Articles | Volume 25, issue 8
https://doi.org/10.5194/hess-25-4243-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4243-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interaction of soil water and groundwater during the freezing–thawing cycle: field observations and numerical modeling
Hong-Yu Xie
MOE (Ministry of Education) Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
MOE (Ministry of Education) Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
Shu-Cong Tan
MOE (Ministry of Education) Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
Li Wan
MOE (Ministry of Education) Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
Xu-Sheng Wang
MOE (Ministry of Education) Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
Si-Hai Liang
MOE (Ministry of Education) Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
Yijian Zeng
Department of Water Resources, ITC Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, the Netherlands
Related authors
No articles found.
Mostafa Gomaa Daoud, Fakhereh Alidoost, Yijian Zeng, Bart Schilperoort, Christiaan Van der Tol, Maciek W. Lubczynski, Mhd Suhyb Salama, Eric D. Morway, Christian D. Langevin, Prajwal Khanal, Zengjing Song, Lianyu Yu, Hong Zhao, Gualbert Oude Essink, Victor F. Bense, Michiel van der Molen, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2025-4179, https://doi.org/10.5194/egusphere-2025-4179, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study investigates the groundwater role in soil-plant-atmosphere continuum. An integrated ecohydrological modelling approach was developed by coupling STEMMUS-SCOPE to MODFLOW 6 and applied at three sites over 8 years. The coupled model improved simulations of soil moisture and temperature, evapotranspiration, carbon fluxes and fluorescence. The findings highlight the groundwater critical role in ecosystem dynamics and its contribution to advancing water, energy and carbon cycle modelling.
Qianqian Han, Yijian Zeng, Yunfei Wang, Fakhereh Sarah Alidoost, Francesco Nattino, Yang Liu, and Bob Su
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-183, https://doi.org/10.5194/essd-2025-183, 2025
Preprint under review for ESSD
Short summary
Short summary
Understanding how land interacts with the atmosphere is crucial for studying climate change, yet global high-resolution data on energy, water, and carbon exchanges remain limited. This study introduces a new dataset that estimates these exchanges hourly from 2000 to 2020 by combining physical process model, field measurements, and machine learning with satellite and meteorological data. Our dataset provides valuable insights into how ecosystems respond to climate extremes worldwide.
Youjun Jiao, Franci Gabrovšek, Xusheng Wang, and Qingchun Yu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1320, https://doi.org/10.5194/egusphere-2025-1320, 2025
Short summary
Short summary
Dams and reservoirs in karst areas often struggle with significant leakage, making construction both challenging and costly. This study uses a numerical model to show how karst aquifers in water divide regions evolve to form low-karstified rock-blocks (LKB). It also explores how and when these LKBs can significantly reduce leakage across the water divides if a reservoir is built on one side.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Zengjing Song, Yijian Zeng, Yunfei Wang, Enting Tang, Danyang Yu, Fakhereh Alidoost, Mingguo Ma, Xujun Han, Xuguang Tang, Zhongjing Zhu, Yao Xiao, Debing Kong, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-2940, https://doi.org/10.5194/egusphere-2024-2940, 2024
Preprint archived
Short summary
Short summary
The exchange of water and carbon between the plant and the atmosphere is affected under water stress conditions. In this study, a leaf-water-potential-based water stress factor is considered in the STEMMUS-SCOPE (hereafter STEMMUS-SCOPE-PHS), to replace the conventional soil-moisture-based water stress factor. The results show that leaf water potential reflects the plant water stress well, and the STEMMUS-SCOPE-PHS outperforms STEMMUS-SCOPE in the dynamics of the water, energy and carbon fluxes.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Yunfei Wang, Yijian Zeng, Zengjing Song, Danyang Yu, Qianqian Han, Enting Tang, Henk de Bruin, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-1321, https://doi.org/10.5194/egusphere-2024-1321, 2024
Preprint archived
Short summary
Short summary
Various methods were proposed to estimate irrigation water requirements (IWR). However, the simulated IWR exhibits large differences. This study evaluates six potential evapotranspiration (PET) methods and proposes a practical approach to estimate IWR. The radiation-based methods show promise in approximating daily PET accurately, and the STEMMUS-SCOPE model can reliably estimate IWR. This research enhances our understanding of different PET methods and their implications for water management.
