlico Sound. The Tar River (not labeled,
except by its cluster of three gauges in the legend) lies to the
North of the Neuse and also flows into the Pamlico Sound.

2.2 Channel+bucket submodel

We run the so-called channel+bucket submodel of the
NWM. Figure 2 illustrates the one-way runoff fluxes to the
streamflow and groundwater bucket models from the up-
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Figure 2. Streamflow data assimilation system overview. Vertical
boxes on the left show the deterministic NWM model chain from
forcing through aggregation of (overland, subsurface, and column
drainage) routing output fluxes. These output fluxes are the inputs
to the data assimilation system used in this paper, shown inside the
dotted box. Random noise is applied to these inputs to generate en-
semble forcings. Ensembles are denoted by groups of three arrows
(the ensemble size is much larger than three). The ensemble fluxes
drive the ensemble model components (channel and reservoir model
and groundwater bucket model) used in the assimilation. The de-
picted time-invariant a priori error distribution of channel parame-
ters provides a multiphysics streamflow ensemble. The groundwater
states produce additional fluxes to the channel and reservoir model.
The spatially distributed streamflow and bucket head states com-
prise the state vector passed to DART for updating by USGS stream-
flow observations. The unit cms denotes cubic meters per second.

stream model components (land surface model, overland and
subsurface routing, and spatial aggregations). The fluxes are
saved as forcing files for running the channel+bucket sub-
model used in our assimilation approach. To generate these
fluxes, the full NWM is first run once with its own set of
atmospheric boundary conditions.

The use of the one-way coupled submodel means that
no error covariances with the upstream components of the
model will be considered (e.g., soil moisture, surface head,
etc.) and that the control vector will consist of two spatially
distributed states, i.e., streamflow and groundwater bucket
head. Reservoir states, embedded in the stream network cal-
culations, are not considered in the state updating.

2.3 Forcings, spin-up, and simulation

The full model was run (with no data assimilation) using
NLDAS-2 (North American Land Data Assimilation Sys-
tem phase 2; Xia et al., 2014) forcings from 1 January
2010 to 1 July 2018. This open-loop run was then contin-
ued from 1 July through 15 October 2018 with the NWM
operational analysis and assimilation cycle forcings which
were collected in real-time from NOMADS (NOAA Op-
erational Model Archive and Distribution System; https:
//nomads.ncep.noaa.gov/, last access: 27 September 2019).
This real-time forcing product is based on magnetic res-

onance mass spectrometry (MRMS; https://www.nssl.noaa.
gov/projects/mrms/, last access: 27 September 2019; Zhang
et al., 2016) gauge-adjusted and radar-only observed pre-
cipitation products along with short-range Rapid Refresh
(RAP; https://rapidrefresh.noaa.gov/, last access: 27 Septem-
ber 2019) and high-resolution Rapid Refresh (HRRR; https://
rapidrefresh.noaa.gov/hrrr/, last access: 27 September 2019)
products (Benjamin et al., 2016; see https://water.noaa.gov/
about/nwm, last access: 27 September 2019). For the period
1 August through 15 October 2018, fluxes were saved for
forcing the channel+bucket submodel in the data assimila-
tion experiments. Figure 2 shows these fluxes as inputs to the
data assimilation system. Initial states for the data assimila-
tion experiments were also taken from the full model run on
1 August 2018.

2.4 Muskingum–Cunge streamflow model

The NWM implements Muskingum–Cunge (M–C) stream-
flow routing with variable parameters (e.g., Ponce and Yev-
jevich, 1978) in a compound channel (Garbrecht and Brun-
ner, 1991). M–C with variable parameters is a common ap-
proach to streamflow routing over large watersheds and has
been successfully applied in many instances. The compound
channel (Fig. 3) provides a lower trapezoidal channel and
an upper rectangular channel section to simulate overbank
flows. M–C is applied to the stream channel network derived
from NHDPlus version 2, shown in Fig. 1, with trapezoidal
channel geometry and Manning’s N, n (roughness) parame-
ter values for each reach.

The one-dimensional storage (S) relationship between in-
flow (I ) and outflow (O) on a reach (spatial segment) is given
by the following:

S =K [XI + (1−X)O] , (1)

with storage coefficient K and weighting factor X. Formu-
lated as a finite difference over a reach, this yields the fol-
lowing:

Ok = C1Ik−1+C2Ik +C3Ok−1+C4L. (2)

This is an explicit solution for the current outflow (Ok , with
k denoting the time step index) as a function of previous and
current inflows (Ik−1 and Ik , respectively), previous outflow
(Ok−1), and the lateral inflows (combined overland and sub-
surface, L) to the reach. The coefficients in Eq. (2) can be ex-
pressed as combinations of the Courant and Reynolds num-
bers (e.g., Ponce and Lugo, 2001), respectively, as follows:

C =
c1t

1x
=
1t

K
, (3)

D =
q

sc1x
= 1− 2X, (4)

where 1t is the time step, 1x is the reach length, s is the
reach slope, c is the celerity, and q is the unit discharge (dis-
charge divided by the top width of the flow). Also shown are
the relationships to K and X parameters.
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The assumptions of the M–C approach do not allow for
backwater effects in the solution. However, the M–C variable
parameter approach allows nonlinear flood wave dynamics
by accounting for the interdependence of the time-varying
flow rate and its geometry. Specifically, the celerity and unit
discharge as follows:

c =
dQ
dA

, (5)

q =
Q

b
, (6)

which is used for calculating the coefficients in Eq. (2), de-
pending on the flow (Q), its area (A), and top width (b),
which are mediated by the channel geometry and rough-
ness parameters in each reach. These parameters, some of
which are shown in Fig. 3, are described in more detail in
Sect. 2.6. The equation for celerity can be solved from Man-
ning’s equation for uniform flow. Garbrecht and Brunner
(1991) solve the celerity equation for the case of the com-
pound channel shown in Fig. 3. The variable parameter ap-
proach is an iterative solution, updating the flow and its ge-
ometry in alternate steps, to converge on a physically consis-
tent discharge–geometry solution. The implementation in the
NWM follows the secant method, which takes a high and a
low departure from an initial water depth and iterates through
the equations of geometry and flow until the calculated flow
rates converge within some threshold. Before the flow rates
converge, their differences are used to reduce the discrepancy
in the estimated water depths.

We note that the NWM makes a short time step approxi-
mation, Ik = Ik−1, to eliminate the spatial/topological depen-
dence at the current time and render the solution of the M–C
method embarrassingly parallel.

Reservoir objects embedded into the NWM routing net-
work accept fluxes from the streamflow network and from
the overland and subsurface routing model on adjacent grid
cells. Water is discharged to the stream network via equations
for both weir and orifice flow in the NWM level pool scheme.
Because we do not include the reservoir level in the assimila-
tion state vector, the reader is referred to Gochis et al. (2020)
for further details.

