Bastin, L., Cornford, D., Jones, R., Heuvelink, G. B. M., Pebesma, E., Stasch,
C., Nativi, S., Mazzetti, P., and Williams, M.: Managing uncertainty in
integrated environmental modelling: The UncertWeb framework, Environ. Model. Softw., 39, 116–134, 2013. a
Beven, K. and Binley, A.: The future of distributed models: model calibration
and uncertainty prediction, Hydrol. Process., 6, 279–98, 1992.
a,
b
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty
estimation in mechanistic modelling of complex environmental systems using
the GLUE methodology, J. Hydrol., 249, 11–29,
https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.
a
Beven, K. J.: Rainfall-Runoff Modelling: The Primer, Wiley-Blackwell, second
edn., Lancaster University, UK, 2012. a
Blumensaat, F., Staufer, P., Heusch, S., Reussner, F., Schütze, M.,
Seiffert, S., Gruber, G., Zawilski, M., and Rieckermann, J.: Water
quality-based assessment of urban drainage impacts in Europe where do we
stand today?, Water Sci. Technol., 66, 304–313,
https://doi.org/10.2166/wst.2012.178, 2012.
a
Boos, D., Matthew, K., and Osborne, J.: Monte.Carlo.se: Monte Carlo Standard
Errors, available at:
https://CRAN.R-project.org/package=Monte.Carlo.se (last access: 29 December 2020), R package version 0.1.0, 2019. a
Boos, D. D.: Introduction to the Bootstrap and World, Stat. Sci.,
18, 168–174, 2003. a
Boos, D. D. and Osborne, J. A.: Assessing Variability of Complex Descriptive
Statistics in Monte Carlo Studies Using Resampling Methods, Int. Stat. Rev., 83, 228–238,
https://doi.org/10.1111/insr.12087, 2015.
a,
b,
c,
d
Breinholt, A., Moller, J. K., Madsen, H., and Mikkelsen, P. S.: A formal
statistical approach to representing uncertainty in rainfall–runoff
modelling with focus on residual analysis and probabilistic output evaluation
– Distinguishing simulation and prediction, J. Hydrol., 472–473, 36–52, 2012. a
Brombach, H., Weiss, G., and Fuchs, S.: A new database on urban runoff
pollution: comparison of separate and combined sewer systems, Water Sci. Technol., 51, 119–128,
https://doi.org/10.2166/wst.2005.0039, 2005.
a,
b,
c
Cecinati, F., Moreno-Ródenas, A. M., Rico-Ramirez, M. A., ten Veldhuis,
M. C., and Langeveld, J. G.: Considering rain gauge uncertainty using
kriging for uncertain data, Atmosphere, 9, 1–17,
https://doi.org/10.3390/atmos9110446, 2018.
a
Datta, A. R.: Evaluation of Implicit and Explicit Methods of Uncertainty
Analysis on a Hydrological Modeling, Ph.D. thesis, University of Windsor,
Canada, 2011. a
Deletic, A., Dotto, C., McCarthy, D., Kleidorfer, M., Freni, G., Mannina, G.,
Uhl, M., Henrichs, M., Fletcher, T., Rauch, W., Bertrand-Krajewski, J., and
Tait, S.: Assessing uncertainties in urban drainage models, Phys. Chem. Earth., 42-44, 3–10,
https://doi.org/10.1016/j.pce.2011.04.007, 2012.
a
DHI: MIKE11, A modeling system for rivers and channels, Reference Manual, DHI
Water and Environment, Danish Hydraulic Institute, DHI, Hórsholm, Denmark, 2017. a
Diaz-Fierros, T., F., Puerta, J., Suarez, J., and Diaz-Fierros V., F.:
Contaminant loads of CSOs at the wastewater treatment plant of a city in NW
Spain, Urban Water, 4, 291–299,
https://doi.org/10.1016/S1462-0758(02)00020-1, 2002.
a,
b,
c,
d,
e,
f
Efron, B.: Bootstrap methods: Another look at the Jackknife, Ann. Stat., 7, 1–26, 1979. a
Eränen, D., Oksanen, J., Westerholm, J., and Sarjakoski, T.: A full graphics
processing unit implementation of uncertainty-aware drainage basin
delineation, Comput. Geosci., 73, 48–60,
https://doi.org/10.1016/j.cageo.2014.08.012, 2014.
