Articles | Volume 25, issue 1
https://doi.org/10.5194/hess-25-193-2021
https://doi.org/10.5194/hess-25-193-2021
Research article
 | 
13 Jan 2021
Research article |  | 13 Jan 2021

Multivariate autoregressive modelling and conditional simulation for temporal uncertainty analysis of an urban water system in Luxembourg

Jairo Arturo Torres-Matallana, Ulrich Leopold, and Gerard B. M. Heuvelink

Related authors

BIS-4D: mapping soil properties and their uncertainties at 25 m resolution in the Netherlands
Anatol Helfenstein, Vera L. Mulder, Mirjam J. D. Hack-ten Broeke, Maarten van Doorn, Kees Teuling, Dennis J. J. Walvoort, and Gerard B. M. Heuvelink
Earth Syst. Sci. Data, 16, 2941–2970, https://doi.org/10.5194/essd-16-2941-2024,https://doi.org/10.5194/essd-16-2941-2024, 2024
Short summary
AN INTEROPERABLE DIGITAL TWIN TO SIMULATE SPATIO-TEMPORAL PHOTOVOLTAIC POWER OUTPUT AND GRID CONGESTION AT NEIGHBOURHOOD AND CITY LEVELS IN LUXEMBOURG
U. Leopold, C. Braun, and P. Pinheiro
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W7-2023, 95–100, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-95-2023,https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-95-2023, 2023
SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty
Laura Poggio, Luis M. de Sousa, Niels H. Batjes, Gerard B. M. Heuvelink, Bas Kempen, Eloi Ribeiro, and David Rossiter
SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021,https://doi.org/10.5194/soil-7-217-2021, 2021
Short summary
A TENSOR BASED FRAMEWORK FOR LARGE SCALE SPATIO-TEMPORAL RASTER DATA PROCESSING
S. Bhattacharya, C. Braun, and U. Leopold
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W14, 3–9, https://doi.org/10.5194/isprs-archives-XLII-4-W14-3-2019,https://doi.org/10.5194/isprs-archives-XLII-4-W14-3-2019, 2019
Geostatistical upscaling of rain gauge data to support uncertainty analysis of lumped urban hydrological models
Manoranjan Muthusamy, Alma Schellart, Simon Tait, and Gerard B. M. Heuvelink
Hydrol. Earth Syst. Sci., 21, 1077–1091, https://doi.org/10.5194/hess-21-1077-2017,https://doi.org/10.5194/hess-21-1077-2017, 2017
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Uncertainty analysis
Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model
Simone Ulzega and Carlo Albert
Hydrol. Earth Syst. Sci., 27, 2935–2950, https://doi.org/10.5194/hess-27-2935-2023,https://doi.org/10.5194/hess-27-2935-2023, 2023
Short summary
All models are wrong, but are they useful? Assessing reliability across multiple sites to build trust in urban drainage modelling
Agnethe Nedergaard Pedersen, Annette Brink-Kjær, and Peter Steen Mikkelsen
Hydrol. Earth Syst. Sci., 26, 5879–5898, https://doi.org/10.5194/hess-26-5879-2022,https://doi.org/10.5194/hess-26-5879-2022, 2022
Short summary
The potential of historical hydrology in Switzerland
Oliver Wetter
Hydrol. Earth Syst. Sci., 21, 5781–5803, https://doi.org/10.5194/hess-21-5781-2017,https://doi.org/10.5194/hess-21-5781-2017, 2017
Short summary
Geostatistical upscaling of rain gauge data to support uncertainty analysis of lumped urban hydrological models
Manoranjan Muthusamy, Alma Schellart, Simon Tait, and Gerard B. M. Heuvelink
Hydrol. Earth Syst. Sci., 21, 1077–1091, https://doi.org/10.5194/hess-21-1077-2017,https://doi.org/10.5194/hess-21-1077-2017, 2017
Short summary
Improving uncertainty estimation in urban hydrological modeling by statistically describing bias
D. Del Giudice, M. Honti, A. Scheidegger, C. Albert, P. Reichert, and J. Rieckermann
Hydrol. Earth Syst. Sci., 17, 4209–4225, https://doi.org/10.5194/hess-17-4209-2013,https://doi.org/10.5194/hess-17-4209-2013, 2013

Cited articles

Andrés-Doménech, I., Múnera, J. C., Francés, F., and Marco, J. B.: Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment, Hydrol. Earth Syst. Sci., 14, 2057–2072, https://doi.org/10.5194/hess-14-2057-2010, 2010. a, b
Bach, P. M., Rauch, W., Mikkelsen, P. S., McCarthy, D. T., and Deletic, A.: A critical review of integrated urban water modelling – Urban drainage and beyond, Environ. Model. Softw., 54, 88–107, 2014. a
Bachmann-Machnik, A., Meyer, D., Waldhoff, A., Fuchs, S., and Dittmer, U.: Integrating retention soil filters into urban hydrologic models – Relevant processes and important parameters, J. Hydrol., 559, 442–453, https://doi.org/10.1016/j.jhydrol.2018.02.046, 2018. a, b, c, d
Baker, L. A. (Ed.): The Water Environment of Cities, Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA, 2009. a, b
Barbosa, S. M.: Package ”mAr”: Multivariate AutoRegressive analysis, The Comprehensive R Archive Network, CRAN, 1.1-2 edn., 2015. a
Download
Short summary
This study aimed to select and characterise the main sources of input uncertainty in urban sewer systems, while accounting for temporal correlations of uncertain model inputs, by propagating input uncertainty through the model. We discuss the water quality impact of the model outputs to the environment, specifically in combined sewer systems, in relation to the uncertainty analysis, which constitutes valuable information for the environmental authorities and decision-makers.