Articles | Volume 25, issue 8
https://doi.org/10.5194/hess-25-4243-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4243-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interaction of soil water and groundwater during the freezing–thawing cycle: field observations and numerical modeling
Hong-Yu Xie
MOE (Ministry of Education) Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
MOE (Ministry of Education) Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
Shu-Cong Tan
MOE (Ministry of Education) Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
Li Wan
MOE (Ministry of Education) Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
Xu-Sheng Wang
MOE (Ministry of Education) Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
Si-Hai Liang
MOE (Ministry of Education) Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
Yijian Zeng
Department of Water Resources, ITC Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, the Netherlands
Related authors
No articles found.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
Yunfei Wang, Yijian Zeng, Zengjing Song, Danyang Yu, Qianqian Han, Enting Tang, Henk de Bruin, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-1321, https://doi.org/10.5194/egusphere-2024-1321, 2024
Preprint archived
Short summary
Short summary
Various methods were proposed to estimate irrigation water requirements (IWR). However, the simulated IWR exhibits large differences. This study evaluates six potential evapotranspiration (PET) methods and proposes a practical approach to estimate IWR. The radiation-based methods show promise in approximating daily PET accurately, and the STEMMUS-SCOPE model can reliably estimate IWR. This research enhances our understanding of different PET methods and their implications for water management.
Enting Tang, Yijian Zeng, Yunfei Wang, Zengjing Song, Danyang Yu, Hongyue Wu, Chenglong Qiao, Christiaan van der Tol, Lingtong Du, and Zhongbo Su
Biogeosciences, 21, 893–909, https://doi.org/10.5194/bg-21-893-2024, https://doi.org/10.5194/bg-21-893-2024, 2024
Short summary
Short summary
Our study shows that planting shrubs in a semiarid grassland reduced the soil moisture and increased plant water uptake and transpiration. Notably, the water used by the ecosystem exceeded the rainfall received during the growing seasons, indicating an imbalance in the water cycle. The findings demonstrate the effectiveness of the STEMMUS–SCOPE model as a tool to represent ecohydrological processes and highlight the need to consider energy and water budgets for future revegetation projects.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin De Kauwe, Sam Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3084, https://doi.org/10.5194/egusphere-2023-3084, 2024
Short summary
Short summary
This paper evaluates land models – computer based models that simulate ecosystem dynamics, the land carbon, water and energy cycles and the role of land in the climate system. It uses machine learning / AI approaches to show that despite the complexity of land models, they do not perform nearly as well as they could, given the amount of information they are provided with about the prediction problem.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Kai-Gao Ouyang, Xiao-Wei Jiang, Gang Mei, Hong-Bin Yan, Ran Niu, Li Wan, and Yijian Zeng
Hydrol. Earth Syst. Sci., 27, 2579–2590, https://doi.org/10.5194/hess-27-2579-2023, https://doi.org/10.5194/hess-27-2579-2023, 2023
Short summary
Short summary
Our knowledge on sources and dynamics of rock moisture is limited. By using frequency domain reflectometry (FDR), we monitored rock moisture in a cave. The results of an explainable deep learning model reveal that the direct source of rock moisture responsible for weathering in the studied cave is vapour, not infiltrating precipitation. A physics-informed deep learning model, which uses variables controlling vapor condensation as model inputs, leads to accurate rock water content predictions.
Lianyu Yu, Yijian Zeng, Huanjie Cai, Mengna Li, Yuanyuan Zha, Jicai Zeng, Hui Qian, and Zhongbo Su
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-221, https://doi.org/10.5194/gmd-2022-221, 2023
Revised manuscript not accepted
Short summary
Short summary
We developed a coupled soil water-groundwater (SW-GW) model, which is verified as physically accurate and applicable in large-scale groundwater problems. The role of vadose zone processes, coupling approach, and spatiotemporal heterogeneity of SW-GW interactions were highlighted as essential to represent the SW-GW system. Given the relevant dataset, the developed SW-GW modeling framework has the potential to portray the processes "from bedrock to atmosphere" in a physically consistent manner.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yaoming Ma, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 14, 5513–5542, https://doi.org/10.5194/essd-14-5513-2022, https://doi.org/10.5194/essd-14-5513-2022, 2022
Short summary
Short summary
Soil moisture and soil temperature (SMST) are important state variables for quantifying the heat–water exchange between land and atmosphere. Yet, long-term, regional-scale in situ SMST measurements at multiple depths are scarce on the Tibetan Plateau (TP). The presented dataset would be valuable for the evaluation and improvement of long-term satellite- and model-based SMST products on the TP, enhancing the understanding of TP hydrometeorological processes and their response to climate change.
Hong Zhao, Yijian Zeng, Jan G. Hofste, Ting Duan, Jun Wen, and Zhongbo Su
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-333, https://doi.org/10.5194/hess-2022-333, 2022
Revised manuscript not accepted
Short summary
Short summary
This paper demonstrated the capability of our developed platform for simulating microwave emission and backscatter signals at multi-frequency. The results of associated investigations on impacts of vegetation water (VW) and temperature (T) imply the need to first disentangle the impact of T for the use of high-frequency signals as its variation is more due to dynamic T. Estimated vegetation optical depth is frequency-dependent, while its diurnal variation depends on that of VW despite frequency.
Shaoning Lv, Clemens Simmer, Yijian Zeng, Jun Wen, Yuanyuan Guo, and Zhongbo Su
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-369, https://doi.org/10.5194/tc-2021-369, 2022
Preprint withdrawn
Short summary
Short summary
The freeze-thaw of the ground is an interesting topic to climatology, hydrology, and other earth sciences. The global freeze-thaw distribution is available by passive microwave remote sensing technique. However, the remote sensing technique indirectly detects freeze-thaw states by measuring the brightness temperature difference between frozen and unfrozen soil. Thus, we present different interprets of the brightness signals to the FT-state by using its sub-daily character.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Geosci. Model Dev., 14, 7345–7376, https://doi.org/10.5194/gmd-14-7345-2021, https://doi.org/10.5194/gmd-14-7345-2021, 2021
Short summary
Short summary
We developed an integrated soil–snow–atmosphere model (STEMMUS-UEB) dedicated to the physical description of snow and soil processes with various complexities. With STEMMUS-UEB, we demonstrated that the snowpack affects not only the soil surface moisture conditions (in the liquid and ice phase) and energy-related states (albedo, LE) but also the subsurface soil water and vapor transfer, which contributes to a better understanding of the hydrothermal implications of the snowpack in cold regions.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Mengna Li, Yijian Zeng, Maciek W. Lubczynski, Jean Roy, Lianyu Yu, Hui Qian, Zhenyu Li, Jie Chen, Lei Han, Han Zheng, Tom Veldkamp, Jeroen M. Schoorl, Harrie-Jan Hendricks Franssen, Kai Hou, Qiying Zhang, Panpan Xu, Fan Li, Kai Lu, Yulin Li, and Zhongbo Su
Earth Syst. Sci. Data, 13, 4727–4757, https://doi.org/10.5194/essd-13-4727-2021, https://doi.org/10.5194/essd-13-4727-2021, 2021
Short summary
Short summary
The Tibetan Plateau is the source of most of Asia's major rivers and has been called the Asian Water Tower. Due to its remoteness and the harsh environment, there is a lack of field survey data to investigate its hydrogeology. Borehole core lithology analysis, an altitude survey, soil thickness measurement, hydrogeological surveys, and hydrogeophysical surveys were conducted in the Maqu catchment within the Yellow River source region to improve a full–picture understanding of the water cycle.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3075–3102, https://doi.org/10.5194/essd-13-3075-2021, https://doi.org/10.5194/essd-13-3075-2021, 2021
Short summary
Short summary
This paper reports on the status of the Tibet-Obs and presents a 10-year (2009–2019) surface soil moisture (SM) dataset produced based on in situ measurements taken at a depth of 5 cm collected from the Tibet-Obs. This surface SM dataset includes the original 15 min in situ measurements collected by multiple SM monitoring sites of three networks (i.e. the Maqu, Naqu, and Ngari networks) and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
Yunfei Wang, Yijian Zeng, Lianyu Yu, Peiqi Yang, Christiaan Van der Tol, Qiang Yu, Xiaoliang Lü, Huanjie Cai, and Zhongbo Su
Geosci. Model Dev., 14, 1379–1407, https://doi.org/10.5194/gmd-14-1379-2021, https://doi.org/10.5194/gmd-14-1379-2021, 2021
Short summary
Short summary
This study integrates photosynthesis and transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum system, via a simplified 1D root growth model. The results indicated that the simulation of land surface fluxes was significantly improved by considering the root water uptake, especially when vegetation was experiencing severe water stress. This finding highlights the importance of enhanced soil heat and moisture transfer in simulating ecosystem functioning.
Lianyu Yu, Simone Fatichi, Yijian Zeng, and Zhongbo Su
The Cryosphere, 14, 4653–4673, https://doi.org/10.5194/tc-14-4653-2020, https://doi.org/10.5194/tc-14-4653-2020, 2020
Short summary
Short summary
The role of soil water and heat transfer physics in portraying the function of a cold region ecosystem was investigated. We found that explicitly considering the frozen soil physics and coupled water and heat transfer is important in mimicking soil hydrothermal dynamics. The presence of soil ice can alter the vegetation leaf onset date and deep leakage. Different complexity in representing vadose zone physics does not considerably affect interannual energy, water, and carbon fluxes.
