This document contains our answers to the referees’ and editor’s comments. We would like first to thank Referees #1 and #2, the student Arnoud Goossen and the editor for the careful reading of the manuscript and their relevant remarks and comments. In what follows, the referees’ remarks are written in black while our answers are written in blue. Moreover, extracts from the revised manuscript are written in magenta.

Enclosed are two versions of our revised paper: one without track changes and one with track changes [the removed elements in the manuscript are in magenta and strikethrough while the added elements are in blue].

1. Student review
 • GENERAL COMMENTS
 The manuscript is of societal significance, as floods represent one of the major global natural disasters. Therefore, the importance of this topic is to develop a reliable and cost-effective flood forecasting model, however, it is questionable whether this is achieved. In general, the improvement of model predictions is critical in reducing future material and immaterial damage caused by flooding. However, I found the relative contribution of this study in the improvement of flood model predictions unclear. It is indistinct how significantly this study contributes to improvements in global flood predictions. Whether the findings of this research are useful in other catchment areas over the globe is not defined. Overall, I found the methodology and the results of this study worked out well. The stepwise approach is clear, and the representation of the results is very interesting to read. In the contrary, I found the introduction quite long, and very detailed. In my opinion, it difficult to find out what the broadly interesting knowledge gaps are. I suggest the introduction to be focused on the importance and contribution of this study to the appliance of flood model prediction on a global scale, and how that is achieved. Overall, this study fits well with the scope of the journal and can be published when several relatively minor issues are addressed. Below I provide more detailed comments.
 We thank Arnoud Goossen for his general assessment. We made the introduction more focused, highlighted the open science questions and clarified the objectives of the study. We further added a discussion on the steps still needed to enable global scale applications of the methodology introduced in this manuscript. In our opinion, the best way to evaluate the proposed methodology was to carry out a number of experiments in a controlled environment with synthetically generated and perfectly known data sets. While the results are encouraging and make it possible to envisage ‘real-world’ applications, it is also clear that more research is needed to get a better understanding of the adaptations that are required to systematically assimilate EO-derived flood extent observations into operational flood forecasting systems from around the world.

 • Firstly, the introduction is very detailed on background information, but lacking in the focus of this specific research. The background information consists of a description of Data Assimilation (DA) and Synthetic Aperture Radar (SAR) images which is an essential part of the study. Different assimilation methods are discussed in detail, but it is not clear which and why this method is expected to be used. The detailed treatment of all the background information causes an unclear overview of what the study actually is about, as several DA methods are mentioned (KF, 4DVar, PF, EnKF (line 42-58). We agree that the introduction should be shortened and more focused. We argue that the studies of Revilla-Romero et al. (2016), Lai et al. (2014), and Cooper et al. (2019) are of paramount importance in the context of our work because they did not transform the information derived from SAR data into a state variable of the model prior to the
assimilation. To make the introduction more focused, we have condensed this part and removed unnecessary details about these methods:

“Different information about water extent can be extracted from a SAR image and used to improve the forecasts using DA techniques. Directly assimilating flood extent maps is not straightforward because these do not correspond to a state variable of the model. Therefore, some studies suggested to transform the SAR backscatter information into state variable prior to the assimilation. For instance, several studies have used EO-derived water levels to improve flood forecasts [e.g. Andreadis et al. (2007), García-Pintado et al. (2015), Matgen et al. (2010), Revilla-Romero et al. (2016), Giustarini et al. (2011), Hostache et al. (2010)]. The water levels are estimated by merging pre-selected flood extent limits extracted from the SAR satellite imagery with a digital elevation model (DEM). This step requires precise flood contour maps and high resolution DEMs which are not always available (Hostache et al., 2018). In the existing literature only a few studies have used DA for directly assimilating flood extent maps into flood forecasting models [e.g. Lai et al. (2014), Revilla-Romero et al. (2016), Cooper et al. (2018b), Cooper et al. (2018a), Hostache et al. (2018)].

Among the advantages of a direct use of the SAR backscatter values is that it reduces the data processing time that is a key-element in near-operational applications.”

Then we move directly to the recent method of Cooper et al. (2018). This study, in which the information derived from the satellite is not transformed into a flood forecasting system variable, gives satisfying results in lines (cf. lines 49-53 of the revised untracked manuscript).

“Cooper et al. (2018a) have used an Ensemble Kalman Filter to update a 2D hydrodynamic model. In this case, the backscatter values are directly assimilated into the model without being transformed into state variables of the flood forecasting system. The dry and wet pixels of the simulated binary flood map are converted into equivalent SAR backscatter values corresponding to the spatial mean of the SAR backscatter observations. Cooper et al. (2018a) showed that the SAR backscatter-based assimilation method performs well compared to the assimilation method where the SAR backscatter is transformed into water levels.”

From Line 67 up to line 70 of the revised tracked manuscript, some differences between PFs and other assimilation techniques were mentioned. As these differences have been widely reported and discussed in many papers, we decided to delete this part in order to condense the introduction and remove unnecessary details about these methods.

- The introduction does not lead to a specific research question or clear objective. The objective is mentioned twice (line 74 and line 91), but the choice of words is different, which causes confusion. The objective is mentioned, but a briefly description on how the objective is achieved is missing. The referencing of previous studies is used to discuss this, but it is unclear which references are really used for the methodology. Now, only the last sentence of the introduction is stating that ‘a sensitivity analysis of the DA framework with respect to the tempering coefficient is conducted’, which is rather vague.