Enting Tang, Yijian Zeng, Yunfei Wang, Zengjing Song, Danyang Yu, Hongyue Wu, Chenglong Qiao, Christiaan van der Tol, Lingtong Du, and Zhongbo Su
Biogeosciences, 21, 893–909, https://doi.org/10.5194/bg-21-893-2024, https://doi.org/10.5194/bg-21-893-2024, 2024
Short summary
Short summary
Our study shows that planting shrubs in a semiarid grassland reduced the soil moisture and increased plant water uptake and transpiration. Notably, the water used by the ecosystem exceeded the rainfall received during the growing seasons, indicating an imbalance in the water cycle. The findings demonstrate the effectiveness of the STEMMUS–SCOPE model as a tool to represent ecohydrological processes and highlight the need to consider energy and water budgets for future revegetation projects.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Kai-Gao Ouyang, Xiao-Wei Jiang, Gang Mei, Hong-Bin Yan, Ran Niu, Li Wan, and Yijian Zeng
Hydrol. Earth Syst. Sci., 27, 2579–2590, https://doi.org/10.5194/hess-27-2579-2023, https://doi.org/10.5194/hess-27-2579-2023, 2023
Short summary
Short summary
Our knowledge on sources and dynamics of rock moisture is limited. By using frequency domain reflectometry (FDR), we monitored rock moisture in a cave. The results of an explainable deep learning model reveal that the direct source of rock moisture responsible for weathering in the studied cave is vapour, not infiltrating precipitation. A physics-informed deep learning model, which uses variables controlling vapor condensation as model inputs, leads to accurate rock water content predictions.
Lianyu Yu, Yijian Zeng, Huanjie Cai, Mengna Li, Yuanyuan Zha, Jicai Zeng, Hui Qian, and Zhongbo Su
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-221, https://doi.org/10.5194/gmd-2022-221, 2023
Revised manuscript not accepted
Short summary
Short summary
We developed a coupled soil water-groundwater (SW-GW) model, which is verified as physically accurate and applicable in large-scale groundwater problems. The role of vadose zone processes, coupling approach, and spatiotemporal heterogeneity of SW-GW interactions were highlighted as essential to represent the SW-GW system. Given the relevant dataset, the developed SW-GW modeling framework has the potential to portray the processes "from bedrock to atmosphere" in a physically consistent manner.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yaoming Ma, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 14, 5513–5542, https://doi.org/10.5194/essd-14-5513-2022, https://doi.org/10.5194/essd-14-5513-2022, 2022
Short summary
Short summary
Soil moisture and soil temperature (SMST) are important state variables for quantifying the heat–water exchange between land and atmosphere. Yet, long-term, regional-scale in situ SMST measurements at multiple depths are scarce on the Tibetan Plateau (TP). The presented dataset would be valuable for the evaluation and improvement of long-term satellite- and model-based SMST products on the TP, enhancing the understanding of TP hydrometeorological processes and their response to climate change.
Hong Zhao, Yijian Zeng, Jan G. Hofste, Ting Duan, Jun Wen, and Zhongbo Su
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-333, https://doi.org/10.5194/hess-2022-333, 2022
Revised manuscript not accepted
Short summary
Short summary
This paper demonstrated the capability of our developed platform for simulating microwave emission and backscatter signals at multi-frequency. The results of associated investigations on impacts of vegetation water (VW) and temperature (T) imply the need to first disentangle the impact of T for the use of high-frequency signals as its variation is more due to dynamic T. Estimated vegetation optical depth is frequency-dependent, while its diurnal variation depends on that of VW despite frequency.