Xiao-Wei Jiang, John Cherry, and Li Wan
Hydrol. Earth Syst. Sci., 24, 6001–6019, https://doi.org/10.5194/hess-24-6001-2020, https://doi.org/10.5194/hess-24-6001-2020, 2020
Short summary
Short summary
The gushing of water from flowing wells is a natural phenomenon of interest to the public. This review demonstrates that this spectacular phenomenon also instigated the science of groundwater and can be considered a root of groundwater hydrology. Observations of flowing wells not only led to the foundation of many principles of traditional groundwater hydrology but also played a vital role in the paradigm shift from aquitard-bound flow to cross-formational flow driven by topography.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020, https://doi.org/10.5194/hess-24-4813-2020, 2020
Short summary
Short summary
Soil mass and heat transfer processes were represented in three levels of model complexities to understand soil freeze–thaw mechanisms. Results indicate that coupled mass and heat transfer models considerably improved simulations of the soil hydrothermal regime. Vapor flow and thermal effects on water flow are the main mechanisms for the improvements. Given the explicit consideration of airflow, vapor flow and its effects on heat transfer were enhanced during the freeze–thaw transition period.
Xin Luo, Xingxing Kuang, Jiu Jimmy Jiao, Sihai Liang, Rong Mao, Xiaolang Zhang, and Hailong Li
Hydrol. Earth Syst. Sci., 22, 5579–5598, https://doi.org/10.5194/hess-22-5579-2018, https://doi.org/10.5194/hess-22-5579-2018, 2018
Mehdi Rahmati, Lutz Weihermüller, Jan Vanderborght, Yakov A. Pachepsky, Lili Mao, Seyed Hamidreza Sadeghi, Niloofar Moosavi, Hossein Kheirfam, Carsten Montzka, Kris Van Looy, Brigitta Toth, Zeinab Hazbavi, Wafa Al Yamani, Ammar A. Albalasmeh, Ma'in Z. Alghzawi, Rafael Angulo-Jaramillo, Antônio Celso Dantas Antonino, George Arampatzis, Robson André Armindo, Hossein Asadi, Yazidhi Bamutaze, Jordi Batlle-Aguilar, Béatrice Béchet, Fabian Becker, Günter Blöschl, Klaus Bohne, Isabelle Braud, Clara Castellano, Artemi Cerdà, Maha Chalhoub, Rogerio Cichota, Milena Císlerová, Brent Clothier, Yves Coquet, Wim Cornelis, Corrado Corradini, Artur Paiva Coutinho, Muriel Bastista de Oliveira, José Ronaldo de Macedo, Matheus Fonseca Durães, Hojat Emami, Iraj Eskandari, Asghar Farajnia, Alessia Flammini, Nándor Fodor, Mamoun Gharaibeh, Mohamad Hossein Ghavimipanah, Teamrat A. Ghezzehei, Simone Giertz, Evangelos G. Hatzigiannakis, Rainer Horn, Juan José Jiménez, Diederik Jacques, Saskia Deborah Keesstra, Hamid Kelishadi, Mahboobeh Kiani-Harchegani, Mehdi Kouselou, Madan Kumar Jha, Laurent Lassabatere, Xiaoyan Li, Mark A. Liebig, Lubomír Lichner, María Victoria López, Deepesh Machiwal, Dirk Mallants, Micael Stolben Mallmann, Jean Dalmo de Oliveira Marques, Miles R. Marshall, Jan Mertens, Félicien Meunier, Mohammad Hossein Mohammadi, Binayak P. Mohanty, Mansonia Pulido-Moncada, Suzana Montenegro, Renato Morbidelli, David Moret-Fernández, Ali Akbar Moosavi, Mohammad Reza Mosaddeghi, Seyed Bahman Mousavi, Hasan Mozaffari, Kamal Nabiollahi, Mohammad Reza Neyshabouri, Marta Vasconcelos Ottoni, Theophilo Benedicto Ottoni Filho, Mohammad Reza Pahlavan-Rad, Andreas Panagopoulos, Stephan Peth, Pierre-Emmanuel Peyneau, Tommaso Picciafuoco, Jean Poesen, Manuel Pulido, Dalvan José Reinert, Sabine Reinsch, Meisam Rezaei, Francis Parry Roberts, David Robinson, Jesús Rodrigo-Comino, Otto Corrêa Rotunno Filho, Tadaomi Saito, Hideki Suganuma, Carla Saltalippi, Renáta Sándor, Brigitta Schütt, Manuel Seeger, Nasrollah Sepehrnia, Ehsan Sharifi Moghaddam, Manoj Shukla, Shiraki Shutaro, Ricardo Sorando, Ajayi Asishana Stanley, Peter Strauss, Zhongbo Su, Ruhollah Taghizadeh-Mehrjardi, Encarnación Taguas, Wenceslau Geraldes Teixeira, Ali Reza Vaezi, Mehdi Vafakhah, Tomas Vogel, Iris Vogeler, Jana Votrubova, Steffen Werner, Thierry Winarski, Deniz Yilmaz, Michael H. Young, Steffen Zacharias, Yijian Zeng, Ying Zhao, Hong Zhao, and Harry Vereecken
Earth Syst. Sci. Data, 10, 1237–1263, https://doi.org/10.5194/essd-10-1237-2018, https://doi.org/10.5194/essd-10-1237-2018, 2018
Short summary
Short summary
This paper presents and analyzes a global database of soil infiltration data, the SWIG database, for the first time. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists or they were digitized from published articles. We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models.
Hong Zhao, Yijian Zeng, Shaoning Lv, and Zhongbo Su
Earth Syst. Sci. Data, 10, 1031–1061, https://doi.org/10.5194/essd-10-1031-2018, https://doi.org/10.5194/essd-10-1031-2018, 2018
Short summary
Short summary
The Tibet-Obs soil properties dataset was compiled based on in situ and laboratory measurements of soil profiles across three climate zones on the Tibetan Plateau. The appropriate parameterization schemes of soil hydraulic and thermal properties were discussed for their applicability in land surface modeling. The uncertainties of existing soil datasets were evaluated. This paper contributes to land surface modeling and hydro-climatology communities for their studies of the third pole region.
Pan Wu, Xu-Sheng Wang, and Sihai Liang
Proc. IAHS, 379, 231–241, https://doi.org/10.5194/piahs-379-231-2018, https://doi.org/10.5194/piahs-379-231-2018, 2018
Short summary
Short summary
Though extensive researches were conducted in the source region of the Yellow River (SRYR) to analyse climate change influence on streamflow, however, few researches concentrate on streamflow of the sub-basin above the Huangheyan station in the SRYR (HSRYR) where a water retaining dam was built in the outlet in 1999. To improve the reservoir regulation strategies, this study analysed streamflow change of the HSRYR in a mesoscale.
Peng-Fei Han, Xu-Sheng Wang, Xiaomei Jin, and Bill X. Hu
Proc. IAHS, 379, 433–442, https://doi.org/10.5194/piahs-379-433-2018, https://doi.org/10.5194/piahs-379-433-2018, 2018
Pan Wu, Sihai Liang, Xu-Sheng Wang, Yuqing Feng, and Jeffrey M. McKenzie
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-744, https://doi.org/10.5194/hess-2017-744, 2018
Manuscript not accepted for further review
Short summary
Short summary
This study provides a new assessment of climate change impacts on discharge change in the source region of the Yellow River in considering vary perrmafrost.
Xiujie Wu, Xu-Sheng Wang, Yang Wang, and Bill X. Hu
Hydrol. Earth Syst. Sci., 21, 4419–4431, https://doi.org/10.5194/hess-21-4419-2017, https://doi.org/10.5194/hess-21-4419-2017, 2017
Short summary
Short summary
It is critical to identify the origins of water in arid and semiarid regions for management and protection of the water resources. The D, 18O, 3H and 14C in water samples from the Badain Jaran Desert, China, were analyzed. The results show that groundwater supplies the lakes and originates from local precipitation and adjacent mountains. Negative d-excess values of water in the area were the result of evaporation. The 14C ages do not represent the residence time of local groundwater.
Xu-Sheng Wang and Yangxiao Zhou
Hydrol. Earth Syst. Sci., 20, 3673–3690, https://doi.org/10.5194/hess-20-3673-2016, https://doi.org/10.5194/hess-20-3673-2016, 2016
Short summary
Short summary
This study reveals the effects of groundwater-dependent evapotranspiration (GDE) in the shift of annual water balance for a catchment in the Budyko space. The ABCD model is modified to incorporate GDE in simulating the monthly hydrological behaviors of a catchment, and the results are aggregated to annual data. GDE enhances the occurrence of excess evapotranspiration (E / P > 1) in dry years, which could not be captured by the traditional Budyko curves. Six catchments are analyzed with the model.
Lianyu Yu, Yijian Zeng, Zhongbo Su, Huanjie Cai, and Zhen Zheng
Hydrol. Earth Syst. Sci., 20, 975–990, https://doi.org/10.5194/hess-20-975-2016, https://doi.org/10.5194/hess-20-975-2016, 2016
Short summary
Short summary
The coupled water vapor and heat transport model using two different ET (ETdir, ETind) methods varied concerning the simulation of soil moisture and ET components, while agreed well for the simulation of soil temperature. Considering aerodynamic and surface resistance terms improved the ETdir method regarding simulating soil evaporation, especially after irrigation. The interactive effect of crop growth parameters with changing environment played an important role in estimating ET components.