2.5 Groundwater bucket model

Even when lateral routing processes are included in hydro-
logic modeling, deficiencies in soil and aquifer data and
model process representations commonly lead to underesti-
mation of the baseflow component of streamflow. The NWM
employs a groundwater bucket model as a simple aquifer rep-
resentation to mitigate this baseflow problem. This model ac-
cepts water fluxes from the bottom of the land model’s soil
columns. The spatial representation of the buckets is derived
from the NHDPlus (McKay et al., 2012) catchments. These
map roughly on to the stream reaches (with certain excep-
tions). The buckets have an average areal extent of ∼ 3 km

across the NWM CONUS domain and, therefore, accept frac-
tions of discharge from multiple land model columns. The
mapping from the land surface model to the buckets is per-
formed by user-defined mappings capability of the model.

The bucket scheme is simple and highly conceptual. For
this reason, calibration of its parameters is critical for rea-
sonable model simulations. The groundwater bucket model
and its parameters are expressed by the following set of
equations, which are the only model components taken from
NWM v2.1 (instead of v2.0). The current bucket head, zk , is
solved from the previous bucket head, zk−1, plus the change
in head due to the bucket inflow Ĩk , as follows:

zk = zk−1+
Ĩk1t

Ã
, (7)

where Ã is the bucket area. The finite capacity of the bucket
is expressed in terms of a maximum head, zmax, a tunable
parameter. When the current head exceeds this threshold, the
Qspill term becomes nonzero, discharging all excess head in
a single time step.

if zk ≤ zmax then
Qspill = 0

else
zspill = zk − zmax (8)
zk = zmax (9)

Qspill =
Ãzspill

1t
. (10)

Head up to and including the zmax results in bucket discharge,
following an exponential equation, containing the following
two additional tunable parameters, E (unitless) andG (cubic
meters per second; hereafter cms):

Qexp =G

[
exp

(
E
zk

zmax

)
− 1

]
. (8)

The spill discharge and the exponential bucket discharge are
finally combined to give the total bucket outflow at the cur-
rent time step (Õk), and the depth of water corresponding to
Qexp is removed from the bucket.

Õk =Qspill+Qexp, (9)

zk+1 = zk −
Qexp1t

Ã
. (10)

Calibration of the bucket parameters (in advance of NWM
version 2.1 calibration) yielded the following spatially uni-
form bucket parameters used in this study: G= 0.005, E =
7.1244, and zmax = 15.6476 mm.

2.6 Sources of uncertainty: ensemble design

We construct an ensemble of 80 members. This number was
selected to balance computational demands and statistical
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Figure 3. Schematic of the geometry and roughness parameters of
the streamflow compound channel, with the top width (T ), bottom
width (B), side slope (z), Manning’s N (n), width of the compound
channel (Tcc), and Manning’s N of the compound channel (ncc).

performance. A more detailed justification on the choice of
the optimal ensemble size can be found in Appendix A. In-
corporating different sources of uncertainty into the ensem-
ble is necessary to create variability and to obtain a good es-
timate of the background error covariance. Background error
covariances are considered among and between the spatially
distributed streamflow and bucket states (Ok and zk , respec-
tively). We produce error distributions in these states through
a priori error distributions on (1) stream channel parame-
ters, (2) forcing fluxes to the channel reaches, and (3) forcing
fluxes to the buckets.

The error distribution imposed on the streamflow chan-
nel parameters is time invariant and unaffected by the state
update. This kind of error source is termed “multiphysics”
(Berner et al., 2011), meaning that each member runs a dif-
ferent physical configuration of the model. The parameters
shown in Fig. 3 describe the compound channel geometry
used in the NWM v2.0, including the top width (T ), bot-
tom width (B), side slope (m), Manning’s N (n), width of
the compound channel (Tcc), and Manning’s N of the com-
pound channel (ncc). While the lower part of the compound
channel is trapezoidal, the upper part of the channel is as-
sumed to be rectangular and, therefore, has no side slope
parameter. These parameters vary in space, and we define
a scalar multiplier for each parameter and ensemble member
to generate a perturbed parameter vector from the existing
NWM parameter vector. The multipliers are sampled from
uniform distributions, and in the case of three parameters, we
redraw the multiplier until the following physical constraints
are satisfied: ncc > 1.5n, T > 1.2B, and Tcc > 2T . For the
geometric quantities, we draw multipliers from U[0.6,1.4].
For the Manning’s N parameters, we draw multipliers from
U[0.8,1.8] based on the prior belief that the original values
are somewhat too low.

Perturbations of the boundary fluxes to the streamflow and
bucket models are applied at the hourly forcing time step.
These perturbations are uncorrelated (in space, time, and
member) Gaussian samples with zero mean and standard de-
viation equal to 40 % of the flux value at each location. When
the perturbations are added to the fluxes, a minimum of zero
flux is ensured. Random noise generators are seeded as a

function of “datetime” (in Python) and ensemble member to
ensure that identical forcing distributions are used across all
experiments. Finally, perturbations are applied to the model
initial states on 1 September 2018. However, these ensemble
initial conditions account for very little of the uncertainty in
the overall experiment.

2.7 USGS streamflow observations

Streamflow observations served by the USGS’s (National
Water Information System, NWIS; https://waterdata.usgs.
gov/nwis?, last access: 20 August 2019) are used by the
NWM in near real time. The observation files ingested by
the NWM are provided along with its output in near real
time on NOMADS (https://nomads.ncep.noaa.gov/, last ac-
cess: 20 August 2019). The streamflow observations in these
files are always provisional because they are near real time,
and they are subject to revision until they have been thor-
oughly assessed. For this study, we collected NWM observa-
tion files and revised values from the USGS’s NWIS many
months after the time period of this study. As expected, there
were significant revisions to the streamflow values in the
months following Hurricane Florence. These revisions are
for multiple reasons, not least of which is that existing rating
curves do not typically extrapolate well to extreme and out-
of-bank flows. We note that the difference between these ob-
servation sets had a significant impact on our results, and that
the provisional data proved more challenging for the assimi-
lation methodology in this paper. It is extremely important to
study the differences between such provisional and approved
data in order to bridge the gap between the methods offered
in this paper and real-time data assimilation applications. Ul-
timately, one would want to assimilate provisional data and
evaluate against revised data. There are multiple issues to
consider in this regard, including observation gaps, uncer-
tainty, and quality measures. In our study, we chose to use
the revised observations to evaluate the performance of our
methodological innovations. This study could be extended to
simulate real-time streamflow assimilation.

