Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-4789-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4789-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Applicability of Landsat 8 thermal infrared sensor for identifying submarine groundwater discharge springs in the Mediterranean Sea basin
Department of Civil and Environmental Engineering, Universitat
Politècnica de Catalunya, Jordi Girona 1–3, 08034 Barcelona, Spain
Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain
Albert Folch
Department of Civil and Environmental Engineering, Universitat
Politècnica de Catalunya, Jordi Girona 1–3, 08034 Barcelona, Spain
Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain
Jordi Garcia-Orellana
Institut de Ciència i Tecnologia Ambientals – ICTA, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Departament de Física, Universitat Autònoma de Barcelona,
08193 Bellaterra, Spain
Related authors
No articles found.
Marc Diego-Feliu, Valentí Rodellas, Aaron Alorda-Kleinglass, Maarten Saaltink, Albert Folch, and Jordi Garcia-Orellana
Hydrol. Earth Syst. Sci., 26, 4619–4635, https://doi.org/10.5194/hess-26-4619-2022, https://doi.org/10.5194/hess-26-4619-2022, 2022
Short summary
Short summary
Rainwater infiltrates aquifers and travels a long subsurface journey towards the ocean where it eventually enters below sea level. In its path towards the sea, water becomes enriched in many compounds that are naturally or artificially present within soils and sediments. We demonstrate that extreme rainfall events may significantly increase the inflow of water to the ocean, thereby increasing the supply of these compounds that are fundamental for the sustainability of coastal ecosystems.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Ariane Arias-Ortiz, Pere Masqué, Jordi Garcia-Orellana, Oscar Serrano, Inés Mazarrasa, Núria Marbà, Catherine E. Lovelock, Paul S. Lavery, and Carlos M. Duarte
Biogeosciences, 15, 6791–6818, https://doi.org/10.5194/bg-15-6791-2018, https://doi.org/10.5194/bg-15-6791-2018, 2018
Short summary
Short summary
Efforts to include tidal marsh, mangrove and seagrass ecosystems in existing carbon mitigation strategies are limited by a lack of estimates of carbon accumulation rates (CARs). We discuss the use of 210Pb dating to determine CARs in these habitats, which are often composed of heterogeneous sediments and affected by sedimentary processes. Results show that obtaining reliable geochronologies in these systems is ambitious, but estimates of mean 100-year CARs are mostly secure within 20 % error.
Maxi Castrillejo, Núria Casacuberta, Marcus Christl, Christof Vockenhuber, Hans-Arno Synal, Maribel I. García-Ibáñez, Pascale Lherminier, Géraldine Sarthou, Jordi Garcia-Orellana, and Pere Masqué
Biogeosciences, 15, 5545–5564, https://doi.org/10.5194/bg-15-5545-2018, https://doi.org/10.5194/bg-15-5545-2018, 2018
Short summary
Short summary
The investigation of water mass transport pathways and timescales is important to understand the global ocean circulation. Following earlier studies, we use artificial radionuclides introduced to the oceans in the 1950s to investigate the water transport in the subpolar North Atlantic (SPNA). For the first time, we combine measurements of the long-lived iodine-129 and uranium-236 to confirm earlier findings/hypotheses and to better understand shallow and deep ventilation processes in the SPNA.
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Remote Sensing and GIS
Influence of intensive agriculture and geological heterogeneity on the recharge of an arid aquifer system (Saq–Ram, Arabian Peninsula) inferred from GRACE data
Evaluating downscaling methods of GRACE (Gravity Recovery and Climate Experiment) data: a case study over a fractured crystalline aquifer in southern India
Preprocessing approaches in machine-learning-based groundwater potential mapping: an application to the Koulikoro and Bamako regions, Mali
Unsaturated zone model complexity for the assimilation of evapotranspiration rates in groundwater modelling
Technical note: Water table mapping accounting for river–aquifer connectivity and human pressure
Estimating long-term groundwater storage and its controlling factors in Alberta, Canada
Recent changes in terrestrial water storage in the Upper Nile Basin: an evaluation of commonly used gridded GRACE products
Mapping irrigation potential from renewable groundwater in Africa – a quantitative hydrological approach
How to identify groundwater-caused thermal anomalies in lakes based on multi-temporal satellite data in semi-arid regions
Statistical analysis to characterize transport of nutrients in groundwater near an abandoned feedlot
Hydrogeological settings of a volcanic island (San Cristóbal, Galapagos) from joint interpretation of airborne electromagnetics and geomorphological observations
Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description
Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS
Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data
Groundwater use for irrigation – a global inventory
Pierre Seraphin, Julio Gonçalvès, Bruno Hamelin, Thomas Stieglitz, and Pierre Deschamps
Hydrol. Earth Syst. Sci., 26, 5757–5771, https://doi.org/10.5194/hess-26-5757-2022, https://doi.org/10.5194/hess-26-5757-2022, 2022
Short summary
Short summary
This study assesses the detailed water budget of the Saq–Ram Aquifer System using satellite gravity data. Spatial heterogeneities regarding the groundwater recharge were identified: (i) irrigation excess is great enough to artificially recharge the aquifer; and (ii) volcanic lava deposits, which cover 8% of the domain, contribute to more than 50% of the total natural recharge. This indicates a major control of geological context on arid aquifer recharge, which has been poorly discussed hitherto.