Y. Zhou, J. Wenninger, Z. Yang, L. Yin, J. Huang, L. Hou, X. Wang, D. Zhang, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 17, 2435–2447, https://doi.org/10.5194/hess-17-2435-2013, https://doi.org/10.5194/hess-17-2435-2013, 2013
W. Tian, X. Li, G.-D. Cheng, X.-S. Wang, and B. X. Hu
Hydrol. Earth Syst. Sci., 16, 4707–4723, https://doi.org/10.5194/hess-16-4707-2012, https://doi.org/10.5194/hess-16-4707-2012, 2012
Related subject area
Subject: Vadose Zone Hydrology | Techniques and Approaches: Modelling approaches
Mesoscale permeability variations estimated from natural airflows in the decorated Cosquer Cave (southeastern France)
Identification of parameter importance for benzene transport in the unsaturated zone using global sensitivity analysis
Evapotranspiration prediction for European forest sites does not improve with assimilation of in situ soil water content data
A comprehensive study of deep learning for soil moisture prediction
Modeling stable and unstable flow in unsaturated porous media for different infiltration rates
Modelling groundwater recharge, actual evaporation, and transpiration in semi-arid sites of the Lake Chad basin: the role of soil and vegetation in groundwater recharge
Predicting soil hydraulic properties for binary mixtures – concept and application for constructed Technosols
Application of an improved distributed hydrological model based on the soil–gravel structure in the Niyang River basin, Qinghai–Tibet Plateau
Assessment of the interactions between soil–biosphere–atmosphere (ISBA) land surface model soil hydrology, using four closed-form soil water relationships and several lysimeters
Soil–vegetation–water interactions controlling solute flow and chemical weathering in volcanic ash soils of the high Andes
Estimating vadose zone water fluxes from soil water monitoring data: a comprehensive field study in Austria
Semi-continuum modeling of unsaturated porous media flow to explain Bauters' paradox
Effects of dynamic changes of desiccation cracks on preferential flow: experimental investigation and numerical modeling
Numerical assessment of morphological and hydraulic properties of moss, lichen and peat from a permafrost peatland
A robust upwind mixed hybrid finite element method for transport in variably saturated porous media
Stepping beyond perfectly mixed conditions in soil hydrological modelling using a Lagrangian approach
Using machine learning to predict optimal electromagnetic induction instrument configurations for characterizing the shallow subsurface
Gravity as a tool to improve the hydrologic mass budget in karstic areas
A scaling procedure for straightforward computation of sorptivity
From hydraulic root architecture models to macroscopic representations of root hydraulics in soil water flow and land surface models
Simulated or measured soil moisture: which one is adding more value to regional landslide early warning?
Assessing the dynamics of soil salinity with time-lapse inversion of electromagnetic data guided by hydrological modelling
Simulation of reactive solute transport in the critical zone: a Lagrangian model for transient flow and preferential transport
Investigating the impact of exit effects on solute transport in macroporous media
Comparison of root water uptake models in simulating CO2 and H2O fluxes and growth of wheat
Understanding the mass, momentum, and energy transfer in the frozen soil with three levels of model complexities
A field-validated surrogate crop model for predicting root-zone moisture and salt content in regions with shallow groundwater
Characterizing uncertainty in the hydraulic parameters of oil sands mine reclamation covers and its influence on water balance predictions
Simulating preferential soil water flow and tracer transport using the Lagrangian Soil Water and Solute Transport Model
Assessment of simulated soil moisture from WRF Noah, Noah-MP, and CLM land surface schemes for landslide hazard application
Efficient estimation of effective hydraulic properties of stratal undulating surface layer using time-lapse multi-channel GPR
Partitioning snowmelt and rainfall in the critical zone: effects of climate type and soil properties
A unique vadose zone model for shallow aquifers: the Hetao irrigation district, China
Modelling of shallow water table dynamics using conceptual and physically based integrated surface-water–groundwater hydrologic models
Capturing soil-water and groundwater interactions with an iterative feedback coupling scheme: new HYDRUS package for MODFLOW
Caffeine vs. carbamazepine as indicators of wastewater pollution in a karst aquifer
Predicting the soil water retention curve from the particle size distribution based on a pore space geometry containing slit-shaped spaces
Technical note: Saturated hydraulic conductivity and textural heterogeneity of soils
Water ages in the critical zone of long-term experimental sites in northern latitudes
Ecohydrological particle model based on representative domains
Impact of capillary rise and recirculation on simulated crop yields
Soil hydraulic material properties and layered architecture from time-lapse GPR
Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions
Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values
Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 1: nonuniform infiltration and soil water redistribution
Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 2: model coupling, application, factor importance, and uncertainty
A pore-size classification for peat bogs derived from unsaturated hydraulic properties
Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater
Effect of unrepresented model errors on estimated soil hydraulic material properties
Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils
Hugo Pellet, Bruno Arfib, Pierre Henry, Stéphanie Touron, and Ghislain Gassier
Hydrol. Earth Syst. Sci., 28, 4035–4057, https://doi.org/10.5194/hess-28-4035-2024, https://doi.org/10.5194/hess-28-4035-2024, 2024
Short summary
Short summary
Conservation of decorated caves is highly dependent on airflows and is correlated with rock formation permeability. We present the first conceptual model of flows around the Paleolithic decorated Cosquer coastal cave (southeastern France), quantify air permeability, and show how its variation affects water levels inside the cave. This study highlights that airflows may change in karst unsaturated zones in response to changes in the water cycle and may thus be affected by climate change.
Meirav Cohen, Nimrod Schwartz, and Ravid Rosenzweig
Hydrol. Earth Syst. Sci., 28, 1585–1604, https://doi.org/10.5194/hess-28-1585-2024, https://doi.org/10.5194/hess-28-1585-2024, 2024
Short summary
Short summary
Contamination from fuel constituents poses a major threat to groundwater. However, studies devoted to identification of the driving parameters for fuel derivative transport in soils are scarce, and none have dealt with heterogeneous layered media. Here, we performed global sensitivity analysis (GSA) on a model of benzene transport to groundwater. The results identified the parameters controlling benzene transport in soils and showed that GSA is as an important tool for transport model analysis.
Lukas Strebel, Heye Bogena, Harry Vereecken, Mie Andreasen, Sergio Aranda-Barranco, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 28, 1001–1026, https://doi.org/10.5194/hess-28-1001-2024, https://doi.org/10.5194/hess-28-1001-2024, 2024
Short summary
Short summary
We present results from using soil water content measurements from 13 European forest sites in a state-of-the-art land surface model. We use data assimilation to perform a combination of observed and modeled soil water content and show the improvements in the representation of soil water content. However, we also look at the impact on evapotranspiration and see no corresponding improvements.
Yanling Wang, Liangsheng Shi, Yaan Hu, Xiaolong Hu, Wenxiang Song, and Lijun Wang
Hydrol. Earth Syst. Sci., 28, 917–943, https://doi.org/10.5194/hess-28-917-2024, https://doi.org/10.5194/hess-28-917-2024, 2024
Short summary
Short summary
LSTM temporal modeling suits soil moisture prediction; attention mechanisms enhance feature learning efficiently, as their feature selection capabilities are proven through Transformer and attention–LSTM hybrids. Adversarial training strategies help extract additional information from time series’ data. SHAP analysis and t-SNE visualization reveal differences in encoded features across models. This work serves as a reference for time series’ data processing in hydrology problems.
Jakub Kmec and Miloslav Šír
EGUsphere, https://doi.org/10.5194/egusphere-2023-2785, https://doi.org/10.5194/egusphere-2023-2785, 2024
Short summary
Short summary
The most mysterious part of the hydrological cycle is the infiltration of water into porous soil. In this process, water enters the soil, some of it is retained in the soil or evaporates, and the remaining water continues to move below and through the rock environment. The physical description of infiltration, specifically the dependence of the infiltration rate on the flow, shows very unusual features that are beyond the normal human experience. Our paper is devoted to their elucidation.
Christoph Neukum, Angela Morales-Santos, Melanie Ronelngar, Aminu Bala, and Sara Vassolo
Hydrol. Earth Syst. Sci., 27, 3601–3619, https://doi.org/10.5194/hess-27-3601-2023, https://doi.org/10.5194/hess-27-3601-2023, 2023
Short summary
Short summary
A generalized approach that requires limited field data and well-established models is tested for assessing groundwater recharge in the southern Lake Chad basin. E and T coefficients are estimated with the FAO-dual Kc concept at six locations. Measured soil water content and chloride concentrations along vertical soil profiles together with different scenarios for E and T partitioning and a Bayesian calibration approach are used to simulate water flow and chloride transport using Hydrus-1D.
Moreen Willaredt, Thomas Nehls, and Andre Peters
Hydrol. Earth Syst. Sci., 27, 3125–3142, https://doi.org/10.5194/hess-27-3125-2023, https://doi.org/10.5194/hess-27-3125-2023, 2023
Short summary
Short summary
This study proposes a model to predict soil hydraulic properties (SHPs) of constructed Technosols for urban greening. The SHPs are determined by the Technosol composition and describe their capacity to store and supply water to plants. The model predicts SHPs of any binary mixture based on the SHPs of its two pure components, facilitating simulations of flow and transport processes before production. This can help create Technosols designed for efficient urban greening and water management.