Shaoning Lv, Clemens Simmer, Yijian Zeng, Jun Wen, Yuanyuan Guo, and Zhongbo Su
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-369, https://doi.org/10.5194/tc-2021-369, 2022
Preprint withdrawn
Short summary
Short summary
The freeze-thaw of the ground is an interesting topic to climatology, hydrology, and other earth sciences. The global freeze-thaw distribution is available by passive microwave remote sensing technique. However, the remote sensing technique indirectly detects freeze-thaw states by measuring the brightness temperature difference between frozen and unfrozen soil. Thus, we present different interprets of the brightness signals to the FT-state by using its sub-daily character.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Geosci. Model Dev., 14, 7345–7376, https://doi.org/10.5194/gmd-14-7345-2021, https://doi.org/10.5194/gmd-14-7345-2021, 2021
Short summary
Short summary
We developed an integrated soil–snow–atmosphere model (STEMMUS-UEB) dedicated to the physical description of snow and soil processes with various complexities. With STEMMUS-UEB, we demonstrated that the snowpack affects not only the soil surface moisture conditions (in the liquid and ice phase) and energy-related states (albedo, LE) but also the subsurface soil water and vapor transfer, which contributes to a better understanding of the hydrothermal implications of the snowpack in cold regions.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Mengna Li, Yijian Zeng, Maciek W. Lubczynski, Jean Roy, Lianyu Yu, Hui Qian, Zhenyu Li, Jie Chen, Lei Han, Han Zheng, Tom Veldkamp, Jeroen M. Schoorl, Harrie-Jan Hendricks Franssen, Kai Hou, Qiying Zhang, Panpan Xu, Fan Li, Kai Lu, Yulin Li, and Zhongbo Su
Earth Syst. Sci. Data, 13, 4727–4757, https://doi.org/10.5194/essd-13-4727-2021, https://doi.org/10.5194/essd-13-4727-2021, 2021
Short summary
Short summary
The Tibetan Plateau is the source of most of Asia's major rivers and has been called the Asian Water Tower. Due to its remoteness and the harsh environment, there is a lack of field survey data to investigate its hydrogeology. Borehole core lithology analysis, an altitude survey, soil thickness measurement, hydrogeological surveys, and hydrogeophysical surveys were conducted in the Maqu catchment within the Yellow River source region to improve a full–picture understanding of the water cycle.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3075–3102, https://doi.org/10.5194/essd-13-3075-2021, https://doi.org/10.5194/essd-13-3075-2021, 2021
Short summary
Short summary
This paper reports on the status of the Tibet-Obs and presents a 10-year (2009–2019) surface soil moisture (SM) dataset produced based on in situ measurements taken at a depth of 5 cm collected from the Tibet-Obs. This surface SM dataset includes the original 15 min in situ measurements collected by multiple SM monitoring sites of three networks (i.e. the Maqu, Naqu, and Ngari networks) and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
Yunfei Wang, Yijian Zeng, Lianyu Yu, Peiqi Yang, Christiaan Van der Tol, Qiang Yu, Xiaoliang Lü, Huanjie Cai, and Zhongbo Su
Geosci. Model Dev., 14, 1379–1407, https://doi.org/10.5194/gmd-14-1379-2021, https://doi.org/10.5194/gmd-14-1379-2021, 2021
Short summary
Short summary
This study integrates photosynthesis and transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum system, via a simplified 1D root growth model. The results indicated that the simulation of land surface fluxes was significantly improved by considering the root water uptake, especially when vegetation was experiencing severe water stress. This finding highlights the importance of enhanced soil heat and moisture transfer in simulating ecosystem functioning.
Lianyu Yu, Simone Fatichi, Yijian Zeng, and Zhongbo Su
The Cryosphere, 14, 4653–4673, https://doi.org/10.5194/tc-14-4653-2020, https://doi.org/10.5194/tc-14-4653-2020, 2020
Short summary
Short summary
The role of soil water and heat transfer physics in portraying the function of a cold region ecosystem was investigated. We found that explicitly considering the frozen soil physics and coupled water and heat transfer is important in mimicking soil hydrothermal dynamics. The presence of soil ice can alter the vegetation leaf onset date and deep leakage. Different complexity in representing vadose zone physics does not considerably affect interannual energy, water, and carbon fluxes.