Claire Pascal, Sylvain Ferrant, Adrien Selles, Jean-Christophe Maréchal, Abhilash Paswan, and Olivier Merlin
Hydrol. Earth Syst. Sci., 26, 4169–4186, https://doi.org/10.5194/hess-26-4169-2022, https://doi.org/10.5194/hess-26-4169-2022, 2022
Short summary
Short summary
This paper presents a new validation method for the downscaling of GRACE (Gravity Recovery and Climate Experiment) data. It measures the improvement of the downscaled data against the low-resolution data in both temporal and, for the first time, spatial domains. This validation method offers a standardized and comprehensive framework to interpret spatially and temporally the quality of the downscaled products, supporting future efforts in GRACE downscaling methods.
Víctor Gómez-Escalonilla, Pedro Martínez-Santos, and Miguel Martín-Loeches
Hydrol. Earth Syst. Sci., 26, 221–243, https://doi.org/10.5194/hess-26-221-2022, https://doi.org/10.5194/hess-26-221-2022, 2022
Short summary
Short summary
Many communities in the Sahel rely solely on groundwater. We develop a machine learning technique to map areas of groundwater potential. Algorithms are trained to detect areas where there is a confluence of factors that facilitate groundwater occurrence. Our contribution focuses on using variable scaling to minimize expert bias and on testing our results beyond standard metrics. This approach is illustrated through its application to two administrative regions of Mali.
Simone Gelsinari, Valentijn R. N. Pauwels, Edoardo Daly, Jos van Dam, Remko Uijlenhoet, Nicholas Fewster-Young, and Rebecca Doble
Hydrol. Earth Syst. Sci., 25, 2261–2277, https://doi.org/10.5194/hess-25-2261-2021, https://doi.org/10.5194/hess-25-2261-2021, 2021
Short summary
Short summary
Estimates of recharge to groundwater are often driven by biophysical processes occurring in the soil column and, particularly in remote areas, are also always affected by uncertainty. Using data assimilation techniques to merge remotely sensed observations with outputs of numerical models is one way to reduce this uncertainty. Here, we show the benefits of using such a technique with satellite evapotranspiration rates and coupled hydrogeological models applied to a semi-arid site in Australia.
Mathias Maillot, Nicolas Flipo, Agnès Rivière, Nicolas Desassis, Didier Renard, Patrick Goblet, and Marc Vincent
Hydrol. Earth Syst. Sci., 23, 4835–4849, https://doi.org/10.5194/hess-23-4835-2019, https://doi.org/10.5194/hess-23-4835-2019, 2019
Soumendra N. Bhanja, Xiaokun Zhang, and Junye Wang
Hydrol. Earth Syst. Sci., 22, 6241–6255, https://doi.org/10.5194/hess-22-6241-2018, https://doi.org/10.5194/hess-22-6241-2018, 2018
Short summary
Short summary
The paper presents groundwater storage conditions in all the major river basins across Alberta, Canada. We used remote-sensing data and investigate their performance using available ground-based data of groundwater level monitoring, storage coefficients, aquifer thickness, and surface water measurements. The water available for groundwater recharge has been studied in detail. Separate approaches have been followed for confined and unconfined aquifers for estimating groundwater storage.
Mohammad Shamsudduha, Richard G. Taylor, Darren Jones, Laurent Longuevergne, Michael Owor, and Callist Tindimugaya
Hydrol. Earth Syst. Sci., 21, 4533–4549, https://doi.org/10.5194/hess-21-4533-2017, https://doi.org/10.5194/hess-21-4533-2017, 2017
Short summary
Short summary
This study tests the phase and amplitude of GRACE TWS signals in the Upper Nile Basin from five commonly used gridded products (NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS) using in situ data and soil moisture from the Global Land Data Assimilation System. Resolution of changes in groundwater storage (ΔGWS) from GRACE is greatly constrained by the uncertain simulated soil moisture storage and the low amplitude in ΔGWS observed in deeply weathered crystalline rocks in the Upper Nile Basin.