Pengxiang Wang, Zuhao Zhou, Jiajia Liu, Chongyu Xu, Kang Wang, Yangli Liu, Jia Li, Yuqing Li, Yangwen Jia, and Hao Wang
Hydrol. Earth Syst. Sci., 27, 2681–2701, https://doi.org/10.5194/hess-27-2681-2023, https://doi.org/10.5194/hess-27-2681-2023, 2023
Short summary
Short summary
Considering the impact of the special geological and climatic conditions of the Qinghai–Tibet Plateau on the hydrological cycle, this study established the WEP-QTP hydrological model. The snow cover and gravel layers affected the temporal and spatial changes in frozen soil and improved the regulation of groundwater on the flow process. Ignoring he influence of special underlying surface conditions has a great impact on the hydrological forecast and water resource utilization in this area.
Antoine Sobaga, Bertrand Decharme, Florence Habets, Christine Delire, Noële Enjelvin, Paul-Olivier Redon, Pierre Faure-Catteloin, and Patrick Le Moigne
Hydrol. Earth Syst. Sci., 27, 2437–2461, https://doi.org/10.5194/hess-27-2437-2023, https://doi.org/10.5194/hess-27-2437-2023, 2023
Short summary
Short summary
Seven instrumented lysimeters are used to assess the simulation of the soil water dynamic in one land surface model. Four water potential and hydraulic conductivity closed-form equations, including one mixed form, are evaluated. One form is more relevant for simulating drainage, especially during intense drainage events. The soil profile heterogeneity of one parameter of the closed-form equations is shown to be important.
Sebastián Páez-Bimos, Armando Molina, Marlon Calispa, Pierre Delmelle, Braulio Lahuatte, Marcos Villacís, Teresa Muñoz, and Veerle Vanacker
Hydrol. Earth Syst. Sci., 27, 1507–1529, https://doi.org/10.5194/hess-27-1507-2023, https://doi.org/10.5194/hess-27-1507-2023, 2023
Short summary
Short summary
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical weathering rates in the high Andes. There are clear differences in the A horizon. The extent of soil chemical weathering varies depending on vegetation type. This difference is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solutes, and chemical weathering throughout the entire soil profile.
Marleen Schübl, Giuseppe Brunetti, Gabriele Fuchs, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 1431–1455, https://doi.org/10.5194/hess-27-1431-2023, https://doi.org/10.5194/hess-27-1431-2023, 2023
Short summary
Short summary
Estimating groundwater recharge through the unsaturated zone is a difficult task that is fundamentally associated with uncertainties. One of the few methods available is inverse modeling based on soil water measurements. Here, we used a nested sampling algorithm within a Bayesian probabilistic framework to assess model uncertainties at 14 sites in Austria. Further, we analyzed simulated recharge rates to identify factors influencing groundwater recharge rates and their temporal variability.
Jakub Kmec, Miloslav Šír, Tomáš Fürst, and Rostislav Vodák
Hydrol. Earth Syst. Sci., 27, 1279–1300, https://doi.org/10.5194/hess-27-1279-2023, https://doi.org/10.5194/hess-27-1279-2023, 2023
Short summary
Short summary
When rain falls on the ground, most of the water subsequently flows through the soil. The movement of water through the partially wet soil layer is surprisingly complicated. For decades, no mathematical model has been able to capture this process in its entire complexity. Here, we present a model that aims to solve this long-standing problem. In this paper, we show that the model correctly reproduces the transition between diffusion and preferential flow regimes.
Yi Luo, Jiaming Zhang, Zhi Zhou, Juan P. Aguilar-Lopez, Roberto Greco, and Thom Bogaard
Hydrol. Earth Syst. Sci., 27, 783–808, https://doi.org/10.5194/hess-27-783-2023, https://doi.org/10.5194/hess-27-783-2023, 2023
Short summary
Short summary
This paper describes an experiment and modeling of the hydrological response of desiccation cracks under long-term wetting–drying cycles. We developed a new dynamic dual-permeability model to quantify the dynamic evolution of desiccation cracks and associated preferential flow and moisture distribution. Compared to other models, the dynamic dual-permeability model could describe the experimental data much better, but it also provided an improved description of the underlying physics.
Simon Cazaurang, Manuel Marcoux, Oleg S. Pokrovsky, Sergey V. Loiko, Artem G. Lim, Stéphane Audry, Liudmila S. Shirokova, and Laurent Orgogozo
Hydrol. Earth Syst. Sci., 27, 431–451, https://doi.org/10.5194/hess-27-431-2023, https://doi.org/10.5194/hess-27-431-2023, 2023
Short summary
Short summary
Moss, lichen and peat samples are reconstructed using X-ray tomography. Most samples can be cut down to a representative volume based on porosity. However, only homogeneous samples could be reduced to a representative volume based on hydraulic conductivity. For heterogeneous samples, a devoted pore network model is computed. The studied samples are mostly highly porous and water-conductive. These results must be put into perspective with compressibility phenomena occurring in field tests.
Anis Younes, Hussein Hoteit, Rainer Helmig, and Marwan Fahs
Hydrol. Earth Syst. Sci., 26, 5227–5239, https://doi.org/10.5194/hess-26-5227-2022, https://doi.org/10.5194/hess-26-5227-2022, 2022
Short summary
Short summary
Despite its advantages for the simulation of flow in heterogeneous and fractured porous media, the mixed hybrid finite element method has been rarely used for transport as it suffers from strong unphysical oscillations. We develop here a new upwind scheme for the mixed hybrid finite element that can avoid oscillations. Numerical examples confirm the robustness of this new scheme for the simulation of contaminant transport in both saturated and unsaturated conditions.
Alexander Sternagel, Ralf Loritz, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 1615–1629, https://doi.org/10.5194/hess-26-1615-2022, https://doi.org/10.5194/hess-26-1615-2022, 2022
Short summary
Short summary
We present a (physically based) Lagrangian approach to simulate diffusive mixing processes on the pore scale beyond perfectly mixed conditions. Results show the feasibility of the approach for reproducing measured mixing times and concentrations of isotopes over pore sizes and that typical shapes of breakthrough curves (normally associated with non-uniform transport in heterogeneous soils) may also occur as a result of imperfect subscale mixing in a macroscopically homogeneous soil matrix.
Kim Madsen van't Veen, Ty Paul Andrew Ferré, Bo Vangsø Iversen, and Christen Duus Børgesen
Hydrol. Earth Syst. Sci., 26, 55–70, https://doi.org/10.5194/hess-26-55-2022, https://doi.org/10.5194/hess-26-55-2022, 2022
Short summary
Short summary
Geophysical instruments are often used in hydrological surveys. A geophysical model that couples electrical conductivity in the subsurface layers with measurements from an electromagnetic induction instrument was combined with a machine learning algorithm. The study reveals that this combination can estimate the identifiability of electrical conductivity in a layered soil and provide insight into the best way to configure the instrument for a specific field site.
Tommaso Pivetta, Carla Braitenberg, Franci Gabrovšek, Gerald Gabriel, and Bruno Meurers
Hydrol. Earth Syst. Sci., 25, 6001–6021, https://doi.org/10.5194/hess-25-6001-2021, https://doi.org/10.5194/hess-25-6001-2021, 2021
Short summary
Short summary
Gravimetry offers a valid complement to classical hydrologic measurements in order to characterize karstic systems in which the recharge process causes fast accumulation of large water volumes in the voids of the epi-phreatic system. In this contribution we show an innovative integration of gravimetric and hydrologic observations to constrain a hydrodynamic model of the Škocjan Caves (Slovenia). We demonstrate how the inclusion of gravity observations improves the water mass budget estimates.
Laurent Lassabatere, Pierre-Emmanuel Peyneau, Deniz Yilmaz, Joseph Pollacco, Jesús Fernández-Gálvez, Borja Latorre, David Moret-Fernández, Simone Di Prima, Mehdi Rahmati, Ryan D. Stewart, Majdi Abou Najm, Claude Hammecker, and Rafael Angulo-Jaramillo
Hydrol. Earth Syst. Sci., 25, 5083–5104, https://doi.org/10.5194/hess-25-5083-2021, https://doi.org/10.5194/hess-25-5083-2021, 2021
Short summary
Short summary
Soil sorptivity is a crucial parameter for the modeling of water infiltration into soils. The standard equation used to compute sorptivity from the soil water retention curve, the unsaturated hydraulic conductivity, and initial and final water contents may lead to erroneous estimates due to its complexity. This study proposes a new straightforward scaling procedure for estimations of sorptivity for four famous and commonly used hydraulic models.
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021, https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary
Short summary
Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implementing root hydraulics in macroscopic soil water flow and land surface models.
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Mohammad Farzamian, Dario Autovino, Angelo Basile, Roberto De Mascellis, Giovanna Dragonetti, Fernando Monteiro Santos, Andrew Binley, and Antonio Coppola
Hydrol. Earth Syst. Sci., 25, 1509–1527, https://doi.org/10.5194/hess-25-1509-2021, https://doi.org/10.5194/hess-25-1509-2021, 2021
Short summary
Short summary
Soil salinity is a serious threat in numerous arid and semi-arid areas of the world. Given this threat, efficient field assessment methods are needed to monitor the dynamics of soil salinity in salt-affected lands efficiently. We demonstrate that rapid and non-invasive geophysical measurements modelled by advanced numerical analysis of the signals and coupled with hydrological modelling can provide valuable information to assess the spatio-temporal variability in soil salinity over large areas.
