Articles | Volume 25, issue 7
https://doi.org/10.5194/hess-25-4159-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4159-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Conditioning ensemble streamflow prediction with the North Atlantic Oscillation improves skill at longer lead times
Irish Climate Analysis and Research UnitS (ICARUS), Department of Geography, Maynooth University, Maynooth, Co. Kildare, Ireland
Conor Murphy
Irish Climate Analysis and Research UnitS (ICARUS), Department of Geography, Maynooth University, Maynooth, Co. Kildare, Ireland
Shaun Harrigan
Forecast Department, European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK
Ciaran Broderick
Flood Forecasting Division, Met Éireann, Dublin 9, Ireland
Dáire Foran Quinn
Irish Climate Analysis and Research UnitS (ICARUS), Department of Geography, Maynooth University, Maynooth, Co. Kildare, Ireland
Saeed Golian
Irish Climate Analysis and Research UnitS (ICARUS), Department of Geography, Maynooth University, Maynooth, Co. Kildare, Ireland
Jeff Knight
Met Office Hadley Centre, Exeter, UK
Tom Matthews
Department of Geography and Environment, Loughborough University, Loughborough, UK
Christel Prudhomme
Forecast Department, European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK
Department of Geography and Environment, Loughborough University, Loughborough, UK
UK Centre for Ecology & Hydrology (UKCEH), Wallingford, UK
Adam A. Scaife
Met Office Hadley Centre, Exeter, UK
College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, UK
Nicky Stringer
Met Office Hadley Centre, Exeter, UK
Robert L. Wilby
Department of Geography and Environment, Loughborough University, Loughborough, UK
Data sets
Hydro-Data Office of Public Works https://waterlevel.ie/hydro-data/
HydroNet Environmental Protection Agency https://epawebapp.epa.ie/hydronet/
Short summary
We benchmarked the skill of ensemble streamflow prediction (ESP) for a diverse sample of 46 Irish catchments. We found that ESP is skilful in the majority of catchments up to several months ahead. However, the level of skill was strongly dependent on lead time, initialisation month, and individual catchment location and storage properties. We also conditioned ESP with the winter North Atlantic Oscillation and show that improvements in forecast skill, reliability, and discrimination are possible.
We benchmarked the skill of ensemble streamflow prediction (ESP) for a diverse sample of 46...