Y. Altchenko and K. G. Villholth
Hydrol. Earth Syst. Sci., 19, 1055–1067, https://doi.org/10.5194/hess-19-1055-2015, https://doi.org/10.5194/hess-19-1055-2015, 2015
U. Mallast, R. Gloaguen, J. Friesen, T. Rödiger, S. Geyer, R. Merz, and C. Siebert
Hydrol. Earth Syst. Sci., 18, 2773–2787, https://doi.org/10.5194/hess-18-2773-2014, https://doi.org/10.5194/hess-18-2773-2014, 2014
P. Gbolo and P. Gerla
Hydrol. Earth Syst. Sci., 17, 4897–4906, https://doi.org/10.5194/hess-17-4897-2013, https://doi.org/10.5194/hess-17-4897-2013, 2013
A. Pryet, N. d'Ozouville, S. Violette, B. Deffontaines, and E. Auken
Hydrol. Earth Syst. Sci., 16, 4571–4579, https://doi.org/10.5194/hess-16-4571-2012, https://doi.org/10.5194/hess-16-4571-2012, 2012
F. Alkhaier, G. N. Flerchinger, and Z. Su
Hydrol. Earth Syst. Sci., 16, 1817–1831, https://doi.org/10.5194/hess-16-1817-2012, https://doi.org/10.5194/hess-16-1817-2012, 2012
F. Alkhaier, Z. Su, and G. N. Flerchinger
Hydrol. Earth Syst. Sci., 16, 1833–1844, https://doi.org/10.5194/hess-16-1833-2012, https://doi.org/10.5194/hess-16-1833-2012, 2012
U. Mallast, R. Gloaguen, S. Geyer, T. Rödiger, and C. Siebert
Hydrol. Earth Syst. Sci., 15, 2665–2678, https://doi.org/10.5194/hess-15-2665-2011, https://doi.org/10.5194/hess-15-2665-2011, 2011
S. Siebert, J. Burke, J. M. Faures, K. Frenken, J. Hoogeveen, P. Döll, and F. T. Portmann
Hydrol. Earth Syst. Sci., 14, 1863–1880, https://doi.org/10.5194/hess-14-1863-2010, https://doi.org/10.5194/hess-14-1863-2010, 2010
Cited articles
Akawwi, E., Al-Zouabi, A., Kakish, M., Koehn, F., and Sauter, M.: Using thermal infrared imagery (TIR) for illustrating the submarine groundwater
discharge into the eastern shoreline of the Dead Sea-Jordan, Am. J. Environ.
Sci., 4, 693–700, https://doi.org/10.3844/ajessp.2008.693.700, 2008.
Alorda-Kleinglass, A., Garcia-Orellana, J., Rodellas, V., Cerdà-Domènech, M., Tovar-Sánchez, A., Diego-Feliu, M., Trezzi,
G., Sánchez-Quilez, D., Sanchez-Vidal, A., and Canals, M.: Remobilization
of dissolved metals from a coastal mine tailing deposit driven by groundwater discharge and porewater exchange, Sci. Total Environ., 688, 1359–1372, https://doi.org/10.1016/j.scitotenv.2019.06.224, 2019.
Alorda-Kleinglass, A., Ruiz-Mallén, I., Diego-Feliu, M., Rodellas,
V. Bruach-Menchén, J. M., and Garcia-Orellana, J.: The social
implications of Submarine Groundwater Discharge from an
Ecosystem Services perspective: A systematic review, Earth Sci.
Rev., 103742, https://doi.org/10.1016/j.earscirev.2021.103742, in press, 2021.
Anderson, M. P.: Heat as a ground water tracer, Ground Water, 43, 951–968, https://doi.org/10.1111/j.1745-6584.2005.00052.x, 2005.
Andreo, B. and Carrasco, F.: Estudio hidrogeológico del entorno de la Cueva de Nerja, in: Geología de la Cueva de Nerja, edited by: Carrasco, F., Trabajos sobre la Cueva de Nerja nº 3, Geología de la Cueva de Nerja, Patronato de la Cueva de Nerja, Málaga, 163–187, 1993.