Alexander Sternagel, Ralf Loritz, Julian Klaus, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 1483–1508, https://doi.org/10.5194/hess-25-1483-2021, https://doi.org/10.5194/hess-25-1483-2021, 2021
Short summary
Short summary
The key innovation of the study is a method to simulate reactive solute transport in the vadose zone within a Lagrangian framework. We extend the LAST-Model with a method to account for non-linear sorption and first-order degradation processes during unsaturated transport of reactive substances in the matrix and macropores. Model evaluations using bromide and pesticide data from irrigation experiments under different flow conditions on various timescales show the feasibility of the method.
Jérôme Raimbault, Pierre-Emmanuel Peyneau, Denis Courtier-Murias, Thomas Bigot, Jaime Gil Roca, Béatrice Béchet, and Laurent Lassabatère
Hydrol. Earth Syst. Sci., 25, 671–683, https://doi.org/10.5194/hess-25-671-2021, https://doi.org/10.5194/hess-25-671-2021, 2021
Short summary
Short summary
Contaminant transport in soils is known to be affected by soil heterogeneities such as macropores. The transport properties of heterogeneous porous media can be studied in laboratory columns. However, the results reported in this study (a combination of breakthrough experiments, magnetic resonance imaging and computer simulations of transport) show that these properties can be largely affected by the boundary devices of the columns, thus highlighting the need to take their effect into account.
Thuy Huu Nguyen, Matthias Langensiepen, Jan Vanderborght, Hubert Hüging, Cho Miltin Mboh, and Frank Ewert
Hydrol. Earth Syst. Sci., 24, 4943–4969, https://doi.org/10.5194/hess-24-4943-2020, https://doi.org/10.5194/hess-24-4943-2020, 2020
Short summary
Short summary
The mechanistic Couvreur root water uptake (RWU) model that is based on plant hydraulics and links root system properties to RWU, water stress, and crop development can evaluate the impact of certain crop properties on crop performance in different environments and soils, while the Feddes RWU approach does not possess such flexibility. This study also shows the importance of modeling root development and how it responds to water deficiency to predict the impact of water stress on crop growth.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020, https://doi.org/10.5194/hess-24-4813-2020, 2020
Short summary
Short summary
Soil mass and heat transfer processes were represented in three levels of model complexities to understand soil freeze–thaw mechanisms. Results indicate that coupled mass and heat transfer models considerably improved simulations of the soil hydrothermal regime. Vapor flow and thermal effects on water flow are the main mechanisms for the improvements. Given the explicit consideration of airflow, vapor flow and its effects on heat transfer were enhanced during the freeze–thaw transition period.
Zhongyi Liu, Zailin Huo, Chaozi Wang, Limin Zhang, Xianghao Wang, Guanhua Huang, Xu Xu, and Tammo Siert Steenhuis
Hydrol. Earth Syst. Sci., 24, 4213–4237, https://doi.org/10.5194/hess-24-4213-2020, https://doi.org/10.5194/hess-24-4213-2020, 2020
Short summary
Short summary
We have developed an integrated surrogate model for arid irrigated areas with shallow groundwater that links crop growth with soil water and salinity in the vadose zone. The model recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table. The model applies areas with shallow groundwater for which only very few surrogate models are available for most surface irrigation systems in the world without suffering from high groundwater.
M. Shahabul Alam, S. Lee Barbour, and Mingbin Huang
Hydrol. Earth Syst. Sci., 24, 735–759, https://doi.org/10.5194/hess-24-735-2020, https://doi.org/10.5194/hess-24-735-2020, 2020
Short summary
Short summary
This study quantifies uncertainties in the prediction of long-term water balance for mine reclamation soil covers using random sampling of model parameter distributions. Parameter distributions were obtained from model optimization for field monitoring data. Variability in climate is a greater source of uncertainty than the model parameters in evaporation predictions, while climate variability and model parameters exert similar uncertainty on predictions of net percolation.
Alexander Sternagel, Ralf Loritz, Wolfgang Wilcke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 4249–4267, https://doi.org/10.5194/hess-23-4249-2019, https://doi.org/10.5194/hess-23-4249-2019, 2019
Short summary
Short summary
We present our hydrological LAST-Model to simulate preferential soil water flow and tracer transport in macroporous soils. It relies on a Lagrangian perspective of the movement of discrete water particles carrying tracer masses through the subsoil and is hence an alternative approach to common models. Sensitivity analyses reveal the physical validity of the model concept and evaluation tests show that LAST can depict well observed tracer mass profiles with fingerprints of preferential flow.
Lu Zhuo, Qiang Dai, Dawei Han, Ningsheng Chen, and Binru Zhao
Hydrol. Earth Syst. Sci., 23, 4199–4218, https://doi.org/10.5194/hess-23-4199-2019, https://doi.org/10.5194/hess-23-4199-2019, 2019
Short summary
Short summary
This study assesses the usability of WRF model-simulated soil moisture for landslide monitoring in northern Italy. In particular, three advanced land surface model schemes (Noah, Noah-MP, and CLM4) are used to provide multi-layer soil moisture data. The results have shown Noah-MP can provide the best landslide monitoring performance. It is also demonstrated that a single soil moisture sensor located in plain area has a high correlation with a significant proportion of the study area.
Xicai Pan, Stefan Jaumann, Jiabao Zhang, and Kurt Roth
Hydrol. Earth Syst. Sci., 23, 3653–3663, https://doi.org/10.5194/hess-23-3653-2019, https://doi.org/10.5194/hess-23-3653-2019, 2019
Short summary
Short summary
This study suggests an efficient approach to obtain plot-scale soil hydraulic properties for the shallow structural soils via non-invasive ground-penetrating radar measurements. Facilitated by spatial information of lateral water flow, this approach is more efficient than the widely used inversion approaches relying on intensive soil moisture monitoring. The acquisition of such quantitative information is of great interest to fields such as hydrology and precision agriculture.
John C. Hammond, Adrian A. Harpold, Sydney Weiss, and Stephanie K. Kampf
Hydrol. Earth Syst. Sci., 23, 3553–3570, https://doi.org/10.5194/hess-23-3553-2019, https://doi.org/10.5194/hess-23-3553-2019, 2019
Short summary
Short summary
Streamflow in high-elevation and high-latitude areas may be vulnerable to snow loss, making it important to quantify how snowmelt and rainfall are divided between soil storage, drainage below plant roots, evapotranspiration and runoff. We examine this separation in different climates and soils using a physically based model. Results show runoff may be reduced with snowpack decline in all climates. The mechanisms responsible help explain recent observations of streamflow sensitivity to snow loss.
Zhongyi Liu, Xingwang Wang, Zailin Huo, and Tammo Siert Steenhuis
Hydrol. Earth Syst. Sci., 23, 3097–3115, https://doi.org/10.5194/hess-23-3097-2019, https://doi.org/10.5194/hess-23-3097-2019, 2019
Short summary
Short summary
A novel approach is taken in simulating the hydrology of the vadose zone in areas with shallow groundwater. The model recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table. The model can be used in areas with shallow groundwater to optimize irrigation water use and minimize tailwater losses.
Mohammad Bizhanimanzar, Robert Leconte, and Mathieu Nuth
Hydrol. Earth Syst. Sci., 23, 2245–2260, https://doi.org/10.5194/hess-23-2245-2019, https://doi.org/10.5194/hess-23-2245-2019, 2019
Short summary
Short summary
Modelling of shallow water table fluctuations is usually carried out using physically based numerical models. These models have notable limitations regarding intensive required data and computational burden. This paper presents an alternative modelling approach for modelling of such cases by introducing modifications to the calculation of groundwater recharge and saturated flow of a conceptual hydrologic model.
Jicai Zeng, Jinzhong Yang, Yuanyuan Zha, and Liangsheng Shi
Hydrol. Earth Syst. Sci., 23, 637–655, https://doi.org/10.5194/hess-23-637-2019, https://doi.org/10.5194/hess-23-637-2019, 2019
Short summary
Short summary
Accurately capturing the soil-water–groundwater interaction is vital for all disciplines related to subsurface flow but is difficult when undergoing significant nonlinearity in the modeling system. A new soil-water flow package is developed to solve the switching-form Richards’ equation. A multi-scale water balance analysis joins unsaturated–saturated models at separated scales. The whole system is solved efficiently with an iterative feedback coupling scheme.
Noam Zach Dvory, Yakov Livshitz, Michael Kuznetsov, Eilon Adar, Guy Gasser, Irena Pankratov, Ovadia Lev, and Alexander Yakirevich
Hydrol. Earth Syst. Sci., 22, 6371–6381, https://doi.org/10.5194/hess-22-6371-2018, https://doi.org/10.5194/hess-22-6371-2018, 2018
Short summary
Short summary
This research is paramount given the significance of karst aquifers as essential drinking water sources. While CBZ is considered conservative, CAF is subject to sorption and degradation, and therefore each of these two pollutants can be considered effective tracers for specific assessment of aquifer contamination. The model presented in this paper shows how each of the mentioned contaminants could serve as a better tool for aquifer contamination characterization and its treatment.
Chen-Chao Chang and Dong-Hui Cheng
Hydrol. Earth Syst. Sci., 22, 4621–4632, https://doi.org/10.5194/hess-22-4621-2018, https://doi.org/10.5194/hess-22-4621-2018, 2018
Short summary
Short summary
The soil water retention curve (SWRC) is fundamental to researching water flow and chemical transport in unsaturated media. However, the traditional prediction models underestimate the water content in the dry range of the SWRC. A method was therefore proposed to improve the estimation of the SWRC using a pore model containing slit-shaped spaces. The results show that the predicted SWRCs using the improved method reasonably approximated the measured SWRCs.
