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Abstract. Uncertainty is often ignored in urban water sys-
tems modelling. Commercial software used in engineering
practice often ignores the uncertainties of input variables and
their propagation because of a lack of user-friendly imple-
mentations. This can have serious consequences, such as the
wrong dimensioning of urban drainage systems (UDSs) and
the inaccurate estimation of pollution released to the envi-
ronment. This paper introduces an uncertainty analysis in ur-
ban drainage modelling, built on existing methods and ap-
plied to a case study in the Haute-Sûre catchment in Lux-
embourg. The case study makes use of the EmiStatR model
which simulates the volume and substance flows in UDS us-
ing simplified representations of the drainage system and
processes. A Monte Carlo uncertainty propagation analy-
sis showed that uncertainties in chemical oxygen demand
(COD) and ammonium (NH4) loads and concentrations can
be large and have a high temporal variability. Furthermore,
a stochastic sensitivity analysis that assesses the uncertainty
contributions of input variables to the model output response
showed that precipitation has the largest contribution to out-
put uncertainty related with water quantity variables, such
as volume in the chamber, overflow volume, and flow. Re-
garding the water quality variables, the input variable related
to COD in wastewater has an important contribution to the
uncertainty for the COD load (66 %) and COD concentra-
tion (62 %). Similarly, the input variable related to NH4 in
wastewater plays an important role in the contribution of to-
tal uncertainty for the NH4 load (34 %) and NH4 concen-
tration (35 %). The Monte Carlo (MC) simulation procedure

used to propagate input uncertainty showed that, among the
water quantity output variables, the overflow flow is the most
uncertain output variable, with a coefficient of variation (cv)
of 1.59. Among water quality variables, the annual average
spill COD concentration and the average spill NH4 concen-
tration were the most uncertain model outputs (coefficients
of variation of 0.99 and 0.82, respectively). Also, low stan-
dard errors for the coefficient of variation were obtained for
all seven outputs. These were never greater than 0.05, which
indicates that the selected MC replication size (1500 simula-
tions) was sufficient. We also evaluated how the uncertainty
propagation can more comprehensively explain the impact
of water quality indicators for the receiving river. While the
mean model water quality outputs for COD and NH4 concen-
trations were slightly above the threshold, the 0.95 quantile
was 2.7 times above the mean value for COD concentration
and 2.4 times above the mean value for NH4. This implies
that there is a considerable probability that these concentra-
tions in the spilled combined sewer overflow (CSO) are sub-
stantially larger than the threshold. However, COD and NH4
concentration levels of the river water will likely stay below
the water quality threshold, due to rapid dilution after CSO
spill enters the river.

1 Introduction

Combined sewer systems are important components of urban
water infrastructure. These systems are typically found in old
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and large cities (Baker, 2009; Litrico and Fromion, 2009) and
are designed to transport the water generated and accumu-
lated in an urban catchment to the receiving water body. Dur-
ing normal conditions, all water is transported to the treat-
ment facility before it is released to the environment. This is
the so-called throttled outflow or pass-forward flow (Hager,
2010). However, during extreme conditions with heavy pre-
cipitation, the combined sewer overflow (CSO) discharges
excess water directly to nearby streams, rivers, lakes, or other
water bodies (Baker, 2009). The CSO contains polluted wa-
ter and solid matter (Hager, 2010), which, when released to
the environment, can have a damaging impact on the water
quality status of the receiving waters (Bachmann-Machnik
et al., 2018; Gasperi et al., 2012). CSO pollutant load emis-
sions are of similar or greater magnitude than the emis-
sions from wastewater treatment plants (Gasperi et al., 2012;
Bachmann-Machnik et al., 2018). CSO discharge impacts
are mainly high peak flows, high organic loads from single
events, which can lead to oxygen depletion, and ecotoxic
concentrations of ammonia (NH3) (Miskewitz and Uchrin,
2013; Bachmann-Machnik et al., 2018). To reduce pollution
in receiving waters it is important to minimise CSO load and
concentration.

One of the main variables is the chemical oxygen demand
(COD), which is an indicator of organic compounds in water.
It is used to measure the effluent quality (Viana da Silva et al.,
2011). High levels of COD are correlated with a decrease in
the amount of dissolved oxygen (DO) available for aquatic
organisms. A depletion in the DO concentration in the wa-
ter column from near 9 mg L−1 (the maximum solubility of
oxygen in estuarine water on an average summer day) to be-
low 2 mg L−1 is referred to as hypoxia. If hypoxic conditions
are reached, the health of the ecosystem is affected, causing
physiological stress, and even death, to aquatic organisms (on
Environmental and atural Resources – CENR, 2003). Am-
monium (NH4) is another important variable and is an in-
dicator of nitrogen compounds in water. Concentrations of
NH4 in water and wastewater are relevant because high lev-
els of nitrogen in receiving waters can cause eutrophication
and, therefore, excessive growth of algae and other micro-
organisms, resulting in oxygen-dissolved depletion and fish
toxicity (Huang et al., 2010).