Andrisoa, A., Stieglitz, T. C., Rodellas, V., and Raimbault, P.: Primary production in coastal lagoons supported by groundwater discharge and porewater fluxes inferred from nitrogen and carbon isotope signatures, Mar.
Chem., 210, 48–60, https://doi.org/10.1016/j.marchem.2019.03.003, 2019.
Aquilina, L., Ladouche, B., Doerfliger, N., Seidel, J. L., Dupuy, C., and Le Strat, P.: Origin, evolution and residence-time of saline thermal fluids
(Balaruc springs, S-France): Implications for large-scale fluid transfer
across the continental shelf, Chem. Geol., 192, 1–21, 2002.
Bakalowicz, M.: Karst groundwater: A challenge for new resources, Hydrogeol.
J., 13, 148–160, https://doi.org/10.1007/s10040-004-0402-9, 2005.
Bakalowicz, M.: Karst and karst groundwater resources in the Mediterranean,
Environ. Earth Sci., 74, 5–14, https://doi.org/10.1007/s12665-015-4239-4, 2015.
Bakalowicz, M.: Coastal Karst groundwater in the mediterranean: A resource
to be preferably exploited onshore, not from Karst Submarine springs,
Geoscience, 8, 258, https://doi.org/10.3390/geosciences8070258, 2018.
Barberá, J. A. and Andreo, B.: Hydrogeological processes in a fluviokarstic area inferred from the analysis of natural hydrogeochemical
tracers. The case study of eastern Serranía de Ronda (S Spain), J. Hydrol., 523, 500–514, https://doi.org/10.1016/j.jhydrol.2015.01.080, 2015.
Barsi, J. A., Barker, J. L., and Schott, J. R.: An Atmospheric Correction
Parameter Calculator for a Single Thermal Band Earth-Sensing Instrument, Int. Geosci. Remote Sens. Symp., 5, 3014–3016, https://doi.org/10.1109/igarss.2003.1294665, 2003.
Basterretxea, G., Tovar-Sanchez, A., Beck, A. J., Masqué, P., Bokuniewicz, H. J., Coffey, R., Duarte, C. M., Garcia-Orellana, J.,
Garcia-Solsona, E., Martinez-Ribes, L., and Vaquer-Sunyer, R.: Submarine
groundwater discharge to the coastal environment of a Mediterranean island
(Majorca, Spain): Ecosystem and biogeochemical significance, Ecosystems, 13, 629–643, https://doi.org/10.1007/s10021-010-9334-5, 2010.
Bayari, C. S. and Kurttaş, T.: Coastal and submarine karstic discharges
in the Gökova Bay, SW Turkey, Q. J. Eng. Geol. Hydrogeol., 35, 381–390, https://doi.org/10.1144/1470-9236/01034, 2002.
Bejannin, S., van Beek, P., Stieglitz, T., Souhaut, M., and Tamborski, J.:
Combining airborne thermal infrared images and radium isotopes to study
submarine groundwater discharge along the French Mediterranean coastline, J.
Hydrol.: Reg. Stud., 13, 72–90, https://doi.org/10.1016/j.ejrh.2017.08.001, 2017.
Boehm, A. B., Shellenbarger, G. G., and Paytan, A.: Groundwater discharge:
Potential association with fecal indicator bacteria in the surf zone, Environ. Sci. Technol., 38, 3558–3566, https://doi.org/10.1021/es035385a, 2004.
Brunner, P., Hendricks Franssen, H. J., Kgotlhang, L., Bauer-Gottwein, P., and Kinzelbach, W.: How can remote sensing contribute in groundwater modeling?, Hydrogeol. J., 15, 5–18, https://doi.org/10.1007/s10040-006-0127-z, 2007.
Burnett, W. C. and Dulaiova, H.: Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements, J. Environ. Radioact., 69, 21–35, https://doi.org/10.1016/S0265-931X(03)00084-5, 2003.
Chander, G., Markham, B. L., and Helder, D. L.: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1
ALI sensors, Remote Sens. Environ., 113, 893–903, https://doi.org/10.1016/j.rse.2009.01.007, 2009.
Dale, R. K. and Miller, D. C.: Spatial and temporal patterns of salinity and
temperature at an intertidal groundwater seep, Estuar. Coast. Shelf Sci., 72, 283–298, https://doi.org/10.1016/j.ecss.2006.10.024, 2007.