Xiao-Wei Jiang, John Cherry, and Li Wan
Hydrol. Earth Syst. Sci., 24, 6001–6019, https://doi.org/10.5194/hess-24-6001-2020, https://doi.org/10.5194/hess-24-6001-2020, 2020
Short summary
Short summary
The gushing of water from flowing wells is a natural phenomenon of interest to the public. This review demonstrates that this spectacular phenomenon also instigated the science of groundwater and can be considered a root of groundwater hydrology. Observations of flowing wells not only led to the foundation of many principles of traditional groundwater hydrology but also played a vital role in the paradigm shift from aquitard-bound flow to cross-formational flow driven by topography.
Cited articles
Alkhaier, F., Flerchinger, G. N., and Su, Z.: Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description, Hydrol. Earth Syst. Sci., 16, 1817–1831, https://doi.org/10.5194/hess-16-1817-2012, 2012.
Bechtold, M., Haber-Pohlmeier, S., Vanderborght, J., Pohlmeier, A., Ferre, A., and Vereecken, H:
Near-surface solute redistribution during evaporation,
Geophys. Res. Lett.,
38, 17404, https://doi.org/10.1029/2011GL048147, 2011.
Bronfenbrener, L. and Bronfenbrener, R.:
Frost heave and phase front instability in freezing soils,
Cold Reg. Sci. Technol.,
64, 19–38, https://doi.org/10.1016/j.coldregions.2010.07.001, 2010.
Chamberlain, E. J.: Frost susceptibility of soil, Review of index tests, Cold Regoins Research and Engineering Lab Hanover, Cold Regions Research and Engineering Laboratory, United States Army Corps of Engineers,
Hanover, NH, USA, CRREL Monograph 81-2, 121 pp., available at: https://usace.contentdm.oclc.org/digital/api/collection/p266001coll1/id/6303/download (last acccess: 21 July 2021), 1981.
Chen, J., Gao, X., Zheng, X., Miao, C., Zhang, Y., Du, Q., and Xu, Y.:
Simulation of Soil Freezing and Thawing for Different Groundwater Table Depths, Vadose Zone J., 18, 18057, https://doi.org/10.2136/vzj2018.08.0157, 2019.
Cherkauer, K. A. and Lettenmaier, D. P.:
Hydrologic effects of frozen soils in the upper Mississippi River basin,
J. Geophys. Res.-Atmos.,
104, 19599–19610, https://doi.org/10.1029/1999jd900337, 1999.
China Meteorological Data Service Centre (CMDC): http://data.cma.cn/en, last access: 21 July 2021.
Daniel, J. A. and Staricka, J. A.:
Frozen Soil Impact on Ground Water–Surface Water Interaction,
J. Am. Water Resour. Ass.,
36, 151–160, https://doi.org/10.1111/j.1752-1688.2000.tb04256.x, 2000.
De Vries, D.: Thermal properties of soils, in: Physics of plant environment,
edited by: van Wijk, W. R., North-Holland Publishing Company, Amsterdam, 210–235, https://doi.org/10.1016/B978-0-12-244350-3.50006-9, 1963.
DeGaetano, A. T., Cameron, M. D., and Wilks, D. S.:
Physical simulation of maximum seasonal soil freezing depth in the United States using routine weather observations,
J. Appl. Meteorol.,
40, 546–555, https://doi.org/10.1175/1520-0450(2001)040<0546:psomss>2.0.co;2, 2001.
Demand, D., Selker, J. S., and Weiler, M.: Influences of Macropores on Infiltration into Seasonally Frozen Soil, Vadose Zone J., 18, 1–14, https://doi.org/10.2136/vzj2018.08.0147, 2019.
Drescher, W. J.: Some effects of preciptiation on ground water in Wisconsin,
Wisconsin Geological Survey, Madison, 1955.
Evans, S. G., Ge, S., Voss, C. I., and Molotch, N. P.:
The role of frozen soil in groundwater discharge predictions for warming alpine watersheds,
Water Resour. Res.,
54, 1599–1615, https://doi.org/10.1002/2017WR022098, 2018.
Fan, Y., Li, H., and Miguez-Macho, G.:
Global patterns of groundwater table depth,
Science,
339, 940–943, https://doi.org/10.1126/science.1229881, 2013.