We fully agree that mentioning the objectives twice in a slightly different way created much unnecessary confusion. Therefore, we removed lines 87-88 of the revised tracked manuscript and condensed the objectives in one paragraph at the end of the introduction. The objectives are: evaluating the DA of Hostache et al. (2018) et al. in a controlled environment with synthetically generated data sets, carrying out a sensitivity analysis with
respects to the tempering coefficient and evaluating the effects on DA of errors in SAR observations.

“The main objective of the present study is to assess the strengths and the limitations of the DA framework previously proposed by Hostache et al. (2018). To do that we evaluate the DA framework in a fully controlled environment via synthetic twin experiments as this shall allow us drawing unambiguous and comprehensive conclusions. In addition, we conduct a sensitivity analysis of the DA framework with respect to the critical tempering coefficient that was recently introduced for tackling degeneracy more efficiently. We also aim to evaluate the effect of misclassified SAR pixels on DA. Therefore, errors are artificially added within the SAR image with the aim of getting a better understanding on how robust the proposed method is with respect to this type of errors. Results are evaluated not only locally but also over the entire flood domain and for subsequent time steps to the assimilation.”

The tempering coefficient to reduce degeneracy is already introduced from line 68 to 72 of the revised untracked manuscript.

“Hostache et al. (2018) also highlighted that degeneracy may be a major issue of PFs: after the assimilation, the number of particles with high weights reduces to a few or only one particle so that the ensemble loses statistical significance. To overcome this issue, Hostache et al. (2018) used a site-dependent tempering coefficient which inflates the posterior probability. In our study, we propose to adopt an enhanced tempering coefficient as a function of the desired effective ensemble size (EES) after the assimilation.”

The reference used for the methodology, which is Hostache et al. (2018), is stated in line 66-68 of the revised untracked manuscript.

“The present study is a follow up of the study by Hostache et al. (2018) and carries out a similar experiment in a controlled environment that considers the rainfall estimated together with SAR observations as the only source of uncertainty.”

- For this major argument I would recommend being more specific with referring to previous studies, and to have a critical look on the broad background information. Especially, some of the referred studies concerning KF, 4DVar and PF seem unnecessary tome. Try to aim for a narrowing of the introduction, so that the introduction leads to the objective and research questions of this study. I would remove the objective mentioned in line 74, as it is too subtle and not agree with the objective stated in line 91.

To shorten and focus the introduction, we have removed from the manuscript the objective mentioned in lines 87-88 of the revised tracked manuscript as well as all unnecessary details on the DA techniques of the studies referred to in lines 67 up to line 70 of the revised tracked manuscript.

- The second argument concerns the conclusions of this study. Overall, I am very content with the conclusions. The conclusions of this research focus on the specific study area of the River Severn (UK), which is logically in line with the objective of this study. In line 376 it is stated that the main issue of using SAR observations in flood forecasting models is the difficulty of detecting flooded areas for specific cases, such as urban or vegetated areas. For now, this study only seems to be applicable for this specific study area, but I wonder if that is really the case. The societal significance of this study would be large if it contributes to a global improvement of flood modelling. I would recommend discussing the use of the findings of
this study on a global scale. As a reader I would like to know how these results improve the appliance of SAR observations for different types of land use, or if a significant error increase is expected when the analysis is performed for different types of landscapes or land uses.

To discuss the applicability of the method at large scale, we have added a paragraph in the discussion section of the revised paper (cf. lines 455-465 of the revised untracked manuscript).

“We also argue that the method used in the manuscript has the potential to support EO-based modelling at large scale. This potential is particularly high in large, natural floodplains where flood inundation remains present over long time periods. In spite of the increased frequency of satellite observations, the persistence of a flood over many days increases the chance of its detection and mapping by satellite sensors. Another condition that needs to be satisfied is that there should be an unambiguous relationship between the flood extent observed by the spaceborne sensors and river discharge. This also means that areas where backscatter variations are not impacted by the appearance of floodwater (e.g. densely vegetated floodplains) should be rather small. Indeed, these constraints must be satisfied to enable a successful application of the proposed framework and to take advantage of the analysis carried out in this manuscript. As a conclusion, based on the above elements, we argue that our approach is valid regardless of the type of model coupling that is performed and is thus applicable to many different forecasting systems. However, more research is needed to fully understand the role of floodplain and water basin characteristics and SAR data properties on the DA performance.”

Regarding the error of SAR observations, as already mentioned in lines 402-407 of the revised untracked manuscript our results suggest that the DA can compensate for these kinds of errors if the percentage of misclassified pixels (i.e. in urban or vegetated areas) remains below 20% of the pixels of the SAR image. It means that model performances can improve if those areas are masked out or can be correctly classified.

“Our study further shows that it is important to characterize and mask out errors in the SAR observations. A large number of misclassified pixels substantially degrades the DA performance. In our case study, results suggest that an improvement of model simulations (i.e. water level and streamflow) in terms of CSI and RMSE performance metrics is achieved as long as errors in the observations are rather limited, i.e. when no more than 20% of the pixels are affected. However, if the misclassification goes beyond 40% of affected pixels, the assimilation has no effect and may even lead to a degradation of the model predictions.”

• Minor argument 1: In line 68-69 it is mentioned that there could be other possible sources of uncertainty in the model system. I suggest some examples, as for now it is unclear in what direction these other sources of uncertainties have to be found.