Danielescu, S., MacQuarrie, K., and Faux, R.: The integration of thermal infrared imaging, discharge measurements and numerical simulation to quantify the relative contributions of freshwater inflows to small estuaries in Atlantic Canadae, Hydrol. Process., 23, 2847–2859, 2009.
DiGiacomo, P. M., Washburn, L., Holt, B., and Jones, B. H.: Coastal pollution
hazards in southern California observed by SAR imagery: Stormwater plumes,
wastewater plumes, and natural hydrocarbon seeps, Mar. Pollut. Bull., 49, 1013–1024, https://doi.org/10.1016/j.marpolbul.2004.07.016, 2004.
Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J., Barton, I.
J., Ward, B., and Murray, M. J.: Toward Improved Validation of Satellite Sea
Surface Skin Temperature Measurements for Climate Research, J. Climate, 15,
353–369, https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2, 2002.
Edet, A. E., Okereke, C. S., Teme, S. C., and Esu, E. O.: Application of
remote-sensing data to groundwater exploration: A case study of the Cross River State, southeastern Nigeria, Hydrogeol. J., 6, 394–404,
https://doi.org/10.1007/s100400050162, 1998.
Elhatip, H.: The use of hydrochemical techniques to estimate the discharge
of Ovac1k submarine springs on the Mediterranean coast of Turkey, Environ.
Geol., 43, 714–719, https://doi.org/10.1007/s00254-002-0668-y, 2003.
Fleury, P., Bakalowicz, M., and de Marsily, G.: Submarine springs and coastal
karst aquifers: A review, J. Hydrol., 339, 79–92, https://doi.org/10.1016/j.jhydrol.2007.03.009, 2007.
Garcés, E., Basterretxea, G., and Tovar-Sánchez, A.: Changes in microbial communities in response to submarine groundwater input, Mar. Ecol.
Prog. Ser., 438, 47–58, https://doi.org/10.3354/meps09311, 2011.
Garcia-Orellana, J., López-Castillo, E., Casacuberta, N., Rodellas, V.,
Masqué, P., Carmona-Catot, G., Vilarrasa, M., and García-Berthou, E.: Influence of submarine groundwater discharge on 210Po and 210Pb bioaccumulation in fish tissues, J. Environ. Radioact., 155–156, 46–54, https://doi.org/10.1016/j.jenvrad.2016.02.005, 2016.
Garcia-Orellana, J., Rodellas, V., Tamborski, J., Diego-Feliu, M., van Beek,
P., Weinstein, Y., Charette, M., Alorda-Kleinglass, A., Michael, H. A.,
Stieglitz, T., and Scholten, J.: Radium isotopes as submarine groundwater
discharge (SGD) tracers: Review and recommendations, Earth-Sci. Rev., 220, 103681, https://doi.org/10.1016/j.earscirev.2021.103681, 2021.
Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., Garcés, E.,
Radakovitch, O., Mayer, A., Estradé, S., and Basterretxea, G.: An assessment of karstic submarine groundwater and associated nutrient discharge to a Mediterranean coastal area (Balearic Islands, Spain) using radium isotopes, Biogeochemistry, 97, 211–229, https://doi.org/10.1007/s10533-009-9368-y, 2010.
Gerace, A. and Montanaro, M.: Remote Sensing of Environment Derivation and
validation of the stray light correction algorithm for the thermal infrared
sensor onboard Landsat 8, Remote Sens. Environ., 191, 246–257,
https://doi.org/10.1016/j.rse.2017.01.029, 2017.
Gierach, M. M., Holt, B., Trinh, R., Jack Pan, B., and Rains, C.: Satellite
detection of wastewater diversion plumes in Southern California, Estuar. Coast. Shelf Sci., 186, 171–182, https://doi.org/10.1016/j.ecss.2016.10.012, 2017.
Gumma, M. K. and Pavelic, P.: Mapping of groundwater potential zones across
Ghana using remote sensing, geographic information systems, and spatial
modeling, Environ. Monit. Assess., 185, 3561–3579, https://doi.org/10.1007/s10661-012-2810-y, 2013.
Kelly, J. L., Glenn, C. R., and Lucey, P. G.: High-resolution aerial infrared
mapping of groundwater discharge to the coastal ocean, Limnol. Oceanogr. Meth., 11, 262–277, https://doi.org/10.4319/lom.2013.11.262, 2013.
Krest, J. M., Moore, W. S., Gardner, L. R., and Morris, J. T.: Marsh nutrient
export supplied by groundwater discharge: Evidence from radium measurements,
Global Biogeochem. Cy., 14, 167–176, https://doi.org/10.1029/1999GB001197, 2000.