Fetzer, T., Vanderborght, J., Mosthaf, K., Smits, K., M., and Helmig, R.: Heat and water transport in soils and across the soil-atmosphere interface: 2. Numerical analysis, Water Resour. Res., 53, 1080–1100, https://doi.org/10.1002/2016WR019983, 2017.
Flerchinger, G. N.: The simultaneous heat and water (SHAW) model:
Technical Documentation (version 3.0), Technical Report NWRC 2017-02, USDA Agriculture Research Service, Boise, Idaho, 1–40, 2017.
Flerchinger, G. N. and Saxton, K. E.: Simultaneous heat and water model of a freezing snow-residue-soil system I. Theory and development, T. ASAE,
32, 565–0571, https://doi.org/10.13031/2013.31040, 1989.
Fuchs, M., Campbell, G., and Papendick, R.: An Analysis of Sensible and Latent Heat Flow in a Partially Frozen Unsaturated Soil, Soil Sci. Soc. Am. J., 42, 379–385, https://doi.org/10.2136/sssaj1978.03615995004200030001x, 1978.
Hansson, K. and Lundin, L.-C.:
Equifinality and sensitivity in freezing and thawing simulations of laboratory and in situ data,
Cold Reg. Sci. Technol.,
44, 20–37, https://doi.org/10.1016/j.coldregions.2005.06.004, 2006.
Harlan, R.:
Analysis of coupled heat-fluid transport in partially frozen soil,
Water Resour. Res.,
9, 1314–1323, https://doi.org/10.1029/WR009i005p01314, 1973.
Hayhoe, H.:
Field testing of simulated soil freezing and thawing by the SHAW model,
Can. Agr. Eng.,
36, 279, 1994.
Hirota, T.:
An extension of the force-restore method to estimating soil temperature at depth and evaluation for frozen soils under snow,
J. Geophys. Res.,
107, 4767, https://doi.org/10.1029/2001jd001280, 2002.
Hohmann, M.:
Soil freezing — the concept of soil water potential. State of the art,
Cold Reg. Sci. Technol.,
25, 101–110, https://doi.org/10.1016/S0165-232X(96)00019-5, 1997.
Hou, G., Liang, Y., Su, X., Zhao, Z., Tao, Z., Yin, L., Yang, Y., and Wang, X.:
Groundwater Systems and Resources in the Ordos Basin, China,
Acta Geol. Sin.-Engl.,
82, 1061–1069, https://doi.org/10.1111/j.1755-6724.2008.tb00664.x, 2010.
Hubert, M.:
The Theory of Ground-Water Motion,
Soil Sci.,
51, 428, https://doi.org/10.1097/00010694-194105000-00015, 1940.
Ireson, A. M., van der Kamp, G., Ferguson, G., Nachshon, U., and Wheater, H. S.:
Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps and challenges,
Hydrogeol. J.,
21, 53–66, https://doi.org/10.1007/s10040-012-0916-5, 2013.
Iwata, Y., Hayashi, M., and Hirota, T.:
Comparison of snowmelt infiltration under different soil-freezing conditions influenced by snow cover,
Vadose Zone J.,
7, 79–86, https://doi.org/10.2136/vzj2007.0089, 2008.
Jiang, X. W., Sun, Z. C., Zhao, K. Y., Shi, F. S., Wan, L., Wang, X. S., and Shi, Z. M.:
A method for simultaneous estimation of groundwater evapotranspiration and inflow rates in the discharge area using seasonal water table fluctuations,
J. Hydrol.,
548, 498–507, https://doi.org/10.1016/j.jhydrol.2017.03.026, 2017.
Jiang, X. W., Wan, L., Wang, X. S., Wang, D., and Zhao, K. Y.:
A multi-method study of regional groundwater circulation in the Ordos Plateau, NW China,
Hydrogeol. J.,
1657–1668, https://doi.org/10.1007/s10040-018-1731-4, 2018.
Kahimba, F. C., Ranjan, R. S., and Mann, D. D.:
Modeling soil temperature, frost depth, and soil moisture redistribution in seasonally frozen agricultural soils,
Appl. Eng. Agric.,
25, 871–882, https://doi.org/10.13031/2013.29237, 2009.