Figure 1 shows the 107 USGS streamflow gauges used for
evaluation in this study in green and red. The names of the
gauges in red are given in the caption as these locations are
specifically called out in the results. All stream gauges con-
sidered in this study have their contributing area entirely con-
tained within this subdomain. Most gauges have a 15 min re-
porting frequency, and the available observations in the pre-
vious hour are used for hourly assimilation. All experiments
presented here use the heteroscedastic error model of 20 % of
the observed flow for the observation error (cms). This is cer-
tainly a simplistic approach, but the magnitude is roughly in
line with previous studies (e.g., Coxon et al., 2015). We note
that, while important, the observation error plays a somewhat
secondary role in the quality of the assimilation, particularly
given the application of inflation.
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3 Data assimilation framework and results

3.1 DART

This study uses the Data Assimilation Research Testbed
(DART; Anderson et al., 2009) to perform ensemble Kalman
filtering for streamflow forecasting. Utilizing Bayes’ rule, the
goal is to sequentially use streamflow gauge data to guide
the trajectory of the hydrologic model towards a better flood
prediction. The procedure consists of successive forecast and
analysis steps. During the forecast, a set of model realizations
of the state variables are integrated forward in time using the
nonlinear hydrologic model as follows:

x
f (i)
k =M

(
x
a(i)
k−1,θ

(i),γ
(i)
k

)
, i = 1,2, . . .,Ne, (11)

where xk = [Ok,zk]T is the DART state consisting of the
streamflow and the bucket. The superscript i is the number
of the ensemble member, Ne is the ensemble size, f denotes
forecast (prior), and a is the analysis (posterior). The func-
tion M refers to the WRF-Hydro submodel. θ and γ denote
a set of physical parameters and input model forcings (de-
scribed in Sect. 2.6), respectively. As the data become avail-
able, DART assimilates the observations serially and applies
an EAKF update (ensemble adjustment Kalman filter; An-
derson, 2003) as follows:

1x
(i)
j = σxyσ

−2
y 1y(i), j = 1,2, . . .,Nx (12)

x
a(i)
j,k = x

f (i)
j,k +α1x

(i)
j . (13)

Given an observation, the prior ensemble members of the ob-
served variable y are first updated. The observation space in-
crements, 1y(i) = ya(i)− yf (i), are computed using a scalar
ensemble filter (Anderson, 2003). These increments are then
used to obtain the state–space increments, 1x(i)j , as shown
in Eq. (12). σxy denotes the prior covariance of the observed
variable, y, and the j th element in the state vector, x. The
total number of elements in the state is denoted by Nx . The
sample variance of the observed variable is σ 2

y . A localiza-
tion coefficient, 0≤ α ≤ 1, is used to limit the impact of spu-
rious correlations in the update. α is computed as a function
of the distance between observation and state variables given
a predefined correlation structure (refer to Sect. 3.2).

Streamflow gauges are available at the location of the state
variables and assumed representative of the model element to
which they are associated. This makes the (forward) observa-
tion operator linear and equal to the identity matrix, signifi-
cantly simplifying the implementation of the update step in
DART. Variance underestimation is tackled through covari-
ance inflation such that the ensemble right after the forecast
or analysis steps is inflated around its mean, as follows:

x
f |a(i)
j =

√
λ
(
x
f |a(i)
j − x

f |a
j

)
+ x

f |a
j , (14)

where xj is the j th element of the ensemble mean and the
notation f |a is used to refer to either forecast or analysis

ensemble. The inflation factor
√
λ (typically larger than 1)

yields a sample covariance matrix scaled by λ. The effects of
prior versus posterior inflation on the filtering performance
is explored in details in Sect. 3.3.

3.2 Along-the-stream localization

It is well-recognized that the use of small ensemble
sizes produces imperfect sample covariance matrices (e.g.,
Houtekamer and Mitchell, 2001). In fact, with a small en-
semble the probability density function of the state remains
only partially explored, which can possibly yield loss of in-
formation and even filter divergence. In addition, the sample
covariance would generally be contaminated with spurious
unrealistic correlations that may degrade the quality of the
Kalman update.

To overcome these issues, we resort to using covariance
localization. The idea is to taper any spurious correlations
between variables that are physically far from each other and
are possibly uncorrelated, using α in Eq. (13). Studies have
shown that, given the Euclidean distance between different
variables, a correlation function could be utilized to com-
pute a localization factor, α. In the present study, a simple
Euclidean distance could be inappropriate in many circum-
stances. For example, reaches from two different watersheds
could be physically close but highly unrelated, particularly in
terms of their error correlations. To this end, a topologically
based localization strategy that adheres to the river network
structure is applied. We introduce the along-the-stream lo-
calization (ATS localization) strategy. The idea is that only
the reaches upstream and downstream from a particular ob-
servation are considered during the update (Fig. 4). The lo-
calization factor, α, is computed using a selected functional
form (e.g., Gaspari–Cohn, boxcar, or ramped boxcar; see Ta-
ble A1 and the inset in Fig. 6) which depends on the distance
between any two reaches and the tunable localization radius,
r .

ATS localization highlights some key features. (i) Up-
stream from each observation, information flows up the net-
work, including through the bifurcations. Downstream from
each observation, we assume that the flow of information
only travels downstream with the observed flow. As such, we
obtain tree-like shapes where the number of close reaches up-
stream (tree canopy) of the observation is significantly larger
than the number of close reaches in the downstream direction
(tree trunk). Not allowing information to round the bend or
bifurcate back upstream below the gauge, we choose to only
update flows which contribute to the observation (upstream)
and to which the observation contributes (downstream). This
choice was made to be distinct from Euclidean distance-
based localization and out of caution, given a modestly sized
ensemble, since observations near the confluence of major
tributaries might have undue influence on large flows with
potentially low (true) error correlations. Allowing upstream
bifurcations below the gauge could be a reasonable approach
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Figure 4. Illustration of the along-the-stream (ATS) localization strategy in the model domain using the following three different effective
localization radii: 50 km (a), 100 km (b), and 200 km (c). The resulting localization factor α is displayed for five different stream gauges.
The correlation function used to compute α is based on the Gaspari–Cohn (G–C) fifth-order compactly supported Gaussian-like curve.

as well, pending the choice of ensemble size and understand-
ing of correlated errors at major tributaries. (ii) The total
number of close reaches does not necessarily increase as r in-
creases. For instance, as can be seen in Fig. 4, the number of
close reaches to gauge ID 0210500 (� marker) using r = 50,
100, and 200 km is 185, 646, and 1126 reaches, respectively.
The same is not true for gauge ID 02082950 (J marker)
because of the limited number of upstream reaches within
the catchment. (iii) Observations in different catchments do
not have common close reaches. Gauge IDs 02102500 and
02129000 for r = 200 km clearly demonstrate this feature.

The proposed localization method shares a lot of similari-
ties with that of Emery et al. (E20; 2020b). The fundamental
difference is that we are tackling sampling errors in the fore-
cast error covariances with each assimilation cycle. Our sam-
ple covariances are computed using the evolving ensemble,
unlike E20 in which the authors use time-invariant covari-
ances. Given that the hydrologic model used in E20 is lin-
ear, their system is technically an optimal interpolation with
fixed error statistics. Localization in this context is used to
address structural errors of the covariances and to compen-
sate for time-invariant covariances. Another important dif-
ference is that our ATS localization approach can ensure that
the impact of the observation decreases as the distance from
the observation, both upstream and downstream, increases.
For example, the fifth-order polynomial function of Gaspari
and Cohn (1999) can be used to find the localization coeffi-
cients or other functional forms can be used. In E20, on the
other hand, all reaches that are close to the observation are
assigned the same weight (i.e., α = 1).