a
Evers, P., Heinz, H., Hanitsch, P. H., Koch, G., Naupold, L., Tochtermann, W.,
Tornow, M., Zander, B., Mahret, H., and Warnow, D.: ATV-DVWK-A 134E:
Planning and Construction of Wastewater Pumping Stations, Tech. rep., DWA,
Germany, 2000. a
Gasperi, J., Zgheib, S., Cladière, M., Rocher, V., Moilleron, R., and
Chebbo, G.: Priority pollutants in urban stormwater: Part 2 – Case of
combined sewers, Water Res., 46, 6693–6703,
https://doi.org/10.1016/j.watres.2011.09.041, 2012.
a,
b
Heuvelink, G. B. M.: Error Propagation in Environmental Modelling with GIS,
Reserach Monographs in GIS, CRC Press Taylor & Francis Group, Taylor & Francis Ltd. 11 New Fetter Lane, London EC4P 4EE, UK, 1998.
a,
b,
c,
d
Heuvelink, G. B. M., Brown, J. D., and van Loon, E. E.: A probabilistic
framework for representing and simulating uncertain environmental variables,
Int. J. Geogr. Inf. Sci., 21, 497–513,
https://doi.org/10.1080/13658810601063951, 2007.
a
House, M. A., Ellis, J. B., Herricks, E. E., Hvitved-Jacobsen, T., Seager, J.,
Lijklema, L., Aalderink, H., and Clifforde, I. T.: Urban Drainage – Impacts
on Receiving Water Quality, Water Sci. Technol., 27, 117–158,
https://doi.org/10.2166/wst.1993.0293, 1993.
a
Huang, H., Xiao, X., Yan, B., and Yang, L.: Ammonium removal from aqueous
solutions by using natural Chinese (Chende) zeolite as adsorbent, J. Hazard. Mater., 175, 247–252,
https://doi.org/10.1016/j.jhazmat.2009.09.156,
2010.
a
Hutton, C., Vamvakeridou-Lyroudia, L., Kapelan, Z., and Savic, D.: Uncertainty
Quantification and Reduction in Urban Water Systems ( UWS ) Modelling:
Evaluation Report, Tech. rep., The European Commission, 2011.
a,
b
IFAK: SIMBA (Simulation of Biological Wastewater Systems): Manual and
Reference, Tech. rep., Institut für Automation und Kommunikation e. V.,
Magdeburg, Germany, 2007. a
Jerves-Cobo, R., Benedetti, L., Amerlinck, Y., Lock, K., De Mulder, C., Van
Butsel, J., Cisneros, F., Goethals, P., and Nopens, I.: Integrated
ecological modelling for evidence-based determination of water management
interventions in urbanized river basins: Case study in the Cuenca River basin
(Ecuador), Sci. Total Environ., 709, 1–18,
https://doi.org/10.1016/j.scitotenv.2019.136067, 2020.
a
Kalman, R. E.: A new approach to linear filtering and prediction problems,
Transactions of the American Society of Mechanical Engineers: Journal of
Basic Engineering, 82D, 35–45, 1960. a
Katukiza, A. Y., Ronteltap, M., Niwagaba, C. B., Kansiime, F., and Lens, P.
N. L.: Grey water characterisation and pollutant loads in an urban slum, Int.
J. Environ. Sci. Technol., 12, 423436,
https://doi.org/10.1007/s13762-013-0451-5, 2014.
a
Leopold, U., Heuvelink, G. B. M., Tiktak, A., Finke, P. A., and Schoumans, O.:
Accounting for change of support in spatial accuracy assessment of modelled
soil mineral phosphorous concentration, Geoderma, 130, 368–386, 2006. a
Luetkepohl, H.: New Introduction to Multiple Time Series Analysis, Springer-Verlag, Berlin, Heidelberg, Germany, 2005. a
Marwick, B. and Krishnamoorthy, K.: cvequality: Tests for the Equality of
Coefficients of Variation from Multiple Groups,
available at:
https://github.com/benmarwick/cvequality (last access: 29 December 2020), r package version
0.2.0, 2019. a
McMillan, H., Jackson, B., Clark, M., Kavetski, D., and Woods, R.: Rainfall
uncertainty in hydrological modelling: An evaluation of multiplicative error
models, J. Hydrol., 400, 8394,
https://doi.org/10.1016/j.jhydrol.2011.01.026, 2011.
a
Moreno-Rodenas, A. M., Tscheikner-Gratl, F., Langeveld, J. G., and Clemens,
F. H.: Uncertainty analysis in a large-scale water quality integrated
catchment modelling study, Water Res., 158, 46–60,
https://doi.org/10.1016/j.watres.2019.04.016, 2019.