It is true that other sources of uncertainty: “...input data, model parameters, initial conditions and model structure represent sources of uncertainty that affect the reliability and accuracy of flood forecasts” were only mentioned in the abstract (lines 2-3). We have added such examples also in lines 58-62 of the revised untracked paper.

“Forecast errors are reduced by a factor of 2 at the assimilation time and improvements persist for subsequent time steps up to 2 days. However, the improvements are not systematic: for some cases the updated hydraulic output deviates from the observations.
One of the reasons for such outliers could be the assumption that rainfall represents the dominating source of uncertainty together with satellite observation errors, thereby excluding other possible sources of uncertainty in the model system such as input data, model parameters, initial conditions and model structure.”

- Minor argument 2: The spilling of water into the floodplain is modelled with a 2D diffusion wave scheme neglecting the convective acceleration (line 114). I would like to a reference or reasoning for the neglection of the convective acceleration. Even though it is logical, an assumption has been made about whether this term can be neglected, yes or no.

 The neglection of the convective acceleration for the simulation of the spilling of the water in the floodplain is rather common in order to simplify the shallow water equation. The 2D solver that has been used in the floodplain is the acceleration solver (Bates et al., 2010; De Almeida et al., 2012) which neglects only the convective acceleration. This reference has been added in lines 113-115 of the revised untracked manuscript.

 “When the storage capacity of the river is exceeded, the water spills into the floodplain and a 2D diffusion wave scheme neglecting the convective acceleration (de Almeida and Bates, 2013; Bates et al., 2010) is used for the floodplain flow simulation.”

 In addition, the hydraulic model used here is based on the set-up defined in Melissa Wood et al. (2016) whose details are given in the Study area section (c.f. lines 281-283 of the revised untracked manuscript):

 “Channel width, channel depth, slope of terrain, friction of the flood domain and channel bathymetry are defined in each cell of the model domain as described in Wood et al. (2016). A uniform flow condition is imposed downstream. No lateral inflow in the hydraulic model is assumed.”

- Minor argument 4: In this study, the alpha value is based on the desired effective ensemble size (EES) (line 222). It is unclear if this method has been used in previous studies and what the expected outcome of the use of this EES would be. I recommend adding some detail about this in the method section as it is a major change in comparison to the previous study by Hostache et al. (2018).

 The use of a tempering coefficient based on the effective ensemble size (EES) is commonly used in Particle Filters (van Leeuwen, 2019). The EES is used to obtain an idea of the number of particles having a non-negligible weight after the assimilation. However, the approach to compute α based on the EES is different from the study of Hostache et al. and to make this clearer we have changed sentences 228-229 of the revised untracked manuscript.

 “The coefficient α in Hostache et al. (2018) is site-dependent as it relies on the number of flood pixels, whereas in this study α is a function of the EES which is a measure of degeneracy based on the global weights (Arulampalam et al., 2002)”

- Minor issue 3: Line 216: “Since α, a and weights have values are lower than one”, missing “that” before “are”

 This has been corrected at line 222 of the revised untracked manuscript.

 “Since α and weights have values lower than one...”

- Methods Minor issue 2: Line 116: “No later inflow in. . .”. I assume this is incorrect. Shouldn’t this be ‘latent inflow’

 This is a typo and it has been corrected in line 283-284 of the revised untracked manuscript.

 No lateral inflow in the hydraulic model is assumed.
• Results Minor issue 4: Line 274-276: It is unclear if this is correct. The revisit time is around 3-4 days, which means 2 satellite images per week. I do not understand how this results in four assimilated synthetic observations in a period of 10 days. 2 images per week ≈ 3 images per 10 days?
 In lines 288-291 of the revised untracked manuscript we have added the orbit details in order to be clearer on the acquisition frequency. “The virtual satellite acquisition dates are aligned with the actual Sentinel-1 acquisition frequency. The revisit time over Europe, considering both ascending and descending orbits, is around 3-4 days meaning that on average 2 satellite images are available per week. In order to adopt a realistic Sentinel-1-like observation scenario we chose to assimilate four synthetic observations over a period of 10 days.”

• Minor issue 5: Fig 3 & 4: I have not read what the pixel size of the SAR observation is. I think it is important to mention the pixel size of the SAR observations by the Sentinel-1 satellite. The SAR resolution is provided in the revised manuscript and it has the same resolution of the LISFLOOD-FP maps as mentioned in line 88 of the revised untracked manuscript. “The SAR data are synthetically generated with a pixel spacing of 75 m.”

• Minor issue 6: Fig 6: Labels incorrect. In the graph of streamflow time series (left) the assimilation of image I is indicated four times, while in the image on the right the labels assimilation of image I, II, III, IV are given. The figure 6 has been corrected in the revised version.

• Minor issue 7: Line 301 & Fig 7: “higher than the orange ones. . .”. As the comparison between over detection (red) and under detection (black) is probably meant, “orange” should be “black
 This has been corrected in the revised version.

2. Anonymous Referee #1

• The paper addresses a topic of immense community interest. The methodological design is sound, and the overall writing quality is quite good. However, this paper lacks scientific/conceptual contribution.
 The main contribution of this paper is rather technical. I say this because the concept of assimilating remotely sensed flood maps into flood models is not new. While the authors nicely rationalized their limited focus (by clarifying that their goal is to assess previous DA frameworks and draw generic conclusions; see P4), I see a major conceptual issue which may put this paper in a “conflicting” position against the current state of science. See below.

 We thank Referee #1 for the assessment that made us re-think some critical aspects of our study.