To better assess environmental impacts, numerical models
are applied in urban hydrology to simulate CSO emissions
into the environment. It is recommended, however, that such
modelling approaches consider the inherent uncertainty asso-
ciated with the system representation and the approximation
of the model to the reality (Hutton et al., 2011). Moreover, the
model inputs are also not free of errors, and associated uncer-
tainties will also propagate to the model output (Heuvelink,
1998).

A total of five approaches for representing the presence or
absence of uncertainty and how it is represented in the con-
text of urban water systems are often distinguished (Walker
et al., 2003; Refsgaard et al., 2007; van der Keur et al., 2008;

Bach et al., 2014) as follows: (1) determinism, (2) statisti-
cal uncertainty, (3) scenario uncertainty, (4) recognised ig-
norance, and (5) total (unrecognised) ignorance. Following
van der Keur et al. (2008), determinism applies when we
have knowledge with absolute certainty about the system un-
der analysis. This is the ideal world case, which is not real-
istic for urban hydrology systems. The statistical approach
is useful when it is possible to describe uncertainty in sta-
tistical terms, i.e. when uncertainty can be characterised by
probability distribution functions (pdf’s). The scenario ap-
proach, in contrast, applies when quantitative probabilities
cannot be determined and, instead, qualitative measures of
uncertainty are used. It is used when possible outcomes of
uncertain inputs are known but the probabilities of these out-
comes are not (Brown, 2004). There is also no claim that the
list of possible outcomes (scenarios) is exhaustive. Recog-
nised ignorance occurs when there is an awareness of lack
of knowledge but without any further possibility to process
and address the recognised uncertainty. This is the case for
very complex functional or inherently unidentifiable relation-
ships, when, for example, predictions are infeasible due to
the chaotic behaviour of the system or when our understand-
ing of the system behaviour is too limited (van der Keur et al.,
2008). This is common in social systems where the behaviour
of humans and groups of humans may often unpredictable.
Finally, total ignorance is the state of complete lack of aware-
ness about imperfect knowledge (van der Keur et al., 2008).
It is the opposite of determinism and reflects a state in which
we do not know that we do not know (Walker et al., 2003).
Among the approaches described above, in this paper we will
use the statistical approach to characterise and propagate un-
certainties.

A total of three main sources of uncertainty in the context
of performance evaluation analysis and design of urban wa-
ter infrastructure and urban drainage modelling are identified
(Walker et al., 2003; Neumann, 2007; Deletic et al., 2012).
First, model input uncertainty is related to errors in input
data, i.e. in driving forces such as precipitation. Second, pa-
rameter uncertainty is related to the uncertainty regarding the
(calibrated) parameters of the model. Third, model structural
uncertainty relates to uncertainty due to model conceptual-
isation and simplification. For instance, an urban drainage
model might ignore certain sub-processes, such as evapora-
tion or chemical transformation, or might simplify a non-
linear relation between model variables to a linear relation.
These types of uncertainties are not captured in model in-
put and model parameter uncertainty and are represented by
model structural uncertainty. The focus of this work is on the
propagation of model input uncertainty.

Regarding methods for uncertainty propagation analysis,
a distinction can be made between analytical methods, such
as the Taylor series method (Heuvelink, 1998), and numer-
ical techniques, such as Monte Carlo (MC) simulation. Nu-
merical techniques are more flexible and hence more con-
venient for analysing uncertainty propagation with complex
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models (Zoppou, 2001). MC simulations are computation-
ally demanding, especially in the case of complex models,
but they can still be used if there are sufficient computational
resources (Bastin et al., 2013), among others, because it can
greatly benefit from parallel computing.

Although uncertainty propagation analysis has been ap-
plied extensively in hydrologic modelling (e.g. Beven and
Binley, 1992; Kuczera and Parent, 1998; Hutton et al., 2011;
Vrugt et al., 2003a, b; Vrugt and Robinson, 2007; Renard
et al., 2010; Datta, 2011), the number of applications of long-
term simulations in urban drainage modelling is limited and
typically does not consider the influence of the temporal and
spatial correlation in the analysis of the propagation of in-
put uncertainty. Temporal correlation occurs in uncertain dy-
namic variables, such as precipitation and COD of house-
hold wastewater, because values of these variables over short
time lags will be more similar than over large time lags.
The same concept applies to variables that are spatially dis-
tributed (Webster and Oliver, 2007). It is important to take
the temporal (and spatial) correlation of uncertain inputs into
account because this may have a major influence on the out-
comes of an uncertainty analysis (Heuvelink, 1998). In this
paper, we perform a temporal uncertainty propagation anal-
ysis in urban water modelling using a MC simulation. As a
case study, we use the simplified model EmiStatR (Torres-
Matallana et al., 2018b) to predict wastewater volume, COD,
and NH4 concentrations in CSOs for three urban–rural sub-
catchments of the Haute-Sûre catchment in the northwest of
Luxembourg.

The objectives of this study are to (1) select and charac-
terise the main sources of input uncertainty accounting for
the temporal auto- and cross-correlation within EmiStatR;
(2) propagate input uncertainty through EmiStatR, taking
into account the temporal auto- and cross-correlation of un-
certain dynamic inputs; and (3) quantify and assess the con-
tributions of each uncertainty source to model output un-
certainty dynamically (over time) for the Luxembourg case
study.

