Articles | Volume 25, issue 5
https://doi.org/10.5194/hess-25-2915-2021
https://doi.org/10.5194/hess-25-2915-2021
Research article
 | 
31 May 2021
Research article |  | 31 May 2021

Variations in surface roughness of heterogeneous surfaces in the Nagqu area of the Tibetan Plateau

Maoshan Li, Xiaoran Liu, Lei Shu, Shucheng Yin, Lingzhi Wang, Wei Fu, Yaoming Ma, Yaoxian Yang, and Fanglin Sun

Related authors

Long-term Land-Atmosphere Energy and Water Exchange Observational Dataset over central Tibetan Plateau
Haipeng Yu, Guantian Wang, Zeyong Hu, Yaoming Ma, Maoshan Li, Weiqiang Ma, Lianglei Gu, Fanglin Sun, Hongchun Gao, Shujin Wang, and Fuquan Lu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-356,https://doi.org/10.5194/essd-2025-356, 2025
Preprint under review for ESSD
Short summary
Quantifying the spatial-temporal patterns of land-atmosphere water, heat and CO2 flux exchange over the Tibetan Plateau from an observational perspective
Binbin Wang, Yaoming Ma, Zeyong Hu, Weiqiang Ma, Xuelong Chen, Cunbo Han, Zhipeng Xie, Yuyang Wang, Maoshan Li, Bin Ma, Xingdong Shi, Weimo Li, and Zhengling Cai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-195,https://doi.org/10.5194/essd-2025-195, 2025
Preprint under review for ESSD
Short summary
Measurement report: Structure of the atmospheric boundary layer and its relationship with the land-atmosphere interaction on the Tibetan Plateau
Maoshan Li, Wei Fu, Na Chang, Ming Gong, Pei Xu, Yaoming Ma, Zeyong Hu, Yaoxian Yang, and Fanglin Sun
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-257,https://doi.org/10.5194/acp-2022-257, 2022
Revised manuscript not accepted
Short summary
A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau
Yaoming Ma, Zeyong Hu, Zhipeng Xie, Weiqiang Ma, Binbin Wang, Xuelong Chen, Maoshan Li, Lei Zhong, Fanglin Sun, Lianglei Gu, Cunbo Han, Lang Zhang, Xin Liu, Zhangwei Ding, Genhou Sun, Shujin Wang, Yongjie Wang, and Zhongyan Wang
Earth Syst. Sci. Data, 12, 2937–2957, https://doi.org/10.5194/essd-12-2937-2020,https://doi.org/10.5194/essd-12-2937-2020, 2020
Short summary

Cited articles

Arino, O., Ramos, J., Kalogirou, V., Defourny, P., and Achard, F.: Glob Cover 2009, in: Proceedings of the living planet Symposium, Edinburgh, UK, 686–689, available at: http://hdl.handle.net/2078.1/74498 (last access: 18 February 2011), 2010. 
Asrar, G., Myneni, R. B., and Choudhury, B. J. : Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation: A modelling study, Remote Sens. Environ., 41, 85–103, https://doi.org/10.1016/0034-4257(92)90070-Z, 1992. 
Brutsaert, W. A.: Evaporation into the Atmosphere, D. Reidel Publishing Company, Dordrecht, the Netherlands, 113–121, https://doi.org/10.1007/978-94-017-1497-6, 1982. 
Chen, J., Wang, J., and Mitsuaki, H.: An independent method to determine the surface roughness length, Chin. J. Atmos. Sci., 17, 21–26, https://doi.org/10.3878/j.issn.1006-9895.1993.01.03, 1993. 
Chen, Q. T., Jia, L., Hutjes, R., and Menenti, M.: Estimation of Aerodynamic Roughness Length over Oasis in the Heihe River Basin by Utilizing Remote Sensing and Ground Data, Remote Sens., 7, 3690–3709, https://doi.org/10.3390/rs70403690, 2015. 
Download
Short summary
In this study, using MODIS satellite data and site atmospheric turbulence observation data in the Nagqu area of the northern Tibetan Plateau, with the Massman-retrieved model and a single height observation to determine aerodynamic surface roughness, temporal and spatial variation characteristics of the surface roughness were analyzed. The result is feasible, and it can be applied to improve the model parameters of the land surface model and the accuracy of model simulation in future work.
Share