The methodology presented in this paper is not applicable to the common practice of flood inundation modelling/forecasting. Specifically, regardless of DA technique (e.g., particle filter), effect of SAR observations cannot be fed back to streamflow and stageheight unless the hydrology and hydrodynamic models are tightly coupled. Most of the large basin/continental-scale flood inundation forecasting frameworks rely on loosely coupled hydrology (A) and hydraulic (B) model components. In such a framework, there is only a one-way transfer of information from A to B using a relational datamodel (Peckham et al., 2013). The VIC and LISFLOOD-FP coupling by Schumann et al. (2013), the VIC, Delft3D, and LISFLOOD-FP coupling (GLOFRIM framework) by Hoch et al. (2017), and the more recent SWAT and LISFLOOD-FP coupling by Rajib et al. (2020), all rely on loose coupling of models;
as such, the approach presented in this paper (and the underlying math) cannot be generalized. Therefore, I strongly suggest adding a separate paragraph in the introduction highlighting this limitation (dear authors: please feel free to recycle the above texts and references when you revise your paper).

Thank you very much for suggesting this clarification and providing relevant references. We would argue that one of the strengths of the proposed DA method is that it can be applied to different loosely coupled flood forecasting frameworks as it enables via a post-processing of the model data a feedback from SAR observations to streamflow and stage height simulations. The weights are used to calculate the expectation of water levels and discharge at the assimilation time and for subsequent time steps. No state variable of the hydrological model or hydraulic model is updated. Therefore, we argue that even though the models are loosely-coupled (one-way transfer of information), it is possible to apply the proposed methodology also to different model forecasting chains. Within the discussion section we have added a paragraph (lines 441-454 of the revised untracked version) of the manuscript to take into account the comments and the references suggested by Referee #1.

“Our DA framework can be applied to a variety of flood inundation forecasting chains. In fact, the forecast updating is carried out via a sequential importance sampling only (i.e. importance weights). Only the particle weights are updated based on the observations and used to compute the expectation (i.e. weighted mean) of the augmented state vector including hydraulic state variables of water depth, plus flood extent and boundary conditions. In this study the hydrologic and hydraulic models are loosely coupled with a one-way transfer of information as in many other studies [e.g., Peckham et al. (2013), Hoch et al. (2017), Rajib et al. (2020)]. The weights define the relative importance of the particles and thus of the inherent streamflow and stage along the entire river. We acknowledge that the observed flood extent is more closely linked to the past boundary conditions rather than the boundary conditions corresponding to the assimilation time steps. In spite of this limitation we argue that in this synthetic experiment, the particles that performed best in the past are also those that reach the highest performance level at the time of the assimilation. This is illustrated in the Figures 10 and 11 where the use of updated weights is shown to enable the correction of the state variables of the hydraulic model both upstream and downstream. However, we recognize that further improvements could be developed to address issues such as spurious relations that may occur between SAR observations and model variables due to a rather small ensemble size. Enlarging the ensemble size could be necessary if this occurs.”

- Accordingly, I also recommend editing the title as "Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic-hydraulic forecasting model: a proof of concept".

Thanks for that suggestion. We have changed the title accordingly.

3. Anonymous Referee #2

- This is a highly technical manuscript focused on assimilation of many different data sources using multiple techniques to predict flood extent and depth. I think this is an interesting study, but I overall think it needs major improvements before it can be published. The science is sound and interesting, but the manuscript could be clarified and re-vised throughout to make this easier for the reader to understand. I summarize my major comments and minor comments below.

- My main recommendation to the authors is to clearly clarify the contribution of this study to the literature. The manuscript incorporates many technical methodological
assessments, but it is not always clear why these assessments are being conducted, and what they help us learn about flood modelling. The authors should clearly state their contributions in the introduction and clarify in a discussion section how their findings advance those conducted by other studies. The introduction should be revised and reorganized. At current, the introduction is very technical, and describes a lot of the existing literature. However, I had a hard time following the common threads and major points being made across the arc of the introduction. Many individual references are described but aren’t necessarily connected to the bigger picture of flood modelling.

We thank Referee #2 for the detailed review. The introduction has been shortened and clarified in accordance with the referee’s recommendations. Less details on the existing literature are given and more emphasis is put on the open science questions and the objectives of our study (lines 37 – 48 of the revised untracked manuscript).

“Different information about water extent can be extracted from a SAR image and used to improve the forecasts using DA techniques. Directly assimilating flood extent maps is not straightforward because these do not correspond to a state variable of the model. Therefore, some studies suggested to transform the SAR backscatter information into state variable prior to the assimilation. For instance, several studies have used EO-derived water levels to improve flood forecasts [e.g. Andreadis et al. (2007), García-Pintado et al. (2015), Matgen et al. (2010), Revilla-Romero et al. (2016), Giustarini et al.(2011), Hostache et al. (2010)]. The water levels are estimated by merging pre-selected flood extent limits extracted from the SAR satellite imagery with a digital elevation model (DEM). This step requires precise flood contour maps and high resolution DEMs which are not always available (Hostache et al., 2018). In the existing literature only a few studies have used DA for directly assimilating flood extent maps into flood forecasting models [e.g. Lai et al. (2014), Revilla-Romero et al. (2016), Cooper et al. (2018b), Cooper et al. (2018a), Hostache et al.(2018)]. Among the advantages of a direct use of the SAR backscatter values is that it reduces the data processing time that is a key-element in near-operational applications.”