3.2.1 Tuning localization parameters

We conduct five DA experiments to study the sensitivity of
the chosen localization radius on the accuracy of the stream-

flow estimates. The tested localization radii are 50, 75, 100,
150, and 200 km. The performance of each experiment is as-
sessed at four different locations inside the Hurricane Flo-
rence domain (refer Fig. 1). Time series of hourly forecast
root mean squared errors (RMSEs) are displayed at each
gauge in Fig. 5. As can be seen, all DA runs clearly outper-
form the open loop (i.e., no DA), especially during the main
event at around 17 September. Concerning the localization
radius, it is shown that DA runs using r = 50 and 75 km pro-
duce the least accurate streamflow estimates. At Tar River
(Tarboro), for example, the RMSE from these two experi-
ments is almost similar (∼ 160 cms) to that of the open loop
on 25 September. This suggests that the Kalman update with
such a small localization radius may be inadequate. Larger
localization radii, r = 150 and 200 km, produce on average
slightly better estimates. Such a performance, however, is
inconsistent in space, as can be seen at Tar River (Rocky
Mount).

Overall, the best performance is obtained using r =

100 km. This was confirmed not only at the diagnosed gauges
but also at the rest of the gauges in the domain, as can be
seen from the box plots in Fig. 5e. Our analysis indicates
that larger radii generally give rise to spurious correlations
which could yield catastrophic streamflow estimates, as the
box plot outliers suggest for r = 200 km. On the other hand,
smaller localization distances limit the amount of useful in-
formation, yet they do not severely degrade the quality of the
streamflow estimates as in the case of r > 100 km.

The effect of the choice of the correlation function used
in the ATS localization scheme is also investigated. We com-
pare the following three different functions: Gaspari–Cohn,
simple boxcar (similar to E20), and a ramped boxcar. The
formulas used to compute α for the different correlation func-
tions are given in Table A1 of Appendix A. The resulting
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Figure 5. (a–d) Time series of hourly forecast root mean square errors (RMSEs) of five DA experiments using ATS localization with the
Gaspari–Cohn function and radius r = 50, 75, 00, 150, and 200 km. For each gauge, the observations are plotted by black crosses. The other
curves show the RMSE of each run. For example, the open-loop (ensemble run with no DA) RMSE is given by the dashed gray curve. The
time-averaged RMSE for each run is reported in the legend. (e) Box plots of the normalized prior RMSEs (time-averaged RMSE divided by
the temporal mean of the actual observations at all the gauges), using all gauges as a function of the localization radius.

Figure 6. Taylor diagram for hourly prior streamflow estimates
using ATS localization with three different correlation functions,
namely Gaspari–Cohn, boxcar, and ramped boxcar. The localiza-
tion radius is set to 100 km. The shape of the functions is compared
at the top of the plot. Ramped boxcar decays linearly to 0, starting
at half-width (i.e., 50 km) distance from the observation. Compar-
isons to all gauges in the domain are performed; however, estimates
with high errors and standard deviations, resulting from boxcar and
ramped boxcar, are not shown for clarity.

prior ensemble mean from each scenario is evaluated at all
107 streamflow gauges in the domain, and the results for
r = 100 km are summarized in the Taylor plot (Taylor, 2001)
of Fig. 6. The diagram is useful to quantify the degree of cor-

respondence between the gauge observations and the prior
streamflow estimates in terms of three statistics, namely the
Pearson correlation coefficient, centered root mean squared
error, and the standard deviation. We note that boxcar and
ramped boxcar estimates produced erroneous results at a few
(around seven) gauges, and these results had to be removed
from the diagram for visual purposes. Averaging over all
gauges, the correlation coefficient resulting from Gaspari–
Cohn, boxcar, and ramped boxcar was found to be 0.83, 0.77,
and 0.79, respectively. The Gaspari–Cohn function further
yielded the lowest values, on average, for the other two statis-
tics of the Taylor diagram.

Boxcar and ramped boxcar functions only outperform
Gaspari–Cohn for small localization radii (e.g., r = 50 km);
however, the results produced with Gaspari–Cohn and r =
100 km have the best accuracy. This configuration, as a re-
sult, is selected and used in all other results shown in this
study.

3.2.2 ATS comparison to Euclidean distance-based
localization

This section compares the proposed topologically based ATS
localization to the regular Euclidean distance-based localiza-
tion. Instead of searching for close streams on the river net-
work as in the previous section, the regular approach looks
for close-by reaches with a circle, given a prespecified lo-
calization radius. In total, five different localization radii,
namely r = 1, 2, 5, 10, and 20 km, are tested. The result-
ing streamflow estimates are summarized and compared to
the ATS (100 km) run for two gauges in Table 2. The two
gauges, shown in Fig. 1, are selected such that the perfor-
mance is assessed at relatively low (i.e, Tar River at Tarboro)
and high (i.e., Deep River at Moncure) streamflow regimes.
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Table 2. Comparison of ATS and regular (Reg) localization at Tar River and Deep River. The localization radius used in the ATS approach is
100 km. For the regular localization approach, five different radii are tested, namely 20, 10, 5, 2, and 1 km. The metrics used to compare the
schemes are prior and posterior RMSE, prior and posterior bias, and prior and posterior spread. The metrics (in cubic meters per second) are
all averaged over the entire simulation period.

ATS Reg Reg Reg Reg Reg
(100 km) (20 km) (10 km) (5 km) (2 km) (1 km)

Tar River at Tarboro Prior RMSE 5.579 18.541 8.860 33.459 41.607 34.323
(NWIS 02083500) Posterior RMSE 4.930 17.819 6.748 25.106 33.664 26.411

Prior bias −1.130 −11.648 −1.706 −20.242 −18.091 −11.068
Posterior bias −0.848 −11.410 −0.740 −20.373 −17.163 −10.005
Prior spread 1.919 3.291 2.803 10.895 10.839 9.535
Posterior spread 1.551 3.004 2.271 6.283 6.425 5.170

Deep River at Moncure Prior RMSE 29.440 48.328 69.206 102.992 130.085 146.354
(NWIS 02102000) Posterior RMSE 22.749 36.163 38.009 38.169 38.159 63.991

Prior bias −6.498 −14.880 −21.001 −38.676 −58.086 −75.678
Posterior bias −3.328 −11.287 −6.914 −4.558 −4.075 −30.536
Prior spread 15.598 22.425 36.784 60.877 77.549 70.834
Posterior spread 11.867 16.812 19.645 21.434 22.038 25.595