Carlos García-Gutiérrez, Yakov Pachepsky, and Miguel Ángel Martín
Hydrol. Earth Syst. Sci., 22, 3923–3932, https://doi.org/10.5194/hess-22-3923-2018, https://doi.org/10.5194/hess-22-3923-2018, 2018
Short summary
Short summary
Saturated hydraulic conductivity (Ksat) is an important soil parameter that highly depends on soil's particle size distribution (PSD). The nature of this dependency is explored in this work in two ways, (1) by using the information entropy as a heterogeneity parameter of the PSD and (2) by using descriptions of PSD in forms of textural triplets, different than the usual description in terms of the triplet of sand, silt, and clay contents.
Matthias Sprenger, Doerthe Tetzlaff, Jim Buttle, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 22, 3965–3981, https://doi.org/10.5194/hess-22-3965-2018, https://doi.org/10.5194/hess-22-3965-2018, 2018
Short summary
Short summary
We estimated water ages in the upper critical zone with a soil physical model (SWIS) and found that the age of water stored in the soil, as well as of water leaving the soil via evaporation, transpiration, or recharge, was younger the higher soil water storage (inverse storage effect). Travel times of transpiration and evaporation were different. We conceptualized the subsurface into fast and slow flow domains and the water was usually half as young in the fast as in the slow flow domain.
Conrad Jackisch and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3639–3662, https://doi.org/10.5194/hess-22-3639-2018, https://doi.org/10.5194/hess-22-3639-2018, 2018
Short summary
Short summary
We present a Lagrangian model for non-uniform soil water dynamics. It handles 2-D diffusion (based on a spatial random walk and implicit pore space redistribution) and 1-D advection in representative macropores (as film flow with dynamic interaction with the soil matrix). The interplay between the domains is calculated based on an energy-balance approach which does not require any additional parameterisation. Model tests give insight into the evolution of the non-uniform infiltration patterns.
Joop Kroes, Iwan Supit, Jos van Dam, Paul van Walsum, and Martin Mulder
Hydrol. Earth Syst. Sci., 22, 2937–2952, https://doi.org/10.5194/hess-22-2937-2018, https://doi.org/10.5194/hess-22-2937-2018, 2018
Short summary
Short summary
Impact of upward flow by capillary rise and recirculation on crop yields is often neglected or underestimated. Case studies and model experiments are used to illustrate the impact of this upward flow in the Dutch delta. Neglecting upward flow results in yield reductions for grassland, maize and potatoes. Half of the withheld water behind these yield effects comes from recirculated percolation water as occurs in free-drainage conditions; the other half from increased upward capillary rise.
Stefan Jaumann and Kurt Roth
Hydrol. Earth Syst. Sci., 22, 2551–2573, https://doi.org/10.5194/hess-22-2551-2018, https://doi.org/10.5194/hess-22-2551-2018, 2018
Short summary
Short summary
Ground-penetrating radar (GPR) is a noninvasive and nondestructive measurement method to monitor the hydraulic processes precisely and efficiently. We analyze synthetic as well as measured data from the ASSESS test site and show that the analysis yields accurate estimates for the soil hydraulic material properties as well as for the subsurface architecture by comparing the results to references derived from time domain reflectometry (TDR) and subsurface architecture ground truth data.
Gaochao Cai, Jan Vanderborght, Matthias Langensiepen, Andrea Schnepf, Hubert Hüging, and Harry Vereecken
Hydrol. Earth Syst. Sci., 22, 2449–2470, https://doi.org/10.5194/hess-22-2449-2018, https://doi.org/10.5194/hess-22-2449-2018, 2018
Short summary
Short summary
Different crop growths had consequences for the parameterization of root water uptake models. The root hydraulic parameters of the Couvreur model but not the water stress parameters of the Feddes–Jarvis model could be constrained by the field data measured from rhizotron facilities. The simulated differences in transpiration from the two soils and the different water treatments could be confirmed by sap flow measurements. The Couvreur model predicted the ratios of transpiration fluxes better.
Coleen D. U. Carranza, Martine J. van der Ploeg, and Paul J. J. F. Torfs
Hydrol. Earth Syst. Sci., 22, 2255–2267, https://doi.org/10.5194/hess-22-2255-2018, https://doi.org/10.5194/hess-22-2255-2018, 2018
Short summary
Short summary
Remote sensing has been popular for mapping surface soil moisture. However, estimating subsurface values using surface soil moisture remains a challenge, as decoupling can occur. Depth-integrated soil moisture values used in hydrological models are affected by vertical variability. Using statistical methods, we investigate vertical variability between the surface (5 cm) and subsurface (40 cm) to quantify decoupling. We also discuss potential controls for decoupling during wet and dry conditions.
Rafael Muñoz-Carpena, Claire Lauvernet, and Nadia Carluer
Hydrol. Earth Syst. Sci., 22, 53–70, https://doi.org/10.5194/hess-22-53-2018, https://doi.org/10.5194/hess-22-53-2018, 2018
Short summary
Short summary
Seasonal shallow water tables (WTs) in lowlands limit vegetation-buffer efficiency to control runoff pollution. Mechanistic models are needed to quantify true field efficiency. A new simplified algorithm for soil infiltration over WTs is tested against reference models and lab data showing WT effects depend on local settings but are negligible after 2 m depth. The algorithm is coupled to a complete vegetation buffer model in a companion paper to analyze pesticide and sediment control in situ.
Claire Lauvernet and Rafael Muñoz-Carpena
Hydrol. Earth Syst. Sci., 22, 71–87, https://doi.org/10.5194/hess-22-71-2018, https://doi.org/10.5194/hess-22-71-2018, 2018
Short summary
Short summary
Vegetation buffers, often placed in lowlands to control runoff pollution, can exhibit limited efficiency due to seasonal shallow water tables (WTs). A new shallow water table infiltration algorithm developed in a companion paper is coupled to a complete vegetation buffer model to quantify pesticide and sediment control in the field. We evaluated the model on two field experiments in France with and without WT conditions and show WTs can control efficiency depending on land and climate settings.
Tobias Karl David Weber, Sascha Christian Iden, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 21, 6185–6200, https://doi.org/10.5194/hess-21-6185-2017, https://doi.org/10.5194/hess-21-6185-2017, 2017
Yonatan Ganot, Ran Holtzman, Noam Weisbrod, Ido Nitzan, Yoram Katz, and Daniel Kurtzman
Hydrol. Earth Syst. Sci., 21, 4479–4493, https://doi.org/10.5194/hess-21-4479-2017, https://doi.org/10.5194/hess-21-4479-2017, 2017
Short summary
Short summary
We monitor infiltration at multiple scales during managed aquifer recharge with desalinated seawater in an infiltration pond, while groundwater recharge is evaluated by simplified and numerical models. We found that pond-surface clogging is negated by the high-quality desalinated seawater or negligible compared to the low-permeability layers of the unsaturated zone. We show that a numerical model with a 1-D representative sediment profile is able to capture infiltration and recharge dynamics.
Stefan Jaumann and Kurt Roth
Hydrol. Earth Syst. Sci., 21, 4301–4322, https://doi.org/10.5194/hess-21-4301-2017, https://doi.org/10.5194/hess-21-4301-2017, 2017
Short summary
Short summary
We investigate the quantitative effect of neglected sensor position, small-scale heterogeneity, and lateral flow on soil hydraulic material properties. Thus, we analyze a fluctuating water table experiment in a 2-D architecture (ASSESS) with increasingly complex studies based on time domain reflectometry and hydraulic potential data. We found that 1-D studies may yield biased parameters and that estimating sensor positions as well as small-scale heterogeneity improves the model significantly.
Joseph Alexander Paul Pollacco, Trevor Webb, Stephen McNeill, Wei Hu, Sam Carrick, Allan Hewitt, and Linda Lilburne
Hydrol. Earth Syst. Sci., 21, 2725–2737, https://doi.org/10.5194/hess-21-2725-2017, https://doi.org/10.5194/hess-21-2725-2017, 2017
Short summary
Short summary
Descriptions of soil hydraulic properties, such as soil moisture release curve, θ(h), and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Because it is usually more difficult to describe Ks than θ(h) from pedotransfer functions, we developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h). We further adaptations to this model to adapt it to dual-porosity structural soils.
Cited articles
Alkhaier, F., Flerchinger, G. N., and Su, Z.: Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description, Hydrol. Earth Syst. Sci., 16, 1817–1831, https://doi.org/10.5194/hess-16-1817-2012, 2012.
Bechtold, M., Haber-Pohlmeier, S., Vanderborght, J., Pohlmeier, A., Ferre, A., and Vereecken, H:
Near-surface solute redistribution during evaporation,
Geophys. Res. Lett.,
38, 17404, https://doi.org/10.1029/2011GL048147, 2011.
Bronfenbrener, L. and Bronfenbrener, R.:
Frost heave and phase front instability in freezing soils,
Cold Reg. Sci. Technol.,
64, 19–38, https://doi.org/10.1016/j.coldregions.2010.07.001, 2010.