Lee, E., Kang, K. M., Hyun, S. P., Lee, K. Y., Yoon, H., Kim, S. H., Kim,
Y., Xu, Z., Kim, D. J., Koh, D. C., and Ha, K.: Submarine groundwater discharge revealed by aerial thermal infrared imagery: a case study on Jeju
Island, Korea, Hydrol. Process., 30, 3494–3506, https://doi.org/10.1002/hyp.10868,
2016.
Luijendijk, E., Gleeson, T., and Moosdorf, N.: Fresh groundwater discharge
insignificant for the world's oceans but important for coastal ecosystems, Nat. Commun., 11, 1260, https://doi.org/10.1038/s41467-020-15064-8, 2020.
Mallast, U., Siebert, C., Wagner, B., Sauter, M., Gloaguen, R., Geyer, S., and Merz, R.: Localisation and temporal variability of groundwater discharge
into the Dead Sea using thermal satellite data, Environ. Earth Sci., 69,
587–603, https://doi.org/10.1007/s12665-013-2371-6, 2013.
Mallast, U., Gloaguen, R., Friesen, J., Rödiger, T., Geyer, S., Merz, R.,
and Siebert, C.: How to identify groundwater-caused thermal anomalies in
lakes based on multi-temporal satellite data in semi-arid regions, Hydrol.
Earth Syst. Sci., 18, 2773–2787, https://doi.org/10.5194/hess-18-2773-2014, 2014.
McCaul, M., Barland, J., Cleary, J., Cahalane, C., McCarthy, T., and Diamond,
D.: Combining remote temperature sensing with in-situ sensing to track
marine/freshwater mixing dynamics, Sensors, 16, 1402, https://doi.org/10.3390/s16091402, 2016.
Mejías, M., Ballesteros, B. J., Antón-Pacheco, C., Domínguez, J. A., Garcia-Orellana, J., Garcia-Solsona, E., and Masqué, P.: Methodological study of submarine groundwater discharge from a karstic aquifer in the Western Mediterranean Sea, J. Hydrol., 464–465, 27–40,
https://doi.org/10.1016/j.jhydrol.2012.06.020, 2012.
Michael, H. A., Mulligan, A. E., and Harvey, C. F.: Seasonal oscillations in
water exchange between aquifers and the coastal ocean, Nature, 436, 1145–1148, https://doi.org/10.1038/nature03935, 2005.
Moore, W. S.: The subterranean estuary: A reaction zone of ground water and
sea water, Mar. Chem., 65, 111–125, https://doi.org/10.1016/S0304-4203(99)00014-6, 1999.
Moore, W. S.: The Effect of Submarine Groundwater Discharge on the Ocean, Annu. Rev. Mar. Sci., 2, 59–88, https://doi.org/10.1146/annurev-marine-120308-081019,
2010.
Moosdorf, N., Böttcher, M. E., Adyasari, D., Erkul, E., Gilfedder, B.
S., Greskowiak, J., Jenner, A.-K., Kotwicki, L., Massmann, G., Müller-Petke, M., Oehler, T., Post, V., Prien, R., Scholten, J., Siemon,
B., Ehlert von Ahn, C. M., Walther, M., Waska, H., Wunderlich, T., and Mallast, U.: A State-Of-The-Art Perspective on the Characterization of
Subterranean Estuaries at the Regional Scale, Front. Earth Sci., 9, 95,
https://doi.org/10.3389/feart.2021.601293, 2021.
Povinec, P. P., Aggarwal, P. K., Aureli, A., Burnett, W. C., Kontar, E. A.,
Kulkarni, K. M., Moore, W. S., Rajar, R., Taniguchi, M., Comanducci, J. F.,
Cusimano, G., Dulaiova, H., Gatto, L., Groening, M., Hauser, S., Levy-Palomo, I., Oregioni, B., Ozorovich, Y. R., Privitera, A. M. G., and Schiavo, M. A.: Characterisation of submarine groundwater discharge offshore south-eastern Sicily, J. Environ. Radioact., 89, 81–101, https://doi.org/10.1016/j.jenvrad.2006.03.008, 2006.
Rocha, C., Robinson, C. E., Santos, I. R., Waska, H., Michael, H. A., and
Bokuniewicz, H. J.: A place for subterranean estuaries in the coastal zone,
Estuar. Coast. Shelf Sci., 250, 107167, https://doi.org/10.1016/j.ecss.2021.107167, 2021.