a
Neumann, M. B.: Uncertainty Analysis for Performance Evaluation and Design of
Urban Water Infrastructure, Ph.D. thesis, Swiss Federal Institute of
Technology, ETH Zurich, Switzerland, 2007.
a,
b
Nol, L., Heuvelink, G. B. M., A. Veldkamp, de Vries, W., and Kros, J.:
Uncertainty propagation analysis of an N2O emission model at the plot and
landscape scale, Geoderma, 159, 9–23, 2010. a
R-Core-Team and contributors worldwide: The R Stats Package, The R
Project for Statistical Computing, 3.5.0 edn.,
available at:
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html (last access: 29 December 2020),
2017. a
Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., and Vanrolleghem,
P. A.: Uncertainty in the environmental modelling process - A framework and
guidance, Environ. Model. Softw., 22, 1543–1556,
https://doi.org/10.1016/j.envsoft.2007.02.004, 2007.
a
Renard, B., Kavetski, D., Kuczera, G., Thyer, M., and Franks, S. W.:
Understanding predictive uncertainty in hydrologic modeling: The challenge
of identifying input and structural errors, Water Resour. Res., 46, 1–22,
https://doi.org/10.1029/2009wr008328, 2010.
a
Sandric, I., Ionita, C., Chitu, Z., Dardala, M., Irimia, R., and Furtuna,
F. T.: Using CUDA to accelerate uncertainty propagation modelling for
landslide susceptibility assessment, Environ. Model. Softw.,
115, 176–186,
https://doi.org/10.1016/j.envsoft.2019.02.016, 2019.
a
Sriwastava, A. K., Tait, S., Schellart, A., Kroll, S., Dorpe, M. V., Assel,
J. V., and Shucksmith, J.: Quantifying Uncertainty in Simulation of Sewer
Overflow Volume, J. Environ. Eng., 144, 04018050,
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001392, 2018.
a,
b,
c
Statec: Statistics Portal of the Grans-Duchy of Luxembourg,
available at:
https://statistiques.public.lu, last access: 29 December 2020. a
Steinel, A. and Margane, A.: Best management practice guideline for wastewater
facilities in karstic areas of Lebanon with special respect to the protection
of ground- and surface waters, Tech. Rep. 2, Federal Ministry for Economic
Cooperation and Development, Bundesanstalt für Geowissenschaften und Rohstoffe, BGR, Hannover,
Germany, 2011.
a,
b
Sten, J., Lilja, H., Hyväluoma, J., Westerholm, J., and Aspnäs, M.: Parallel
flow accumulation algorithms for graphical processing units with application
to RUSLE model, Comput. Geosci., 89, 88–95,
https://doi.org/10.1016/j.cageo.2016.01.006, 2016.
a
Toffol, S. D.: Sewer system performance assessment – an indicators based
methodology, Ph.D. thesis, Universität Innsbruck,
Innsbruck, Austria, 2006.
a,
b
Torres-Matallana, J., Leopold, U., and Heuvelink, G.: stUPscales: an R-package
for spatio-temporal Uncertainty Propagation across multiple scales with
examples in urban water modelling, Water, 10, 1–30,
https://doi.org/10.3390/w10070837, 2018a.
a
Torres-Matallana, J., Leopold, U., and Heuvelink, G.: stUPscales:
Spatio-Temporal Uncertainty Propagation Across Multiple Scales,
available at:
https://CRAN.R-project.org/package=stUPscales (last access: 29 December 2020), R package
version 1.0.5.0, 2019.
a,
b
Torres-Matallana, J. A., Leopold, U., and Heuvelink, G. B. M.: Multivariate
autoregressive modelling and conditional simulation of precipitation time
series for urban water models, European Water, 57, 299–306, 2017.
a,
b
Torres-Matallana, J. A., Klepiszewski, K., Leopold, U., and Heuvelink, G.:
EmiStatR: a simplified and scalable urban water quality model for simulation
of combined sewer overflows, Water, 10, 1–24,
https://doi.org/10.3390/w10060782,
2018b.
a,
b,
c,
d
Torres-Matallana, J. A.: R code and data to reproduce figures from the “Multivariate autoregressive modelling and conditional
simulation for temporal uncertainty analysis of an urban water system in
Luxembourg” paper, (Version v1.2) [Data set], Zenodo,
https://doi.org/10.5281/zenodo.3928079, 2020.