Moreover, we agree that the paragraph in lines 58-61 of the unrevised manuscript could create some confusion as it is not completely aligned with the rest of the introduction and therefore it has been removed. With these adjustments, we believe that the reader can better follow the main reasoning and the major points of the introduction.

• More synthesis is needed across these references and paragraphs to highlight the major knowledge gaps. Furthermore, I’d recommend shortening the introduction.
We have removed details of Revilla-Romero et al. (2016), Lai et al. (2014) in order to shorten the introduction. We have also removed details on the difference of the principal DA methods in lines 58-61 of the unrevised manuscript.

• Finally, the introduction section normally concludes with a statement about the novelty of the study, the scope, and the objectives. These are instead first introduced on line 75, then again later in the introduction. I’d recommend consolidating these statements into a coherent paragraph at the end of the introduction.
We fully agree with this assessment (see also our answer to a similar comment from Referee #1). The objectives are now condensed in one paragraph at the end of the introduction section line (78-85 of the revised untracked manuscript).

“The main objective of the present study is to assess the strengths and the limitations of the DA framework previously proposed by Hostache et al. (2018). To do that we...
evaluate the DA framework in a fully controlled environment via synthetic twin experiments as this shall allow us drawing unambiguous and comprehensive conclusions. In addition, we conduct a sensitivity analysis of the DA framework with respect to the critical tempering coefficient that was recently introduced for tackling degeneracy more efficiently. We also aim to evaluate the effect of misclassified SAR pixels on DA. Therefore, errors are artificially added within the SAR image with the aim of getting a better understanding on how robust the proposed method is with respect to this type of errors. Results are evaluated not only locally but also over the entire flood domain and for subsequent time steps to the assimilation.”

Objectives in line 75 of the unrevised manuscript have therefore been removed.

- At the end of the introduction, I am left unsure of the scope and objectives of the manuscript (for instance, nothing about SAR or flooding is mentioned). These three concluding sentences could benefit from more specifics as to what will be tested and explored in this particular article. Specifics, such as types of model used, data resolution, etc could be specified here, to more clearly articulate to the reader the framing of your particular work.

We have added a paragraph where specifics such as types of model used, data resolution are mentioned (lines 85-88 of the revised untracked manuscript). More details are given in the methods section.

“To carry out the experimental study we apply the DA framework to a forecasting system consisting of a loosely-coupled hydrological model (SUPERFLEX) and hydraulic model (LISFLOOD-FP). The meteorological data that are used to run the experiments are derived from the ERA-5 archive with a spatial resolution of 25 km and a temporal resolution of 1 hour. The SAR data are synthetically generated with a pixel spacing of 75 m.”

- The methods section is very detailed (which I appreciate). Yet, I had a hard time understanding the major comparisons to be made in the results/discussion section. Could you more clearly summarize these and why you are comparing these methods at the start of this section?

We have added the following paragraph from line 98 to line 103 in the revised untracked version of the manuscript.

“The three conducted experiments are summarized as follows:
(a) An application of the standard PF where degeneracy occurs;
(b) An application of the adapted PF where a tempering coefficient is used to reduce degeneracy. We also investigated the sensitivity of the DA results to different values for the tempering coefficient, corresponding to effective ensemble sizes of 5, 10, 20 and 50%;
(c) An application of both proposed methods with artificially introduced known errors into the SAR image classification in order to evaluate the impact of these errors on the DA performance metrics.”

- The workflow is helpful, but with the number of methods and acronyms, I had a hard time following this.

We have removed the acronyms in the flow chart caption of Figure 1 to make it more easily readable:

“Flow chart of the synthetic experiment. The true rainfall is perturbed. The same flood forecasting model structure composed of a hydrological model and a hydraulic model is used to obtain the probabilistic flood map and the ensemble of binary flood maps. The
probabilistic flood map is assimilated into the ensemble of binary flood maps via the
Particle Filter to obtain the weights with which the expectation of water levels,
streamflow and flood extent are computed.”

• The Study Area section comes after the methods section – this was a little confusing to
me, because the nuances of this are discussed in the methods section. Is it worth
switching the order of these?

“The Study Area section comes after the methods section – this was a little confusing to
me, because the nuances of this are discussed in the methods section. Is it worth
switching the order of these?

“Channel width, channel depth, slope of terrain, friction of the flood domain and
channel bathymetry are defined in each cell of the model domain as described in Wood
et al. (2016). A uniform flow condition is imposed downstream. No lateral inflow in the
hydraulic model is assumed.”

This paragraph has been moved into the section Study area of the revised paper.
However, we kept the study area section after the methods section because we want to
give a more general overview of the methodology (not related to the study area) and to
show that it is applicable to many cases, whereas the study area is more specific, closer
to our particular situation.

• Please ensure that all paragraphs are 3+ sentences and ensure that these are
appropriately combined throughout the text.

This has been checked and corrected in the revised version of the manuscript.

• I would recommend relabelling sub-sections within the results to separate out
the different comparisons and techniques you are making – organizing these headings would
help me connect what you do to your methods section. For instance, I had a hard time
connecting these results to the stated objective of detecting uncertainty in precipitation,
and then to the conclusions section. It could also help to start each sub-section by
describing what methods/approaches you are testing and why, given there are many
comparisons.