Among the five experiments that use regular localiza-
tion, the best performance is suggested using r = 10 km. As
r decreases below 10, the quality of the prior and poste-
rior streamflow estimates diminishes. For instance, the time-
averaged prior RMSE for r = 10 and r = 1 km at Tar River
is 8.86 and 34.323 cms, respectively. It is also noticeable
that smaller localization radii yield large prior and poste-
rior ensemble spread. This happens because the tiny local-
ization radius tends to limit the impact of the data during the
update, and hence, the shrinkage of the uncertainty around
the ensemble mean becomes restricted. For r = 20 km, the
performance strongly degrades at Tar River. For example,
the posterior bias is shown to grow from −0.74 cms, us-
ing r = 10 km to −11.41 cms for r = 20 km. The reason for
such a behavior is that, with a radius of 20 km, streamflow
is falsely updated with information from nearby basins. Al-
though these basins are physically close, they are, however,
governed by different flow regimes. The same is not true at
Deep River, and that is because the basin which Deep River
belongs to is much larger, and thus, a localization radius of
20 km cannot contaminate the streamflow as we described at
Tar River. Increasing the localization radius beyond 20 km
yielded catastrophic updates for the streamflow and the sub-
surface bucket state. In fact, all DA experiments run with
regular localization and r > 20 km failed at different stages
(typically 2 weeks into the run).

Prior and posterior streamflow results obtained using ATS
localization are significantly better than those with the reg-
ular localization. Unlike regular localization, using the pro-
posed ATS approach, we are able to increase the effective
search radius because the algorithm adheres to the physical
aspects of the streamflow problem. Compared to the 10 km
regular localization run, ATS produces at least 40 % more
accurate (in terms of RMSE) streamflow estimates. This is

consistent for all 107 gauge locations. Because the algorithm
allows the use of large localization radii, ATS scheme further
yields more certain estimates (smaller spread) than those that
use regular localization.

3.3 Inflation

Variance underestimation in ensemble Kalman filters is a
common issue that usually happens in the presence of large
sampling errors and model biases (Furrer and Bengtsson,
2007). Sampling errors are the result of using a limited en-
semble size. Model biases are deficiencies in the model,
causing predictions to be far from the observations. Other
sources of errors that might degrade the performance of the
filter include non-Gaussianity (Anderson, 2010), systematic
errors in the observational operator, and representativity er-
rors (Hodyss and Nichols, 2015). In practice, studies have
shown that when model biases exist they tend to dominate
other errors in the system (e.g., El Gharamti, 2018), and thus,
treating model errors is often prioritized.

In this section, we consider the following three approaches
to dealing with the issue of variance underestimation: prior
inflation (PR-inf), posterior inflation (PO-inf), and combined
prior and posterior inflation (PP-inf). In PR-inf, the prior en-
semble is inflated, while in PO-inf the posterior ensemble
is inflated. In PP-inf, the update the prior ensemble is in-
flated before, and then the posterior ensemble is inflated after
the update. In their recent study, El Gharamti et al. (2019)
compared the three approaches in an atmospheric applica-
tion. The authors argued that PR-inf is effective at mitigating
model errors, while PO-inf can only tackle sampling errors
and other issues associated with the analysis such as non-
Gaussianity. Combining both inflation schemes was shown
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to produce the best results in application to atmospheric gen-
eral circulation models.

The algorithm used to compute the inflation is adaptive in
time, based on Bayes’ theorem as in Eq. (15), and results in
spatially varying inflation fields.

p
(
λ|df |a

)
∝ p

(
df |a|λ

)
·p(λ) . (15)

The algorithm assumes the inflation to be a random variable
with an inverse-Gamma prior distribution p(λ). A Gaussian
likelihood function p

(
df |a|λ

)
is constructed using forecast

or analysis innovations, df |a , the observation error variance,
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, as follows:
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Equation (16) assumes the forecast and the observation er-
rors are uncorrelated, i.e., E

(
df
)
= 0, and E here denotes

the expected value. This is generally valid for most Earth
system models. In certain modeling scenarios, where fore-
cast and observation errors have nonzero correlations, one
could decorrelate them before proceeding (e.g., Hoteit et al.,
2015). The variance of the forecast innovations, σ 2

o + λσ
2
yf

,
is estimated using observation–space diagnostics (Desroziers
et al., 2005). In the case of posterior inflation, the likelihood
function is similar to Eq. (16), except that the variance of
the analysis innovations, var(da), is given as σ 2

o −λσ
2
ya . The

posterior distribution of the inflation is obtained by taking the
product of the likelihood and prior densities of λ, as shown in
Eq. (15). To find the updated value of the inflation, p

(
λ|df |a

)
is maximized, and the resulting value is used, in addition
to the updated inflation variance, as the mode of the prior
density for the next DA cycle. More details can be found in
El Gharamti et al. (2019).

The hydrographs in Figs. 7 and 8 compare the performance
of PR-inf, PO-inf, and PP-inf with a no inflation (NO-inf)
case at two gauges along the Neuse River. At the upstream
gauge (near Clayton; Fig. 7), the open loop shows a phase
misalignment with the observations, where the model floods
almost a week after the main event on ∼ 15 September. The
hydrograph resulting from the NO-inf run is hugely biased,
as can be seen on 22 September. Because of the large dis-
crepancies between the model estimates and the observation,
the filter rejected almost 60 % of the data1. PO-inf estimates

1Observation rejection (also known as the outlier threshold) in
DART is applied when the distance between the ensemble mean
and the observation is larger than 3 times the total spread. The to-
tal spread is computed as the square root of the sum of the prior
variance and the observation error variance.

are slightly better than those of the NO-inf run; however, al-
most half of the observations are still rejected. Using prior
inflation (PR-inf), the majority of the observations are as-
similated, producing high-quality streamflow estimates. As
can be seen, the large biases between 14 and 22 Septem-
ber are completely removed. Whenever the model predic-
tion starts to deviate from the observations’ trajectory, the
adaptive inflation algorithm reacts immediately by restoring
enough spread to bring the ensemble closer to the data during
the update. Once the model predictions become consistent
with the observations, the inflation relaxes to smaller values.
A value of 1 means no inflation is applied. The best fit to the
observations is demonstrated by the PP-inf run. Its overall
prior and posterior averaged RMSE values are slightly better
than those obtained using the PR-inf run.

At the downstream gauge (near Goldsboro, as shown in
Fig. 8), the discharge is almost 4 times larger than the up-
stream gauge, and the overall model fit to the data looks bet-
ter. Towards the end of the flooding event (around 30 Septem-
ber), PO-inf better delineates the data compared to the NO-
inf case. However, a false modeled flood wave appears dur-
ing this time in both simulations. Similar to Fig. 7, PR-inf
run clearly outperforms the NO-inf and PO-inf runs, yield-
ing an average prior and posterior RMSE of 45 and 38.1 cms,
respectively. On average, the PP-inf prior and posterior esti-
mates are∼ 5 % more accurate than those of the PR-inf. Both
PR-inf and PP-inf runs assimilate almost 80 % of the avail-
able observations.