Chamberlain, E. J.: Frost susceptibility of soil, Review of index tests, Cold Regoins Research and Engineering Lab Hanover, Cold Regions Research and Engineering Laboratory, United States Army Corps of Engineers,
Hanover, NH, USA, CRREL Monograph 81-2, 121 pp., available at: https://usace.contentdm.oclc.org/digital/api/collection/p266001coll1/id/6303/download (last acccess: 21 July 2021), 1981.
Chen, J., Gao, X., Zheng, X., Miao, C., Zhang, Y., Du, Q., and Xu, Y.:
Simulation of Soil Freezing and Thawing for Different Groundwater Table Depths, Vadose Zone J., 18, 18057, https://doi.org/10.2136/vzj2018.08.0157, 2019.
Cherkauer, K. A. and Lettenmaier, D. P.:
Hydrologic effects of frozen soils in the upper Mississippi River basin,
J. Geophys. Res.-Atmos.,
104, 19599–19610, https://doi.org/10.1029/1999jd900337, 1999.
China Meteorological Data Service Centre (CMDC): http://data.cma.cn/en, last access: 21 July 2021.
Daniel, J. A. and Staricka, J. A.:
Frozen Soil Impact on Ground Water–Surface Water Interaction,
J. Am. Water Resour. Ass.,
36, 151–160, https://doi.org/10.1111/j.1752-1688.2000.tb04256.x, 2000.
De Vries, D.: Thermal properties of soils, in: Physics of plant environment,
edited by: van Wijk, W. R., North-Holland Publishing Company, Amsterdam, 210–235, https://doi.org/10.1016/B978-0-12-244350-3.50006-9, 1963.
DeGaetano, A. T., Cameron, M. D., and Wilks, D. S.:
Physical simulation of maximum seasonal soil freezing depth in the United States using routine weather observations,
J. Appl. Meteorol.,
40, 546–555, https://doi.org/10.1175/1520-0450(2001)040<0546:psomss>2.0.co;2, 2001.
Demand, D., Selker, J. S., and Weiler, M.: Influences of Macropores on Infiltration into Seasonally Frozen Soil, Vadose Zone J., 18, 1–14, https://doi.org/10.2136/vzj2018.08.0147, 2019.
Drescher, W. J.: Some effects of preciptiation on ground water in Wisconsin,
Wisconsin Geological Survey, Madison, 1955.
Evans, S. G., Ge, S., Voss, C. I., and Molotch, N. P.:
The role of frozen soil in groundwater discharge predictions for warming alpine watersheds,
Water Resour. Res.,
54, 1599–1615, https://doi.org/10.1002/2017WR022098, 2018.
Fan, Y., Li, H., and Miguez-Macho, G.:
Global patterns of groundwater table depth,
Science,
339, 940–943, https://doi.org/10.1126/science.1229881, 2013.
Fetzer, T., Vanderborght, J., Mosthaf, K., Smits, K., M., and Helmig, R.: Heat and water transport in soils and across the soil-atmosphere interface: 2. Numerical analysis, Water Resour. Res., 53, 1080–1100, https://doi.org/10.1002/2016WR019983, 2017.
Flerchinger, G. N.: The simultaneous heat and water (SHAW) model:
Technical Documentation (version 3.0), Technical Report NWRC 2017-02, USDA Agriculture Research Service, Boise, Idaho, 1–40, 2017.
Flerchinger, G. N. and Saxton, K. E.: Simultaneous heat and water model of a freezing snow-residue-soil system I. Theory and development, T. ASAE,
32, 565–0571, https://doi.org/10.13031/2013.31040, 1989.
Fuchs, M., Campbell, G., and Papendick, R.: An Analysis of Sensible and Latent Heat Flow in a Partially Frozen Unsaturated Soil, Soil Sci. Soc. Am. J., 42, 379–385, https://doi.org/10.2136/sssaj1978.03615995004200030001x, 1978.
Hansson, K. and Lundin, L.-C.:
Equifinality and sensitivity in freezing and thawing simulations of laboratory and in situ data,
Cold Reg. Sci. Technol.,
44, 20–37, https://doi.org/10.1016/j.coldregions.2005.06.004, 2006.
Harlan, R.:
Analysis of coupled heat-fluid transport in partially frozen soil,
Water Resour. Res.,
9, 1314–1323, https://doi.org/10.1029/WR009i005p01314, 1973.
Hayhoe, H.:
Field testing of simulated soil freezing and thawing by the SHAW model,
Can. Agr. Eng.,
36, 279, 1994.
Hirota, T.:
An extension of the force-restore method to estimating soil temperature at depth and evaluation for frozen soils under snow,
J. Geophys. Res.,
107, 4767, https://doi.org/10.1029/2001jd001280, 2002.
Hohmann, M.:
Soil freezing — the concept of soil water potential. State of the art,
Cold Reg. Sci. Technol.,
25, 101–110, https://doi.org/10.1016/S0165-232X(96)00019-5, 1997.
Hou, G., Liang, Y., Su, X., Zhao, Z., Tao, Z., Yin, L., Yang, Y., and Wang, X.:
Groundwater Systems and Resources in the Ordos Basin, China,
Acta Geol. Sin.-Engl.,
82, 1061–1069, https://doi.org/10.1111/j.1755-6724.2008.tb00664.x, 2010.
Hubert, M.:
The Theory of Ground-Water Motion,
Soil Sci.,
51, 428, https://doi.org/10.1097/00010694-194105000-00015, 1940.
Ireson, A. M., van der Kamp, G., Ferguson, G., Nachshon, U., and Wheater, H. S.:
Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps and challenges,
Hydrogeol. J.,
21, 53–66, https://doi.org/10.1007/s10040-012-0916-5, 2013.
Iwata, Y., Hayashi, M., and Hirota, T.:
Comparison of snowmelt infiltration under different soil-freezing conditions influenced by snow cover,
Vadose Zone J.,
7, 79–86, https://doi.org/10.2136/vzj2007.0089, 2008.
Jiang, X. W., Sun, Z. C., Zhao, K. Y., Shi, F. S., Wan, L., Wang, X. S., and Shi, Z. M.:
A method for simultaneous estimation of groundwater evapotranspiration and inflow rates in the discharge area using seasonal water table fluctuations,
J. Hydrol.,
548, 498–507, https://doi.org/10.1016/j.jhydrol.2017.03.026, 2017.
Jiang, X. W., Wan, L., Wang, X. S., Wang, D., and Zhao, K. Y.:
A multi-method study of regional groundwater circulation in the Ordos Plateau, NW China,
Hydrogeol. J.,
1657–1668, https://doi.org/10.1007/s10040-018-1731-4, 2018.
Kahimba, F. C., Ranjan, R. S., and Mann, D. D.:
Modeling soil temperature, frost depth, and soil moisture redistribution in seasonally frozen agricultural soils,
Appl. Eng. Agric.,
25, 871–882, https://doi.org/10.13031/2013.29237, 2009.
Kaneko, T., Kobayashi, T., Wang, W., and Cho, H.:
Estimating Evaporation in Winter at a Field Irrigated Late in Autumn in Inner Mongolia, China,
Journal Faculty of Agriculture Kyushu University,
51, 407–411, https://doi.org/10.1017/S0021859605005733, 2006.
Kurylyk, B. L., MacQuarrie, K. T., and Voss, C. I.:
Climate change impacts on the temperature and magnitude of groundwater discharge from shallow, unconfined aquifers,
Water Resour. Res.,
50, 3253–3274, https://doi.org/10.1002/2013WR014588, 2014.
Li, Q., Sun, S., and Xue, Y.:
Analyses and development of a hierarchy of frozen soil models for cold region study, J. Geophys. Res., 115, D03107, https://doi.org/10.1029/2009JD012530, 2010.
Li, W., Brunner, P., Franssen, H. J. H., Li, Z., Wang, Z., Zhang, Z., and Wang, W.:
Potential evaporation dynamics over saturated bare soil and an open water surface,
J. Hydrol.,
590, 125140, https://doi.org/10.1016/j.jhydrol.2020.125140, 2020.
Liu, Q., Cui, B., and Yang, Z.:
Dynamics of the soil water and solute in the sodic saline soil in the Songnen Plain, China,
Environ. Earth SCi.,
59, 837–845, https://doi.org/10.1007/s12665-009-0079-4, 2009.
Lopez, C. M. L., Brouchkov, A., Nakayama, H., Takakai, F., Fedorov, A. N., and Fukuda, M.:
Epigenetic salt accumulation and water movement in the active layer of central Yakutia in eastern Siberia,
Hydrol. Process.,
21, 103–109, https://doi.org/10.1002/hyp.6224, 2010.
Mualem, Y.:
A new model for predicting the hydraulic conductivity of unsaturated porous media,
Water Resour. Res.,
12, 513–522, https://doi.org/10.1029/WR012i003p00513, 1976.
Nelson, F. E.:
(Un)frozen in time,
Science,
299, 1673–1675, https://doi.org/10.1126/science.1081111, 2003.
Okkonen, J., Ala-Aho, P., Hänninen, P., Hayashi, M., Sutinen, R., and Liwata, P.:
Multi-year simulation and model calibration of soil moisture and temperature profiles in till soil,
Eur. J. Soil Sci.,
68, 829–839, https://doi.org/10.1111/ejss.12489, 2017.
Romano, N., Brunone, B., and Santini, A.:
Numerical analysis of one-dimensional unsaturated flow in layered soils,
Adv. Water Resour.,
21, 315–324, https://doi.org/10.1016/S0309-1708(96)00059-0, 1998.