Rodellas, V., Garcia-Orellana, J., Tovar-Sánchez, A., Basterretxea, G., López-Garcia, J. M., Sánchez-Quiles, D., Garcia-Solsona, E., and Masqué, P.: Submarine groundwater discharge as a source of nutrients and trace metals in a Mediterranean bay (Palma Beach, Balearic Islands), Mar. Chem., 160, 56–66, https://doi.org/10.1016/j.marchem.2014.01.007, 2014.
Rodellas, V., Garcia-Orellana, J., Masqué, P., Feldman, M., Weinstein, Y., and Boyle, E. A.: Submarine groundwater discharge as a major source of
nutrients to the Mediterranean Sea, P. Natl. Acad. Sci. USA, 112, 3926–3930, https://doi.org/10.1073/pnas.1419049112, 2015.
Rosenberry, D. O., Duque, C., and Lee, D. R.: History and evolution of seepage meters for quantifying flow between groundwater and surface water:
Part 1 – Freshwater settings, Earth-Sci. Rev., 204, 103167,
https://doi.org/10.1016/j.earscirev.2020.103167, 2020.
Roy, D. P., Wulder, M. A., Loveland, T. R., C.E., W., Allen, R. G., Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., Scambos, T. A., Schaaf, C. B., Schott, J. R., Sheng, Y., Vermote, E. F., Belward, A. S., Bindschadler, R., Cohen, W. B., Gao, F., Hipple, J. D., Hostert, P., Huntington, J., Justice, C. O., Kilic, A., Kovalskyy, V., Lee, Z. P., Lymburner, L., Masek, J. G., McCorkel, J., Shuai, Y., Trezza, R., Vogelmann, J., Wynne, R. H., and Zhu, Z.: Landsat-8: Science and product vision for terrestrial global change research, Remote Sens. Environ., 145, 154–172, https://doi.org/10.1016/j.rse.2014.02.001, 2014.
Ruiz-González, C., Rodellas, V., and Garcia-Orellana, J.: The microbial dimension of submarine groundwater discharge: current challenges and future directions, FEMS Microbiol. Rev., fuab010, 1–25, https://doi.org/10.1093/femsre/fuab010, 2021.
Schubert, M., Scholten, J., Schmidt, A., Comanducci, J. F., Pham, M. K.,
Mallast, U., and Knoeller, K.: Submarine groundwater discharge at a single
spot location: Evaluation of different detection approaches, Water, 6, 584–601, https://doi.org/10.3390/w6030584, 2014.
Shaban, A., Khawlie, M., Abdallah, C., and Faour, G.: Geologic controls of
submarine groundwater discharge: Application of remote sensing to north
Lebanon, Environ. Geol., 47, 512–522, https://doi.org/10.1007/s00254-004-1172-3, 2005.
Tamborski, J., van Beek, P., Conan, P., Pujo-Pay, M., Odobel, C., Ghiglione,
J. F., Seidel, J. L., Arfib, B., Diego-Feliu, M., Garcia-Orellana, J., Szafran, A., and Souhaut, M.: Submarine karstic springs as a source of
nutrients and bioactive trace metals for the oligotrophic Northwest Mediterranean Sea, Sci. Total Environ., 732, 1–14,
https://doi.org/10.1016/j.scitotenv.2020.139106, 2020.
Tamborski, J. J., Rogers, A. D., Bokuniewicz, H. J., Cochran, J. K., and Young, C. R.: Identification and quantification of diffuse fresh submarine
groundwater discharge via airborne thermal infrared remote sensing, Remote
Sens. Environ., 171, 202–217, https://doi.org/10.1016/j.rse.2015.10.010, 2015.
Taniguchi, M., Dulai, H., Burnett, K. M., Santos, I. R., Sugimoto, R.,
Stieglitz, T., Kim, G., Moosdorf, N., and Burnett, W. C.: Submarine Groundwater Discharge: Updates on Its Measurement Techniques, Geophysical
Drivers, Magnitudes, and Effects, Front. Environ. Sci., 7, 1–26,
https://doi.org/10.3389/fenvs.2019.00141, 2019.
Tcherepanov, E. N., Zlotnik, V. A., and Henebry, G. M.: Using Landsat thermal
imagery and GIS for identification of groundwater discharge into shallow
groundwater-dominated lakes, Int. J. Remote Sens., 26, 3649–3661,
https://doi.org/10.1080/01431160500177315, 2005.