Titles for each subsection of the results section have been changed according to
reviewer’s suggestion, as follows:

4.1 Synthetic SAR and ensemble generation and evaluation
4.2 Evaluation of the flood extent map estimated at the assimilation time
4.3 Evaluation of the flood map estimated in time
4.4 Evaluation of the water levels in time over a global scale
4.5 Evaluation of discharge and water level time series
4.6 Impact assessment of errors in SAR observations

• This may be a personal preference, but I would recommend shortening the conclusions
section, and moving much of what is in there now to a discussion section.

We have modified the discussion and conclusion sections in the revised paper following
the recommendation of the reviewer.

• Within this discussion section, the main piece I don’t see is a discussion of the limitations
of this approach.

Limitations are now defined in the discussion section of the revised manuscript as
indicated below.

• Is there a reason to think that this approach is transferable? Why or why not?

This has been changed in lines 441-454 of the revised untracked manuscript:

“Our DA framework can be applied to a variety of flood inundation forecasting chains. In
fact, the forecast updating is carried out via a sequential importance sampling only (i.e.
importance weights). Only the particle weights are updated based on the observations

and used to compute the expectation (i.e. weighted mean) of the augmented state vector including hydraulic state variables of water depth, plus flood extent and boundary conditions. In this study the hydrologic and hydraulic models are loosely coupled with a one-way transfer of information as in many other studies [e.g., Peckham et al. (2013), Hoch et al. (2017), Rajib et al. (2020)]. The weights define the relative importance of the particles and thus of the inherent streamflow and stage along the entire river. We acknowledge that the observed flood extent is more closely linked to the past boundary conditions rather than the boundary conditions corresponding to the assimilation time steps. In spite of this limitation we argue that in this synthetic experiment, the particles that performed best in the past are also those that reach the highest performance level at the time of the assimilation. This is illustrated in the Figures 10 and 11 where the use of updated weights is shown to enable the correction of the state variables of the hydraulic model both upstream and downstream. However, we recognize that further improvements could be developed to address issues such as spurious relations that may occur between SAR observations and model variables due to a rather small ensemble size. Enlarging the ensemble size could be necessary if this occurs.”

In what scenarios is this approach more useful (i.e. at what scale)?
This has been changed in lines 455-465 of the revised untracked manuscript.

“We also argue that the method used in the manuscript has the potential to support EO-based modelling at large scale. This potential is particularly high in large, natural floodplains where flood inundation remains present over long time periods. In spite of the increased frequency of satellite observations, the persistence of a flood over many days increases the chance of its detection and mapping by satellite sensors. Another condition that needs to be satisfied is that there should be an unambiguous relationship between the flood extent observed by the space-borne sensors and river discharge. This also means that areas where backscatter variations are not impacted by the appearance of floodwater (e.g. densely vegetated floodplains) should be rather small. Indeed, these constraints must be satisfied to enable a successful application of the proposed framework and to take advantage of the analysis carried out in this manuscript. As a conclusion, based on the above elements, we argue that our approach is valid regardless of the type of model coupling that is performed and is thus applicable to many different forecasting systems. However, more research is needed to fully understand the role of floodplain and water basin characteristics and SAR data properties on the DA performance.”

• Given that rainfall is the main source of uncertainty, what does this mean for future work?
This has been explained in lines 409-416 of the revised untracked manuscript.

“The results of our study confirm the effectiveness of the proposed DA framework when the hypothesis of the rainfall as the main source of uncertainty is verified. Consequently, for those cases where rainfall represents the main source of uncertainty, more obviously but not only in poorly and un-gauged catchments and when using medium-range forecasting models, our study results indicate that the application of the approach described in the manuscript may lead to improved results of the model simulations. For those cases where the uncertainty of other sources becomes more relevant and may be even dominant, it is clear that such sources need to be taken into account explicitly. However, the required adaptations of the proposed DA framework still need to be developed. In this context it is also worth mentioning that the limitations identified in the previously published real case study by Hostache et al. (2018) were explained by additional sources of uncertainties not taken into account.”
Can this work improve forecasting?
This has been explained in lines 417-423 of the revised untracked manuscript.

"Using probabilistic flood maps or backscatter values increases the number of
observations to be assimilated when compared to a method that only derives the flood
edge from satellite observations as reported in Cooper et al. (2018a). Moreover, the
nearly direct use of the SAR information enables a faster end-to-end processing from the
acquisition of the image to the assimilation of the SAR data into the model which is
beneficial for an operational usage. In our experiments, the improvements of model
forecasts of water level and streamflow are significant at the assimilation time step and
the improvements persist over subsequent time steps (for example up to 27 hours after
the first assimilation the model results outperform the open loop simulation).

Line 42 – “used” is repeated Line 48-49 – I had trouble understanding this sentence –
could you rephrase? It was not clear to me what ‘the latter’ referred to:
The sentence has been rephrased in lines 37-38 of the revised untracked manuscript.

“Directly assimilating flood extent maps is not straightforward because these do not
correspond to a state variable of the model. Therefore, some studies suggested to
transform the SAR backscatter information into state variable prior to the assimilation.”

Line 42 – I am missing the connection from this paragraph to the next – why would one
want to use a KP, 4DVar, or PF technique for assimilation of flood information? Can you
connect these thoughts to the previous sentence?
We have removed details on the techniques used in the different cited studies.

Line 52 – is there a reason to have a whole paragraph focused on this particular article?
Is it most similar to what is done in this study? Do you improve on their work? If not, I’d
recommend shortening the description of this article:
We have removed unnecessary details of Cooper et al (2018). The sentence has been
rephrased in lines 49-53 of the revised untracked manuscript.