Kaneko, T., Kobayashi, T., Wang, W., and Cho, H.:
Estimating Evaporation in Winter at a Field Irrigated Late in Autumn in Inner Mongolia, China,
Journal Faculty of Agriculture Kyushu University,
51, 407–411, https://doi.org/10.1017/S0021859605005733, 2006.
Kurylyk, B. L., MacQuarrie, K. T., and Voss, C. I.:
Climate change impacts on the temperature and magnitude of groundwater discharge from shallow, unconfined aquifers,
Water Resour. Res.,
50, 3253–3274, https://doi.org/10.1002/2013WR014588, 2014.
Li, Q., Sun, S., and Xue, Y.:
Analyses and development of a hierarchy of frozen soil models for cold region study, J. Geophys. Res., 115, D03107, https://doi.org/10.1029/2009JD012530, 2010.
Li, W., Brunner, P., Franssen, H. J. H., Li, Z., Wang, Z., Zhang, Z., and Wang, W.:
Potential evaporation dynamics over saturated bare soil and an open water surface,
J. Hydrol.,
590, 125140, https://doi.org/10.1016/j.jhydrol.2020.125140, 2020.
Liu, Q., Cui, B., and Yang, Z.:
Dynamics of the soil water and solute in the sodic saline soil in the Songnen Plain, China,
Environ. Earth SCi.,
59, 837–845, https://doi.org/10.1007/s12665-009-0079-4, 2009.
Lopez, C. M. L., Brouchkov, A., Nakayama, H., Takakai, F., Fedorov, A. N., and Fukuda, M.:
Epigenetic salt accumulation and water movement in the active layer of central Yakutia in eastern Siberia,
Hydrol. Process.,
21, 103–109, https://doi.org/10.1002/hyp.6224, 2010.
Mualem, Y.:
A new model for predicting the hydraulic conductivity of unsaturated porous media,
Water Resour. Res.,
12, 513–522, https://doi.org/10.1029/WR012i003p00513, 1976.
Nelson, F. E.:
(Un)frozen in time,
Science,
299, 1673–1675, https://doi.org/10.1126/science.1081111, 2003.
Okkonen, J., Ala-Aho, P., Hänninen, P., Hayashi, M., Sutinen, R., and Liwata, P.:
Multi-year simulation and model calibration of soil moisture and temperature profiles in till soil,
Eur. J. Soil Sci.,
68, 829–839, https://doi.org/10.1111/ejss.12489, 2017.
Romano, N., Brunone, B., and Santini, A.:
Numerical analysis of one-dimensional unsaturated flow in layered soils,
Adv. Water Resour.,
21, 315–324, https://doi.org/10.1016/S0309-1708(96)00059-0, 1998.
Rui, D., Zhai, J., Li, G., Zhang, J., and Suzuki, T.: Field experimental study of the characteristics of heat and water transfer during frost heaving, Cold Reg. Sci. Technol., 168, 102892, https://doi.org/10.1016/j.coldregions.2019.102892, 2019.
Schaap, M. G. and Leij, F. J.:
Database-Related Accuracy and Uncertainty of Pedotransfer Functions,
Soil Sci.,
163, 765–779, https://doi.org/10.1097/00010694-199810000-00001, 1998.
Schneider, R.: Correlation of ground-water levels and air temperatures in the winter and spring in Minnesota, US Geol Survey Water-Supply Paper 1539-D, D1–D14, United States Government Publishing Office, Washington DC, USA, 1961.
Schuur, E. A., Mcguire, A. D., Schadel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., and Lawrence, D. M.:
Climate change and the permafrost carbon feedback,
Nature,
520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Shoop, S. A. and Bigl, S. R.:
Moisture migration during freeze and thaw of unsaturated soils: modeling and large scale experiments,
Cold Reg. Sci. Technol.,
25, 33–45, https://doi.org/10.1016/S0165-232X(96)00015-8, 1997.
Stähli, M., Jansson, P.-E., and Lundin, L.-C.:
Soil moisture redistribution and infiltration in frozen sandy soils,
Water Resour. Res.,
35, 95–103, https://doi.org/10.1029/1998wr900045, 1999.