Trezzi, G., Garcia-Orellana, J., Rodellas, V., Santos-Echeandia, J., Tovar-Sánchez, A., Garcia-Solsona, E., and Maqué, P.: Submarine
groundwater discharge: a significant source of dissolved trace metals to the
North Western Mediterranean Sea. Marine Chemistry, Mar. Chem., 186, 90–100,
https://doi.org/10.1016/j.marchem.2016.08.004, 2016.
Trezzi, G., Garcia-Orellana, J., Rodellas, V., Masqué, P., Garcia-Solsona, E., and Andersson, P. S.: Assessing the role of submarine
groundwater discharge as a source of Sr to the Mediterranean Sea, Geochim.
Cosmochim. Ac., 200, 42–54, https://doi.org/10.1016/j.gca.2016.12.005, 2017.
Tulipano, L., Panagopoulus, A., and Fidelibus, M. D.: Cost Action 621 “Groundwater management of coastal karstic aquifers”, Final Report, EU Publications Office (OPOCE), 366, 2005.
U.S. Geological Survey: Landsat 8 (L8) Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS): Calibration Notices, available at: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8-oli-and-tirs-calibration-notices (last access: 15 February 2019), 2014.
Varma, S., Turner, J., and Underschultz, J.: Estimation of submarine groundwater discharge into Geographe Bay, Bunbury, Western Australia, J. Geochem. Explor., 106, 197–210, https://doi.org/10.1016/j.gexplo.2010.02.003, 2010.
Wang, L. T., McKenna, T. E., and Deliberty, T. L.: Locating Ground-Water
Discharge Areas In Rehoboth And Indian River Bays And Indian River, Delaware
Using Landsat 7 Imagery, available at: http://udspace.udel.edu/handle/19716/3174 (last access: 20 October 2020), 2008.
Wen-Yao, L., Field, R. T., Gantt, R. G., and Klemas, V.: Measurement of the
Surface Emissivity, Remote Sens. Environ., 5, 97–109, https://doi.org/10.1016/0034-4257(87)90009-5, 1987.
Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C. T., and Barry, D. A.: Seawater intrusion
processes, investigation and management: Recent advances and future challenges, Adv. Water Resour., 51, 3–26, https://doi.org/10.1016/j.advwatres.2012.03.004, 2013.
Wilson, J. and Rocha, C.: Regional scale assessment of Submarine Groundwater
Discharge in Ireland combining medium resolution satellite imagery and geochemical tracing techniques, Remote Sens. Environ., 119, 21–34,
https://doi.org/10.1016/j.rse.2011.11.018, 2012.
Wloczyk, C., Richter, R., Borg, E., and Nueberts, W.: Sea and lake surface
temperature retrieval from Landsat thermal data in Northern Germany, Int. J.
Remote Sens., 27, 2489–2502, https://doi.org/10.1080/01431160500300206, 2006.
Worthington, S. R. H.: A comprehensive strategy for understanding flow in
carbonate aquifers, Karst Model., 5, 30–37, 1999.
Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G.,
Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W. B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J. D., Hostert, P., Hughes, M. J., Huntington, J., Johnson, D. M.,
Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N.,
Scambos, T. A., Schaaf, C., Schott, J. R., Sheng, Y., Storey, J., Vermote, E., Vogelmann, J., White, J. C., Wynne, R. H., and Zhu, Z.: Current status of
Landsat program, science, and applications, Remote Sens. Environ., 225, 127–147, https://doi.org/10.1016/j.rse.2019.02.015, 2019.
Xing, Q., Braga, F., Tosi, L., Lou, M., Zaggia, L., Teatini, P., Gao, X., Yu, L., Wen, X., and Shi, P.: Detection of Low Salinity Groundwater Seeping into the Eastern Laizhou Bay (China) with the Aid of Landsat Thermal Data, J. Coast. Res., 74, 149–156, https://doi.org/10.2112/si74-014.1, 2016.
Zektser, I. S., Everett, L. G., and Dzhamalov, R. G.: Submarine Groundwater, CRC Press, Boca Raton, USA, 2006.
Short summary
Satellite thermal infrared (TIR) remote sensing is a useful method for identifying coastal springs in karst aquifers both locally and regionally. The limiting factors include technical limitations, geological and hydrogeological characteristics, environmental and marine conditions, and coastal geomorphology. Also, it can serve as a tool to use for a first screening of the coastal water surface temperature to identify possible thermal anomalies that will help narrow the sampling survey.
Satellite thermal infrared (TIR) remote sensing is a useful method for identifying coastal...