3.4 Choosing the best inflation

The results shown in Figs. 7 and 8 clearly demonstrate the
usefulness of prior inflation at mitigating model biases. The
benefits of using posterior inflation are only minimal. To il-
lustrate how important prior inflation is, one could check out
the rising limb of the hydrograph at Neuse River near Golds-
boro on 15 September. With no inflation, the filter estimates
are shown to overestimate the observed discharge and follow
the trajectory of the open loop. Although

√
λa is shown to

increase to almost 1.2 in the PO-inf run, it is insufficient to
bring the streamflow closer to the data. Assessing the PR-
inf run, one could see that as the prior innovations begin to
increase the adaptive scheme counteracts this by increasing√
λf to almost 4. As a result, the posterior mean is kept close

to the data, and consequently, the prior estimates improved in
the proceeding DA cycles.

Consistent with the findings of El Gharamti et al. (2019),
adding posterior inflation on top of prior inflation further in-
creased the accuracy. This suggests that posterior inflation
might be resolving other regression issues such as sampling
noise and non-Gaussianity. In fact, the gain from using pos-
terior inflation on top of prior inflation is more pronounced
at other gauges, as shown in Fig. 9. As can be seen, PR-inf
completely misses the falling limb of the hydrograph start-
ing from 22 to 25 September. Prior and posterior means are
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Figure 7. Time series of prior and posterior ensemble means, at the upstream Neuse River near Clayton gauge, resulting from the following
four different DA runs: no inflation (a), prior inflation (b), posterior inflation (c), and prior and posterior inflation combined (d). The open-
loop hydrograph (in cms) is also shown. Assimilated and rejected observations are shown with green and red crosses, respectively. The
inflation mean time series is plotted according the right y axes. Time-averaged RMSE for each hydrograph is reported in the legend. The
average values of prior,

√

λf , and posterior,
√
λa , inflation are also given in the legend.

Figure 8. Similar to Fig. 7 but for the downstream Neuse River near Goldsboro gauge.
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Figure 9. Similar to Fig. 7 but for Tar River near Langley. Only the PR-inf (a) and PP-inf (b) results are shown. In addition to the ensemble
means, the prior and posterior members are also plotted. Discontinuities in the hydrograph means that there are no observations to compare.

shown to overlap with the open-loop discharge. In the PP-
inf run, on the other hand, the falling limbs of the simulated
hydrographs are more similar to the data. The recession hap-
pens almost 2 d earlier, and this in turn helps the filter reject
less data (9.6 % compared to PR-inf run’s 15.1 %) and pro-
duce higher-quality estimates. The same behavior was ob-
served at a few other gauge locations in the domain (not
shown).

Computationally, combining both adaptive prior and pos-
terior inflation schemes is more expensive than running each
scheme alone. Our experiments suggest that the extra wall
clock time required to perform a full PP-inf run is around
20 % of the total computing time required by PR-inf or PO-
inf. In the current framework, the higher complexity is not
found to be prohibitive, especially when one takes into ac-
count the performance benefits that PP-inf provides. As a fu-
ture study, it would be interesting to run other PP-inf cases
with smaller ensemble size – to match the cost of the PR-inf
run – and investigate the performance.

3.5 Inflation in space

The adaptive inflation varies spatially. With each cycle a dif-
ferent inflation factor is assigned to each value in the state
vector. Using cross-correlations in the joint covariance, infla-
tion is therefore computed not only for streamflow but also
for the bucket portion of the state. Fig. 10 maps the prior
inflation for both streamflow and bucket obtained using PP-
inf run. The displayed inflation field is an average over all
fields obtained during the flooding period, i.e., between 12
and 18 September. Because of the localized update, the dis-
played inflation patterns generally follow the tree-like local-
ization shapes (Fig. 4). Inflation values tend to increase near
the observation locations and decrease away from the gauges.
This is why many reaches, especially in the northeastern part
of the domain, have no inflation (i.e.,

√
λf = 1). Given the

hourly assimilation of streamflow data, bucket inflation val-
ues are relatively smaller than the streamflow ones. Stream-
flow inflation at more than 90 % of the reaches does not ex-

ceed the value of 2. Reaches with very large inflation values
are located in densely observed areas, and the inflation helps
restore ensemble spread after multiple, sequential state up-
dates results in loss of spread.

3.6 Overall assessment

Prior to the hurricane landfall on 14 September, streamflow
estimates of the model appeared relatively good. The major
differences between observed and modeled streamflows re-
sulted from the hurricane. The impact of DA prior to the
hurricane is marginal. To investigate this further, we show
posterior streamflow maps on 13, 15, and 17 September in
Fig. 11a–c. We also show the difference between the poste-
riors and the open-loop estimates (Fig. 11d–f). Before flood-
ing took place, the highest flow was observed along the Pee
Dee, Cape Fear, and Neuse rivers, as shown on 13 September.
The difference between the DA result and the open loop is
confined to Cape Fear River and is equal to ∼ 200 cms. Pre-
dicted streamflow on more than 70 % of the reaches in both
runs is identical, and hence, the difference is shown to be
0 cms. The differences grow near Neuse River on 15 Septem-
ber to around 1000 cms. The posterior estimate of the stream-
flow in the rest of the domain on 15 September is generally
larger than the open loop (mostly blueish in color). It is no-
table that streamflow in the domain increased by a factor of
7 before (i.e., maximum of 308 cms on 13 September) and
after (i.e., maximum of 2170 cms on 15 September) land-
fall. On 17 September, the spatial flow distribution changed
considerably, especially near the northwestern side of Pee
Dee River in which posterior streamflow increased to nearly
7000 cms. Open-loop streamflow estimates are surprisingly
small in that area, unlike the rest of the flooded domain.

In order to understand the huge discrepancy between the
posteriors and the open-loop results, we study the stream-
flow evolution at Rocky River (just north of Pee Dee) in
Fig. 12. On top of streamflow, we display the mean areal pre-
cipitation rates that are used to force the hydrologic model
upstream of the gauged streamflow point. As can be seen,
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Figure 10. Time-averaged prior inflation for streamflow (a) and the bucket (b) resulting from PP-inf run. The inflation is averaged over all
estimates between 12 and 18 September. Color (log scale) and line thickness both indicate the inflation value. Gray reaches have an inflation
value of 1.