“Cooper et al. (2018a) have used an Ensemble Kalman Filter to update a 2D
hydrodynamic model. In this case, the backscatter values are directly assimilated into
the model without being transformed into state variables of the flood forecasting
system. The dry and wet pixels of the simulated binary flood map are converted into
equivalent SAR backscatter values corresponding to the spatial mean of the SAR
backscatter observations. Cooper et al. (2018a) showed that the SAR backscatter-based
assimilation method performs well compared to the assimilation method where the SAR
backscatter is transformed into water levels.”

Lines 76 – 90 – this is very detailed, to the point where I am unsure if this is helpful in the
introduction. Would you be able to shorten this section and distill a few key messages?
Could this be moved to the methods section?
The paragraph has been restructured and shortened. Some relevant details have been
moved to the methods section. The following paragraph remains in the introduction:

“Moreover, in Hostache et al. (2018), speckle errors in the SAR observations, are taken
into account through the Bayesian approach introduced by Giustarini et al. (2016).
However, no conclusions are drawn concerning the effect of misclassified pixels. In fact,
for some particular cases such as densely vegetated areas, the detection of floodwater
from SAR imagery is known to be prone to errors. Detecting and removing such errors
represents one of the main scientific challenges of using SAR data for a systematic, fully
automated, large-scale flood monitoring (and prediction).”

The following paragraph has been moved to the methods section:

“The method proposed by Giustarini et al. (2016) aims at characterizing the speckle-
induced uncertainty. However, it does not consider any other phenomena leading to a
wrong classification in SAR-based flood maps. Particular atmospheric conditions (e.g. wind, snow, precipitation), water-look-a-like areas (e.g. asphalt, sand, shadow) or obstructing objects (e.g. dense canopy, buildings), as mentioned in Giustarini et al. (2015), can lead to a wrong classification in the flood maps. Therefore, the areas where such errors could occur should be masked out from the SAR-based flood maps in order to provide a reliable flood detection.”

- Line 178: “supposed to be uniform” – do you mean assumed to be uniform? Sampled as uniform? Please clarify: The sentence has been corrected.

- Section 2.3 – please weave the equations into the text, instead of listing them after the text here: This has been done in the revised manuscript.

- Section 2.4 – please do a thorough read to ensure that all variables in the contained equations are clearly defined in this section: This has been changed. The “δ is the Dirac delta function” was missing.

- Lines 228 – 232 – this reads as ‘results’ – should this be moved to the results section?: The paragraph has been moved to the conclusion section of the revised manuscript. “In this study, we have evaluated the effect of variations of the tempering coefficient on the DA performance. Different PFs are compared with the OL and the synthetic truth: the SIS (with only a few particles from the ensemble potentially carrying non-negligible weights) and the adapted method with 5-10-20-50% EES (with the number of particles with non-negligible weights increasing with the EES). This methodology leads to slightly biased estimates because the observation is down-weighted.”

- Section 3.0 – please capitalize ‘area’: The area word in the title has been capitalized.

- Line 276: The plots in this section show four time points – why did you select these time points? Please introduce the time points in this section: In lines 288-291 of the revised untracked manuscript are explained. “The virtual satellite acquisition dates are aligned with the actual Sentinel-1 acquisition frequency. The revisit time over Europe, considering both ascending and descending orbits, is around 3-4 days meaning that on average 2 satellite images are available per week. In order to adopt a realistic Sentinel-1-like observation scenario we chose to assimilate four synthetic observations over a period of 10 days.”

- Line 285: You show a sub-section of the result area multiple times – please introduce this area and why you selected it in the text. Also – are you computing results for just this section of the river or the entire watershed? I wasn’t sure from the methods and study area section. Please clarify: Further clarifications are reported in the results section lines 292-294 of the revised untracked manuscript are explained. “In the Figures 3 and 4, the area corresponds to the hydraulic model domain. The hydrologic model, covering the upstream catchment, is used to compute the input boundary conditions of the hydraulic model. Results are computed and compared within the hydraulic model domain.”

- Line 274 – 284 – should this be in methods? This paragraph has been moved to the beginning of the methods section of the revised version.
• 279 – 281 – what is the significance of this? Could you explain more why you mention this here? This again seems like ‘methods’ – should this be moved to the methods section, or is it a ‘result’ of your investigation?

Lines 279 – 281 have been moved to the methods section from line 141-151 of the revised untracked manuscript.

“While this study is based on a synthetic experiment, true binary flood extent maps are available. Therefore, the assimilation is realized using both the estimated prior probability (as the ratio between the flooded area and the total area) and the prior probability equal to 0.5. Given the similarity of the results for both cases, in the following sections we only discuss the experiment using the true prior probability. The method proposed by Giustarini et al. (2016) aims at characterizing the speckle-induced uncertainty. However, it does not consider any other phenomena leading to a wrong classification in SAR-based flood maps. Particular atmospheric conditions (e.g. wind, snow, precipitation), water-look-a-like areas (e.g. asphalt, sand, shadow) or obstructing objects (e.g. dense canopy, buildings), as mentioned in Giustarini et al. (2015), can lead to a wrong classification in the flood maps. Therefore, the areas where such errors could occur should be masked out from the SAR-based flood maps in order to provide a reliable flood detection.”

• Line 284 – Figure 3 and Figure 5 are mentioned – figures should be listed in order. Figure 4 is not cited in the text. Should this be removed or moved to Supporting Information?

The typo has been corrected.

• Line 315 – Please do not start a sentence with a number:

This has been corrected.