Stephens, D.: Vadose zone hydrology, Lewis, Baca Raton, FL, ISBN: 9780203734490, 1996.
Tóth, J.:
A theory of groundwater motion in small drainage basins in central Alberta, Canada,
J. Geophys. Res.,
67, 4375–4388, https://doi.org/10.1029/JZ067i011p04375, 1962.
United States Department of Agriculture (USDA): SHAW model download, USDA [code], Northwest Watershed Research Center, available at: https://www.ars.usda.gov/pacific-west-area/boise-id/northwest-watershed-research-center/docs/shaw-model/, last access: 21 July 2021.
van Dam, J. and Feddes, R.:
Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation,
J. Hydrol.,
233, 72–85, https://doi.org/10.1016/S0022-1694(00)00227-4, 2000.
van der Kamp, G., Hayashi, M., and Gallén, D.:
Comparing the hydrology of grassed and cultivated catchments in the semi-arid Canadian prairies,
Hydrol. Process.,
17, 559–575, https://doi.org/10.1002/hyp.1157, 2003.
van Genuchten, M. T.:
A closed-form equation for predicting the hydraulic conductivity of unsaturated soils,
Soil Sci. Soc. Am. J.,
44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Vanderborgh, J., Fetze, T., Mostha, K., Smit, K. M., and Helmi, R.:
Heat and water transport in soils and across the soil-atmosphere interface: 1. Theory and different model concepts,
Water Resour. Res.,
53, 1057–1079, https://doi.org/10.1002/2016WR019982, 2017.
Vinnikov, K. Y., Robock, A., Speranskaya, N. A., and Schlosser, C. A.:
Scales of temporal and spatial variability of midlatitude soil moisture,
J. Geophys. Res.-Atmos.,
101, 7163–7174, https://doi.org/10.1029/95JD02753, 1996.
Walvoord, M. A. and Kurylyk, B. L.:
Hydrologic Impacts of Thawing Permafrost—A Review,
Vadose Zone J., 15, 1–20, https://doi.org/10.2136/vzj2016.01.0010, 2016.
Wang, J. Z., Jiang, X. W., Wan, L., Worman, A., Wang, H., Wang, X. S., and Li, H.:
An analytical study on artesian flow conditions in unconfined-aquifer drainage basins,
Water Resour. Res.,
51, 8658–8667, https://doi.org/10.1002/2015WR017104, 2015.
Wexler, A., Hyland, R., and Stewart, R.: Thermodynamic properties of dry air, moist air and water and SI psychrometric charts, American Society of Heating, Refrigerating and Air-conditioning Engineers, Atlanta, USA, 1983.
Williams, P. and Smith, M.: The frozen earth: fundamentals of geocryology,
Cambridge University Press, New York, USA, ISBN: 9780521365345, 1989.
Willis, W. O., Parkinson, H. L., Carlson, C. W., and Haas, H. J.:
Water table changes and soil moisture loss under frozen conditions,
Soil Sci.,
98, 244–248, https://doi.org/10.1097/00010694-196410000-00005, 1964.
Wu, M., Huang, J., Wu, J., Tan, X., and Jansson, P.-E.:
Experimental study on evaporation from seasonally frozen soils under various water, solute and groundwater conditions in Inner Mongolia, China,
J. Hydrol.,
535, 46–53, https://doi.org/10.1016/j.jhydrol.2016.01.050, 2016.
Xue, J., Feng, H., Chen, J., Zheng, X., and Du, Q.:
The Effect of a Sand Interlayer on Soil Evaporation during the Seasonal Freeze–Thaw Period in the Middle Reaches of the Yellow River,
Water,
12, 2092, https://doi.org/10.3390/w12082092, 2020.
Yang, K., Qin, J., Zhao, L., Chen, Y., Tang, W., Han, M., Lazhu, Chen, Z., Lv, N., Ding, B., Wu, H., and Lin, C.:
A Multiscale Soil Moisture and Freeze-Thaw Monitoring Network on the Third Pole,
B. Am. Meteorol. Soc.,
94, 1907–1916, https://doi.org/10.1175/BAMS-D-12-00203.1, 2013.