Rui, D., Zhai, J., Li, G., Zhang, J., and Suzuki, T.: Field experimental study of the characteristics of heat and water transfer during frost heaving, Cold Reg. Sci. Technol., 168, 102892, https://doi.org/10.1016/j.coldregions.2019.102892, 2019.
Schaap, M. G. and Leij, F. J.:
Database-Related Accuracy and Uncertainty of Pedotransfer Functions,
Soil Sci.,
163, 765–779, https://doi.org/10.1097/00010694-199810000-00001, 1998.
Schneider, R.: Correlation of ground-water levels and air temperatures in the winter and spring in Minnesota, US Geol Survey Water-Supply Paper 1539-D, D1–D14, United States Government Publishing Office, Washington DC, USA, 1961.
Schuur, E. A., Mcguire, A. D., Schadel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., and Lawrence, D. M.:
Climate change and the permafrost carbon feedback,
Nature,
520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Shoop, S. A. and Bigl, S. R.:
Moisture migration during freeze and thaw of unsaturated soils: modeling and large scale experiments,
Cold Reg. Sci. Technol.,
25, 33–45, https://doi.org/10.1016/S0165-232X(96)00015-8, 1997.
Stähli, M., Jansson, P.-E., and Lundin, L.-C.:
Soil moisture redistribution and infiltration in frozen sandy soils,
Water Resour. Res.,
35, 95–103, https://doi.org/10.1029/1998wr900045, 1999.
Stephens, D.: Vadose zone hydrology, Lewis, Baca Raton, FL, ISBN: 9780203734490, 1996.
Tóth, J.:
A theory of groundwater motion in small drainage basins in central Alberta, Canada,
J. Geophys. Res.,
67, 4375–4388, https://doi.org/10.1029/JZ067i011p04375, 1962.
United States Department of Agriculture (USDA): SHAW model download, USDA [code], Northwest Watershed Research Center, available at: https://www.ars.usda.gov/pacific-west-area/boise-id/northwest-watershed-research-center/docs/shaw-model/, last access: 21 July 2021.
van Dam, J. and Feddes, R.:
Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation,
J. Hydrol.,
233, 72–85, https://doi.org/10.1016/S0022-1694(00)00227-4, 2000.
van der Kamp, G., Hayashi, M., and Gallén, D.:
Comparing the hydrology of grassed and cultivated catchments in the semi-arid Canadian prairies,
Hydrol. Process.,
17, 559–575, https://doi.org/10.1002/hyp.1157, 2003.
van Genuchten, M. T.:
A closed-form equation for predicting the hydraulic conductivity of unsaturated soils,
Soil Sci. Soc. Am. J.,
44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Vanderborgh, J., Fetze, T., Mostha, K., Smit, K. M., and Helmi, R.:
Heat and water transport in soils and across the soil-atmosphere interface: 1. Theory and different model concepts,
Water Resour. Res.,
53, 1057–1079, https://doi.org/10.1002/2016WR019982, 2017.
Vinnikov, K. Y., Robock, A., Speranskaya, N. A., and Schlosser, C. A.:
Scales of temporal and spatial variability of midlatitude soil moisture,
J. Geophys. Res.-Atmos.,
101, 7163–7174, https://doi.org/10.1029/95JD02753, 1996.
Walvoord, M. A. and Kurylyk, B. L.:
Hydrologic Impacts of Thawing Permafrost—A Review,
Vadose Zone J., 15, 1–20, https://doi.org/10.2136/vzj2016.01.0010, 2016.
Wang, J. Z., Jiang, X. W., Wan, L., Worman, A., Wang, H., Wang, X. S., and Li, H.:
An analytical study on artesian flow conditions in unconfined-aquifer drainage basins,
Water Resour. Res.,
51, 8658–8667, https://doi.org/10.1002/2015WR017104, 2015.
Wexler, A., Hyland, R., and Stewart, R.: Thermodynamic properties of dry air, moist air and water and SI psychrometric charts, American Society of Heating, Refrigerating and Air-conditioning Engineers, Atlanta, USA, 1983.
Williams, P. and Smith, M.: The frozen earth: fundamentals of geocryology,
Cambridge University Press, New York, USA, ISBN: 9780521365345, 1989.
Willis, W. O., Parkinson, H. L., Carlson, C. W., and Haas, H. J.:
Water table changes and soil moisture loss under frozen conditions,
Soil Sci.,
98, 244–248, https://doi.org/10.1097/00010694-196410000-00005, 1964.
Wu, M., Huang, J., Wu, J., Tan, X., and Jansson, P.-E.:
Experimental study on evaporation from seasonally frozen soils under various water, solute and groundwater conditions in Inner Mongolia, China,
J. Hydrol.,
535, 46–53, https://doi.org/10.1016/j.jhydrol.2016.01.050, 2016.
Xue, J., Feng, H., Chen, J., Zheng, X., and Du, Q.:
The Effect of a Sand Interlayer on Soil Evaporation during the Seasonal Freeze–Thaw Period in the Middle Reaches of the Yellow River,
Water,
12, 2092, https://doi.org/10.3390/w12082092, 2020.
Yang, K., Qin, J., Zhao, L., Chen, Y., Tang, W., Han, M., Lazhu, Chen, Z., Lv, N., Ding, B., Wu, H., and Lin, C.:
A Multiscale Soil Moisture and Freeze-Thaw Monitoring Network on the Third Pole,
B. Am. Meteorol. Soc.,
94, 1907–1916, https://doi.org/10.1175/BAMS-D-12-00203.1, 2013.
Yorukoglu, M. and Celik, A. N.:
A critical review on the estimation of daily global solar radiation from sunshine duration,
Ener. Convers. Manage.,
47, 2441–2450, https://doi.org/10.1016/j.enconman.2005.11.002, 2006.
Yu, L., Zeng, Y., Wen, J., and Su, Z.:
Liquid-Vapor-Air Flow in the Frozen Soil,
J. Geophys. Res.-Atmos.,
123, 7393–7415, https://doi.org/10.1029/2018JD028502, 2018.
Yu, L., Zeng, Y., and Su, Z.: Understanding the mass, momentum, and energy transfer in the frozen soil with three levels of model complexities, Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020, 2020.
Zhang, T., Barry, R., Knowles, K., Ling, F., and Armstrong, R.:
Distribution of seasonally and perennially frozen ground in the Northern Hemisphere, Proceedings of the 8th International Conference on Permafrost,
Zürich, Switzerland, 1289–1294, 21 July 2003.
Zhang, Y. and Schaap, M. G.:
Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3), J. Hydrol., 547, 39–53, https://doi.org/10.1016/j.jhydrol.2017.01.004, 2017.
Zhang, Y., Cheng, G., Li, X., Jin, H., Yang, D., Flerchinger, G. N., Chang, X., Bense, V. F., Han, X., and Liang, J.:
Influences of Frozen Ground and Climate Change on Hydrological Processes in an Alpine Watershed: A Case Study in the Upstream Area of the Hei'he River, Northwest China, Permafrost Periglac., 28, 420–432, https://doi.org/10.1002/ppp.1928, 2017.
Zhang, Z., Wang, W., Gong, C., Wang, Z., Duan, L., Yeh, T. c. J., and Yu, P.:
Evaporation from seasonally frozen bare and vegetated ground at various groundwater table depths in the Ordos Basin, Northwest China,
Hydrol. Process., 33, 1338–1348, https://doi.org/10.1002/hyp.13404, 2019.
Zhao, K. Y., Jiang, X. W., Wang, X. S., and Wan, L.:
Restriction of groundwater recharge and evapotranspiration due to a fluctuating water table: a study in the Ordos Plateau, China,
Hydrogeol. J.,
2, 1–11, https://doi.org/10.1007/s10040-020-02208-9, 2020.
Zheng, C., Šimůnek, J., Zhao, Y., Lu, Y., Liu, X., Shi, C., Li, H., Yu, L., Zeng, Y., and Su, Z.: Development of the Hydrus-1D Freezing module and its application in simulating the coupled movement of water, vapor, and heat, J. Hydrol., 598, 126250, https://doi.org/10.1016/j.jhydrol.2021.126250, 2021.
Zheng, D., Velde, R., Su, Z., Wang, X., and Chen, Y.: Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part I: Soil Water Flow, J. Hydrometeorol., 16, 2659–2676, https://doi.org/10.1175/JHM-D-14-0198.1, 2015.
Zheng, D., Rogier, V., Su, Z., Wen, J., Wang, X., and Yang, K.:
Evaluation of Noah Frozen Soil Parameterization for Application to a Tibetan Meadow Ecosystem,
J. Hydrometeorol.,
18, 1749–1763, https://doi.org/10.1175/JHM-D-16-0199.1, 2017.
Zhu, Y., Ren, L., Skaggs, T. H., Lue, H., Yu, Z., Wu, Y., and Fang, X.:
Simulation of Populus euphratica root uptake of groundwater in an arid woodland of the Ejina Basin, China,
Hydrol. Process.,
23, 2460–2469, https://doi.org/10.1002/hyp.7353, 2010.
Short summary
Freezing-induced groundwater migration and water table decline are widely observed, but quantitative understanding of these processes is lacking. By considering wintertime atmospheric conditions and occurrence of lateral groundwater inflow, a model coupling soil water and groundwater reproduced field observations of soil temperature, soil water content, and groundwater level well. The model results led to a clear understanding of the balance of the water budget during the freezing–thawing cycle.
Freezing-induced groundwater migration and water table decline are widely observed, but...