Figure 11. (a, b, c) Posterior streamflow ensemble mean maps resulting from a PP-inf run on 13 September at 15:00 UTC (universal
coordinated time) (a, d), 15 September at 17:00 (b, e), and 17 September at 19:00 (c, f). (d, e, f) Similar maps but for the difference between
the posterior means and the open-loop estimates. Reaches with 0 cms flow are shown in gray. Color (log scale) and line thickness both
indicate the magnitude value.

the open-loop hydrograph severely underestimates the ob-
served discharge on 17 September. While the observed dis-
charge reaches 3000 cms, the open-loop estimate does not
surpass 100 cms. The reason for this huge bias is mainly at-
tributed to the inaccurately specified rainfall rates which do
not exceed 10 mm h−1 during this time. Before this period,
on 10 September, the forcings also falsely simulate heavy
rainfall (around 40 mm h−1) prior to the hurricane’s landfall.
It is surprising how well the DA prior and posterior estimates
are given these errors in the precipitation forcing. In fact, by
looking at the RMSE values, one finds that the prior and the

posterior estimates are 56 % and 90 % more accurate than
the open loop. Such a significant enhancement is obtained
due to a massive inflation that is applied to the prior stream-
flow ensemble. As shown in Fig. 12a, the inflation mean on
17 September grows to 15. This growth was accompanied
with a sizable increase in the inflation standard deviation.
This further illustrates how powerful the adaptive inflation
algorithm is in tackling large biases in the model. It is im-
portant to note that if the inflation variance was fixed in time,
then the inflation mean will not have the room to grow as
much, and hence, the fit to the observed discharge will not

https://doi.org/10.5194/hess-25-5315-2021 Hydrol. Earth Syst. Sci., 25, 5315–5336, 2021



5330 M. El Gharamti et al.: Hurricane Florence ensemble streamflow data assimilation

Figure 12. (a) Open-loop, prior, and posterior hydrographs obtained at the Rocky River near Norwood. Precipitation rates computed at that
gauge are plotted according the right y axis. (b) Open-loop, prior, and posterior ensemble spread (in cms) time series are displayed in log
scale. The evolution of the prior inflation mean and standard deviation (SD) is also shown. RMSEs, average ensemble spread and average
inflation mean, and standard deviation values are reported in the legends.

be as good. The posterior inflation mean values during the
flood (not shown) ranged between 1 and 2. In terms of en-
semble spread, due to inflation, the DA estimates are almost
2 orders of magnitude larger than the open loop during the
flood. The posterior ensemble spread is consistently smaller
than the prior given the continuous hourly shrinkage caused
by the Kalman update.

The rank histogram is a useful statistical approach to vi-
sualize the behavior of the model and the priors along Pee
Dee River. The observed streamflow is binned with respect to
the open-loop and prior ensemble members at a single gauge
near Bennettsville, South Carolina. The resulting probability
bar diagrams are shown in Fig. 13. If the observation falls
within the span of the ensemble members at all times, then
one would expect to have a flat rank histogram. This is in
fact exactly what we obtain for the prior streamflow ensem-
ble (Fig. 13b), making the observed discharge statistically in-
distinguishable from the ensemble members. As for the open
loop, the rank histogram suggests that the probability of the
observation falling outside the open-loop ensemble is larger
than 50 %. The rank histogram for the open loop is heav-
ily skewed to the right, indicating that the observations are
most frequently much larger than the ensemble members,
consistent with our previous analysis. The high probability
in the first bin of the histogram reflects the open loop’s over-
estimation of the observed streamflow during the no-flood
period.

To further assess the performance of the presented DA
framework, we run an additional PP-inf experiment, and
instead of assimilating all 107 gauges, we withhold three
gauges for validation. By withholding gauges, we can infer
the impact of the assimilation methods on ungauged points
within the domain. The regime at the withheld gauges ranges
between relatively low flow at the Buffalo Creek, moderate
flow at Lumber River, and high flow at Cape Fear River. Lin-
ear regression is performed to validate the streamflow esti-
mates obtained using the open loop, PP-inf (assimilate all

Figure 13. Rank histograms for the open-loop and the prior stream-
flow obtained at Pee Dee River near Bennettsville. The histograms
have been normalized to show probability instead of the observa-
tion count. The arrow in the last bin of panel (a) indicates that the
probability is large (∼ 0.5).

107 gauges), and PP-inf-w (withhold three gauges) at the
withheld gauges. The resulting analysis is shown in Fig. 14.
The PP-inf run is presented as the best case scenario. We
check if PP-inf-w can outperform the open loop and how
well it approximates PP-inf. Compared to the open loop,
the performance of PP-inf-w at the withheld gauges is con-
siderably more accurate. At Lumber River, for instance, the
open loop shows a strong overestimation of the observed dis-
charge strongly improved in both assimilation runs. For all
three gauges, the estimates from PP-inf-w are able to rea-
sonably mimic those of the PP-inf. Overall, PP-inf-w yields
better RMSE and more desirable R2 (coefficient of determi-
nation) values than the open loop. This result indicates that
the streamflow at unobserved locations is significantly im-
proved by the assimilation.
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Figure 14. Cross-plots of the streamflow at three withheld gauges. The results are shown for the open loop, the PP-inf (where all 107 gauges
are assimilated), and PP-inf-w (where only 104 gauges are assimilated). The best-fit line is denoted by a black dashed line. The average
RMSE value and the coefficient of determination (R2) are computed and reported in the legends.

4 Summary and discussion

NOAA’s National Water Model (NWM) configuration of the
WRF-Hydro framework is coupled to the Data Assimilation
Research Testbed (DART) to improve ensemble streamflow
forecasts under extreme rainfall conditions during Hurricane
Florence in September 2018. Streamflow and bucket head
states are simulated using a channel+bucket submodel of the
NWM. These states are then updated through data assimila-
tion (DA) using streamflow observations collected from 107
USGS gauges. The system uses 80 ensemble members, in-
corporating multiphysics uncertainty (each ensemble mem-
ber assumes different channel model parameters) and time-
varying uncertainty in the forcing fluxes to the channel and
the bucket models.

This study presents two main contributions within a gener-
alized ensemble DA framework for hydrologic systems, par-
ticularly those defined on irregular grids such as a stream net-
work. First, a topologically based along-the-stream (ATS) lo-
calization is shown to improve information propagation dur-
ing the model state. Localizing the impact of the update mit-
igates sampling errors due to undersampling as well as other
analysis errors. Moreover, ATS localization specifically elim-
inates error covariances between unconnected streams. The
algorithm requires tuning of a localization radius, and we do
not attempt to diagnose a physical basis for estimating the
optimal radius a priori (as such, a discussion should probably
include estimation of temporal error covariances not consid-
ered in this study). However, ATS localization was found to
produce results significantly better than the regular Euclidean
distance-based approach. The improved results stem in part
from a larger localization radius under the ATS approach,
indicating more effective propagation of the observations in
the update along the stream than through Euclidean space.
While the ATS approach does not further the cause of pre-

dictions in ungauged basins, it indicates that further research
into novel localization strategies for streamflow DA may bear
additional fruit. On this point, we note that the impact of the
ATS localization strategy on the results of this study rela-
tive to the impact of adaptive inflation and bias correction is
remarkably larger than would be expected in application to
atmospheric DA.