• Line 387 – 399 – could you rephrase this sentence? I don’t understand what it is saying:

- Paragraph (a) “Although the use of a smaller tempering coefficient leads to a larger effective ensemble size (e.g. 50 %) and helps avoid degeneracy, the results are less accurate compared to the standard method or a 5% EES method” has been rephrased and put in lines 434-439 of the revised untracked manuscript

“Some modifications of the DA framework are still required to fully overcome the issue of degeneracy. Although the use of a smaller tempering coefficient leads to a larger effective ensemble size (e.g. 50 %) and helps avoid degeneracy, the results are less accurate compared to the standard method or the adapted method with 5% EES. As described in Neal (1996) and in van Leeuwen et al. (2019), the tempering procedure consists of several steps, but in this study the tempering coefficient is applied only to flatten the likelihood, therefore down weighting the observations. This most likely explains why the data assimilation performs better when the effective ensemble size (the number of particles not negligible after the assimilation) is smaller.”

- Paragraph (b) “The persistence in time of the beneficial effects of the assimilation varies according to the rapidity of variations of flood extent; a more frequent image acquisition could help in better keep the predictions on track.” has been rephrased and put in lines 421-433 of the revised untracked manuscript

“In our experiments, the improvements of model forecasts of water level and streamflow are significant at the assimilation time step and the improvements persist over subsequent time steps (for example up to 27 hours after the first assimilation the model results outperform the open loop simulation). The persistence of these improvements depends on the flashiness of the flood event (i.e., the rapidity with which hydrologic conditions change). More frequent image
acquisitions could help keep model predictions on track, especially when the system is highly dynamic. The update of a state variable of the forecasting model could as well increase the persistence of the improvements. In our study none of the model state variables is updated as only the particle weights are computed, based on the SAR observations and on the simulated flood extent maps and used to calculate the expectation of water levels and streamflow. In previous studies [Andreadis et al. (2007), Matgen et al. (2010), Cooper et al. (2018b)], inflow updating was identified as a condition leading to more persistent improvements. For instance, one of the conclusions from the study by Matgen et al. (2010) was that updating the fluxes at the upstream boundary conditions, rather than the water levels, is more effective because of the high uncertainty of the inflow due to the poorly known rainfall distribution over the catchment. Therefore, as a future perspective, we aim to update hydrologic model states because it might have a positive impact on the long-term runoff simulations and consequently on the persistence of DA benefits.”

Paragraph (c) “Our study further shows that it is important to characterize and mask errors in the SAR observations. A large number of misclassified pixels substantially degrades DA performance. In our study, the improvement of model simulations (water levels and streamflow) and performances (CSI and RMSE) after the assimilation is still possible if the errors in the SAR observations are rather limited (not more than the 20% of the pixels). However, if the misclassification goes beyond 40% of the pixels, the assimilation has no effect or even degrades the model predictions” has been rephrased and put in lines 402-407 of the revised untracked manuscript.

“Our study further shows that it is important to characterize and mask out errors in the SAR observations. A large number of misclassified pixels substantially degrades the DA performance. In our case study, results suggest that an improvement of model simulations (i.e. water level and streamflow) in terms of CSI and RMSE performance metrics is achieved as long as errors in the observations are rather limited, i.e. when no more than 20% of the pixels are affected. However, if the misclassification goes beyond 40% of affected pixels, the assimilation has no effect and may even lead to a degradation of the model predictions.”

Paragraph (d) “The results confirm the validity of the DA framework when the hypothesis of the rainfall as main source of uncertainty is verified. This confirms that the limitations identified in the previous real case study by Hostache et al. (2018) could be explained by additional sources of uncertainties that were not taken into account” has been rephrased and put in lines 409-416 of the revised untracked manuscript.

“The results of our study confirm the effectiveness of the proposed DA framework when the hypothesis of the rainfall as the main source of uncertainty is verified. Consequently, for those cases where rainfall represents the main source of uncertainty, more obviously but not only in poorly and un-gauged catchments and when using medium-range forecasting models, our study results indicate that the application of the approach described in the manuscript may lead to improved results of the model simulations. For those cases where the uncertainty of other sources becomes more relevant and may be even dominant, it is clear that such sources need to be taken into account explicitly. However, the required adaptations of the proposed DA framework still need to be developed. In this context it is also worth mentioning that the limitations identified in the previously published real case
study by Hostache et al. (2018) were explained by additional sources of uncertainties not taken into account.”

- Figure 2: Could you highlight on this figure the places you select for Figure 3 and Figure 4?
 A black square has been drawn in figure 2 corresponding to the domain of the hydraulic model of figures 3 and 5.

- Figure 3 and 4: The legend is hard to see, and there is no label of what ‘value’ is being shown (and its associated units).
 This has been modified.

- Figure 3 and 4: What are the four assimilation time steps? Please label these figures as (a)-(d) or on the figure to indicate this.
 It has been done in the revised version of the manuscript.

- Figure 3 and 4: Should these be combined to enable comparison? It is not entirely clear from the resultstext what these images show and how these connect to the workflow.
 It is explained in lines 294-296 of the revised untracked version of the manuscript.
 “The synthetic SAR observations are shown in Figure 3. The corresponding PFMs are shown in Figure 4 and reliability plots are provided in Figure 5. In the reliability plots, the points aligned along the 1:1 line indicate a statistically reliable PFM.”

- Table 1 and Table 2: Please direct readers to Figure 6 in the captions for these:
 The caption of table 1 and 2 have been corrected.