Yorukoglu, M. and Celik, A. N.:
A critical review on the estimation of daily global solar radiation from sunshine duration,
Ener. Convers. Manage.,
47, 2441–2450, https://doi.org/10.1016/j.enconman.2005.11.002, 2006.
Yu, L., Zeng, Y., Wen, J., and Su, Z.:
Liquid-Vapor-Air Flow in the Frozen Soil,
J. Geophys. Res.-Atmos.,
123, 7393–7415, https://doi.org/10.1029/2018JD028502, 2018.
Yu, L., Zeng, Y., and Su, Z.: Understanding the mass, momentum, and energy transfer in the frozen soil with three levels of model complexities, Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020, 2020.
Zhang, T., Barry, R., Knowles, K., Ling, F., and Armstrong, R.:
Distribution of seasonally and perennially frozen ground in the Northern Hemisphere, Proceedings of the 8th International Conference on Permafrost,
Zürich, Switzerland, 1289–1294, 21 July 2003.
Zhang, Y. and Schaap, M. G.:
Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3), J. Hydrol., 547, 39–53, https://doi.org/10.1016/j.jhydrol.2017.01.004, 2017.
Zhang, Y., Cheng, G., Li, X., Jin, H., Yang, D., Flerchinger, G. N., Chang, X., Bense, V. F., Han, X., and Liang, J.:
Influences of Frozen Ground and Climate Change on Hydrological Processes in an Alpine Watershed: A Case Study in the Upstream Area of the Hei'he River, Northwest China, Permafrost Periglac., 28, 420–432, https://doi.org/10.1002/ppp.1928, 2017.
Zhang, Z., Wang, W., Gong, C., Wang, Z., Duan, L., Yeh, T. c. J., and Yu, P.:
Evaporation from seasonally frozen bare and vegetated ground at various groundwater table depths in the Ordos Basin, Northwest China,
Hydrol. Process., 33, 1338–1348, https://doi.org/10.1002/hyp.13404, 2019.
Zhao, K. Y., Jiang, X. W., Wang, X. S., and Wan, L.:
Restriction of groundwater recharge and evapotranspiration due to a fluctuating water table: a study in the Ordos Plateau, China,
Hydrogeol. J.,
2, 1–11, https://doi.org/10.1007/s10040-020-02208-9, 2020.
Zheng, C., Šimůnek, J., Zhao, Y., Lu, Y., Liu, X., Shi, C., Li, H., Yu, L., Zeng, Y., and Su, Z.: Development of the Hydrus-1D Freezing module and its application in simulating the coupled movement of water, vapor, and heat, J. Hydrol., 598, 126250, https://doi.org/10.1016/j.jhydrol.2021.126250, 2021.
Zheng, D., Velde, R., Su, Z., Wang, X., and Chen, Y.: Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part I: Soil Water Flow, J. Hydrometeorol., 16, 2659–2676, https://doi.org/10.1175/JHM-D-14-0198.1, 2015.
Zheng, D., Rogier, V., Su, Z., Wen, J., Wang, X., and Yang, K.:
Evaluation of Noah Frozen Soil Parameterization for Application to a Tibetan Meadow Ecosystem,
J. Hydrometeorol.,
18, 1749–1763, https://doi.org/10.1175/JHM-D-16-0199.1, 2017.
Zhu, Y., Ren, L., Skaggs, T. H., Lue, H., Yu, Z., Wu, Y., and Fang, X.:
Simulation of Populus euphratica root uptake of groundwater in an arid woodland of the Ejina Basin, China,
Hydrol. Process.,
23, 2460–2469, https://doi.org/10.1002/hyp.7353, 2010.
Short summary
Freezing-induced groundwater migration and water table decline are widely observed, but quantitative understanding of these processes is lacking. By considering wintertime atmospheric conditions and occurrence of lateral groundwater inflow, a model coupling soil water and groundwater reproduced field observations of soil temperature, soil water content, and groundwater level well. The model results led to a clear understanding of the balance of the water budget during the freezing–thawing cycle.
Freezing-induced groundwater migration and water table decline are widely observed, but...