The second major contribution of our study is to demon-
strate utility of spatially and temporally varying adaptive in-
flation (El Gharamti, 2018) in hydrologic applications, par-
ticularly to help control model bias. Prior and posterior adap-
tive inflation is shown to mitigate model biases and sampling
errors, respectively. Results during major flooding events il-
lustrate that severe model biases can be effectively reduced
using adaptive prior inflation. Because the method is spa-
tially varying, different degrees of bias in different parts of
the stream network can be efficiently tackled. Posterior infla-
tion was not found to be as effective as prior inflation; how-
ever, combining both inflation schemes yielded the highest
streamflow accuracy. Overall, inflation plays an indispens-
able bias correction role, without which the quality of the
ensemble streamflow prediction would best be described as
poor.

To validate the results of the presented DA system, a va-
riety of diagnostics are presented. Hydrographs at differ-
ent locations in the domain were investigated. Prior and
posterior streamflow estimates were compared to the open-
loop result. The largest streamflow improvements were found
along Pee Dee River in South Carolina after landfall, during
which the observed streamflow was strongly underestimated
by the open loop. Improvements due to assimilation were
also demonstrated using rank histograms at a gauge along
Pee Dee River. Streamflow and inflation spatial maps were
also analyzed. It was found that streamflow inflation values
are larger than those of the bucket state, given that stream-
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flow is directly observed. The overall changes to the bucket
state after DA were minimal. To test the impact of DA at
non-observed locations, three gauges were withheld from the
assimilation and the resulting prior estimates were verified
against the data. Linear regression tests revealed that obser-
vations at nearby gauges are able to improve the streamflow
at the location of the withheld gauges, eventually reducing
the systematic biases of the open loop.

The most challenging aspect of the hydrologic DA is the
problem of model biases or errors. These biases are usually
associated with inaccurate boundary conditions (e.g., precip-
itation), uncertain parameters (e.g., channel roughness and
slope), or model physics deficiencies. This study has shown
that adaptive inflation can prove effective at handling biases
in the data assimilation. Apart from inflation, a handful of
other techniques can be performed to mitigate bias issues.
Jointly estimating highly uncertain model parameters along-
side the state is an approach commonly found in hydrology
(e.g., Vrugt et al., 2006; Gharamti et al., 2015; Abbaszadeh
et al., 2018; Ziliani et al., 2019). Updating parameters often
increases the complexity of the DA framework (nonlinear-
ity often increases in state–parameters estimation problems),
and the computational cost may become prohibitive, espe-
cially for spatially varying parameters. Yet, such an approach
may yield improvements to the analyses of this study. The
multiphysics approach considered here aims to incorporate
uncertainty in the fixed boundary condition (geometry and
roughness parameters) into the ensemble in order to better
model the background error covariance. A combined multi-
physics and joint parameter estimation approach might also
be pursued. Uncertainty of updated parameters tends to dissi-
pate in time and may be more appropriate for certain kinds of
conceptual model parameters instead of those considered in
our multiphysics approach. Further up the model chain, not
considered in this study, running WRF-Hydro with a land
surface model would allow for updating of soil moisture and
surface head states. Instead of treating deterministic fluxes
with parameterized noise, introducing these prognostic vari-
ables would provide the ability to adjust the fluxes coming to
the channel. Many studies have tried this and remarked on the
problematic updating of soil moisture from streamflow due
to the highly nonlinear relationship between the states, par-
ticularly for flood forecasting applications (Rakovec et al.,
2015). While expanding the prognostic states of the model
may potentially improve aspects of the flood prediction prob-
lem, such as overland and subsurface fluxes to the channel
routing configuration, it is possible that shifting the bound-
ary conditions up the model chain may result in a similar
bias issue with more degrees of freedom in the state vector.
Coupled atmospheric and hydrologic DA would be a further
step towards updating the prognostic states causing hydro-
logic errors in the state vector. These are ideas to be pursued
in future studies.

An essential DA ingredient that this study did not cover is
Gaussian anamorphosis (Simon and Bertino, 2009; Gharamti
et al., 2017). Streamflow, being strictly nonnegative, is a non-
Gaussian variable. Since the Kalman update is linear and
assumes Gaussian statistics, it becomes more appropriate to
transform streamflow to a Gaussian space where the update
is performed, and then it can be pulled back to the physical
space. This is well known in hydrological applications (e.g.,
Clark et al., 2008). Such a transformation guarantees that the
updated streamflow does not consist of any unphysical (i.e.,
negative) values. The transformation is often conducted us-
ing empirical functions or analytical ones, such as the natural
logarithm. This will be investigated in a follow-up study.

Finally, 1 h ahead (prior) forecasts of flooding event were
the focus of this study. Future research will study the im-
pact of DA in the whole forecast time window, up to 18 h
in the short-range forecasts, and expand the DA application
to medium- and long-range forecasts, including additional
hydrologic components and observations. The functionality
of the ATS localization and inflation may change in differ-
ent forecasting modes. For instance, longer localization radii
could be found more desirable in a long-range forecast.
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Appendix A: Ensemble optimization and localization
correlation functions

Figure A1 shows the prediction skill score (PSS) for three
different data assimilation experiments using 40, 80, and 160
ensemble members. For a perfect prediction skill, one would
expect to obtain a PSS= 1. As can be seen from the plot, the
larger the ensemble size, the better the PSS. However, the
improvements obtained using 160 members over 80 are rela-
tively marginal (PSS is 0.6 and 0.62 for 80 and 160 members,
respectively). Decreasing the ensemble size to 40 degrades
the quality of streamflow and yields a PSS of 0.43. On top of
the forecast skill, the total runtime and number of processors
needed to run the experiments are also plotted. As shown,
there is quite an exponential increase in computational time
and demand when going from 80 and 160 ensemble mem-
bers. For instance, the time needed to finish the experiment
using 40, 80, and 160 members is 5, 5.5, and 9 h, respectively.
Similarly, the number of central processing units (CPUs) re-
quired by these respective ensemble runs is 360, 720, and
1440. Based on this analysis, we reckoned that 80 members
will give us high enough accuracy without having to utilize
a lot of computational power and time. This ensemble size
is fixed to 80 members for all experiments described in this
study.

Table A1. Localization factor α for different correlation functions is given as function of the absolute distance between the observation gauge
and the streamflow reaches, ξ , and the localization radius, r . The distance, ξ is computed along the river network and is equal to the sum of
lengths of the reaches separating the observation gauge and the link that is subject to the update. The parameter�, used in the Gaspari–Cohn
function, is defined as 2ξ
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Figure A1. Prediction skill score (PSS; in black) obtained for three
different WRF-Hydro and DART assimilation experiments where
the ensemble size is varied, namely Ne = 40,80, and 160 mem-
bers. Also plotted as function of the ensemble size is the experiment
execution time (right red axis) and the total number of processors
needed to run the experiments (right green axis). The shaded region
indicates the optimal ensemble size configuration we select in this
study. PSS is computed as follows: 1−MSEDA/MSEREF, where
MSE denotes mean squared errors, DA means a data assimilation
run, and REF is a reference run (the open loop in this case).
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