a
Tscheikner-Gratl, F., Lepot, M., Moreno-Rodenas, A., and Schellart, A.: QUICS
Deliverable 6.7: A Framework for the application of uncertainty analysis,
Tech. rep., Delft University of Technology, University of Sheffield and CH2M, Zenodo,
https://doi.org/10.5281/zenodo.1240926, 2017.
a
Tscheikner-Gratl, F., Bellos, V., Schellart, A., Moreno-Rodenas, A., Muthusamy,
M., Langeveld, J., Clemens, F., Benedetti, L., Rico-Ramirez, M. A., de
Carvalho, R. F., Breuer, L., Shucksmith, J., Heuvelink, G. B., and Tait, S.:
Recent insights on uncertainties present in integrated catchment water
quality modelling, Water Res., 150, 368–379,
https://doi.org/10.1016/j.watres.2018.11.079, 2019.
a
van der Keur, P., Henriksen, H. J., Refsgaard, J. C., Brugnach, M.,
Pahl-Wostl, C., Dewulf, A., and Buiteveld, H.: Identification of major
sources of uncertainty in current IWRM practice. Illustrated for the Rhine
Basin, Water Resour. Manage., 22, 1677–1708,
https://doi.org/10.1007/s11269-008-9248-6, 2008.
a,
b,
c,
d
Viana da Silva, A. M. E., Bettencourt da Silva, R. J. N., and Camões,
M. F. G. F. C.: Optimization of the determination of chemical oxygen demand
in wastewaters, Anal. Chim. Acta, 699, 161–169,
https://doi.org/10.1016/j.aca.2011.05.026, 2011.
a
Vrugt, J. A. and Robinson, B. A.: Improved evolutionary optimization from
genetically adaptive multimethod search, P. Natl. Acad. Sci. USA, 104, 708–711,
https://doi.org/10.1073/pnas.0610471104, 2007.
a
Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., and Sorooshian, S.:
Effective and efficient algorithm for multiobjective optimization of
hydrologic models, Water Resour. Res., 39, SWC 5-1–SWC 5-19,
https://doi.org/10.1029/2002wr001746, 2003a.
a,
b
Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S.: A Shuffled Complex
Evolution Metropolis algorithm for optimization and uncertainty assessment of
hydrologic model parameters, Water Resour. Res., 39, SWC 1-1–SWC 1-14, 2003b. a
Vrugt, J. A., ter Braak, C. J. F., Clark, M. P., Hyman, J. M., and Robinson,
B. A.: Treatment of input uncertainty in hydrologic modeling: Doing
hydrology backward with Markov chain Monte Carlo simulation, Water Resour. Res., 44, 1–15,
https://doi.org/10.1029/2007WR006720, 2008.
a
Wadoux, A.-C., Brus, D., Rico-Ramirez, M., and Heuvelink, G.: Sampling design
optimisation for rainfall prediction using a non-stationary geostatistical
model, Adv. Water Res., 107, 126–138,
https://doi.org/10.1016/j.advwatres.2017.06.005, 2017.
a
Walker, W., Harremoës, P., Rotmans, J., van der Sluijs, J., van Asselt,
M., Janssen, P., and Krayer von Krauss, M.: Defining Uncertainty: A
Conceptual Basis for Uncertainty Management in Model-Based Decision Support,
Integrated Assessment, 4, 5–17,
https://doi.org/10.1076/iaij.4.1.5.16466, 2003.
a,
b,
c
Welker, A.: Emissions of pollutant loads from combined sewer systems and
separate sewer systems – Which sewer system is better, in: 11th
International Conference on Urban Drainage, edited by: ICUD, Edinburgh,
Scotland, UK, IAHR/IWA Joint Committee on Urban
Drainage, 2008. a
Yu, L., Rozemeijer, J. C., Broers, H. P., van Breukelen, B. M., Middelburg, J. J., Ouboter, M., and van der Velde, Y.: Drivers of nitrogen and phosphorus dynamics in a groundwater-fed urban catchment revealed by high frequency monitoring, Hydrol. Earth Syst. Sci. Discuss.,
https://doi.org/10.5194/hess-2020-34, in review, 2020.
a,
b
Zhou, X., Polcher, J., Yang, T., and Huang, C.-S.: A new uncertainty estimation approach with multiple datasets and implementation for various precipitation products, Hydrol. Earth Syst. Sci., 24, 2061–2081,
https://doi.org/10.5194/hess-24-2061-2020, 2020.
a,
b,
c