2 Materials and methods

2.1 The EmiStatR model

EmiStatR is used to simulate CSO flows and water qual-
ity concentrations. Details regarding the conceptual and
mathematical model are provided in Torres-Matallana et al.
(2018b). A list of the EmiStatR inputs and outputs is pro-
vided in Appendix A. The main components of the EmiStatR
model are (1) dry weather flow (DWF), including infiltration
flow (IF), (2) pollution of DWF, (3) rain weather flow (RWF),
(4) pollution of RWF, (5) combined sewer flow (CSF) and
pollution, and (6) combined sewer overflow (CSO) and pol-
lution. Figure 1 illustrates the scheme of the sewer system
analysed.

Figure 1. Scheme of the sewer system analysed. Adapted from
Andrés-Doménech et al. (2010)

Basically, the total dry weather flow,QDWF (Ls−1), is cal-
culated as follows:

QDWFt =Qst +Qft , (1)

where QDWFt (Ls−1) is the dry weather flow at time t , and
Qst (Ls−1) is the dry weather flow of the residential sewage
in the catchment at time t , calculated as 86400−1 pet qst
(where 86400= 24×60×60 is a measurement unit conver-
sion factor), with pet (PE) the population equivalents of the
connected CSO structure at time t , and qst (LPE−1 d−1) is
the individual water consumption of households at time t .
Qft (Ls−1) is the infiltration flow at time t that enters the
pipes from groundwater flow through cracks and joints, cal-
culated as Aimp · qft , where Aimp (ha) is the impervious area
of the catchment, and qft (Ls−1 ha−1) is the infiltration water
inflow flux (specific infiltration discharge from groundwater
flow) at time t . Variables qst and pet are dynamic and can be
defined as time series with daily, weekly, and seasonal pat-
terns.

The contribution of rainwater to the combined sewage
flow, Qr (m3 s−1), is derived from precipitation as follows:

Qrt =
1
6
·Pt−tfS · [Cimp ·Aimp+Cper · (Atotal−Aimp)], (2)

where 1
6 is a factor for units conversion, Pt−tfS is precipita-

tion at time t−tfS (mm min−1), tfS is a delay in time response
related to flow time in the sewer system, Aimp is the imper-
vious area of the catchment (ha), Atotal is the total area of the
catchment (ha), Cimp is the run-off coefficient for impervious
areas (–), and Cper is the run-off coefficient for pervious ar-
eas (–). From Qrt , the CSO volume calculation is based on
the exceeding volume stored in the combined sewer overflow
chamber (CSOC). The CSO volume depends on four CSOC
stages, namely (1) filling up, (2) CSO spill volume, (3) stag-
nation, and (4) emptying. The sum of the total dry weather
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flow,QDWFt , and the rain water flow,Qrt , is called combined
sewer flow at time t , QCSFt .

The COD load, BCOD,Sv (g), in the spill overflow volume
is calculated as a function of the spill overflow volume at time
t , VSvt (m3), a combined sewer mixing ratio at time t , csmrt
(–), the mean dry weather pollutant concentration at time t ,
CCODt (mgL−1), and the concentration due to rainwater pol-
lution at time t , CODrt (mgL−1) as follows:

BCOD,Svt =
(
csmrt + 1

)−1
VSvt

(
csmrt ·CCODt +CODrt

)
. (3)

The variable VSvt depends directly on the water volume in
the CSO chamber at time t , VChambert (m3). It is computed as
follows:

VSvt =

 Vrt +Vdwt −Vdt , if VChambert = V,

VChambert −V if VChambert > V,

ε if VChambert < V,

(4)

where Vrt is the rain weather volume at time t accumulated
during a time interval 1t (min), Vdwt (m3) is the total dry
weather volume (amount of dry weather water in combined
sewage flow) at time t , Vdt is the volume of throttled outflow
to the wastewater treatment plant (WWTP) at time t (m3),
V (m3) is the CSOC volume, and ε is a numerical precision
term set equal to 10−5 (m3). While VSv, csmr, and CCOD are
dynamic, CODrt can either be dynamic or assumed constant
if the pollution concentration is assumed constant in time.
CCODt (mgL−1) is calculated as follows (Torres-Matallana
et al., 2018b):

CCODt =
103
· pet ·CCOD,S

qst · pet + 86400 ·Aimp · qft
, (5)

where CCOD,S is the COD sewage pollution per capita (PE)
load per day (gPE−1 d−1). Similar equations, as above, apply
to the second water pollution indicator NH4.

2.2 Sewer system in the Haute-Sûre catchment

The study area is composed of three sub-catchments of the
Haute-Sûre catchment in the northwest of Luxembourg. The
combined sewer system drains three villages, namely Goes-
dorf (GOE), Kaundorf (KAU), and Nocher-Route (NOR).
The local sewer system downstream of each village has a
CSO structure to store pollutant peaks in the first flush of
combined sewage flows. Figure 2 depicts the location of the
CSO structures and the delineation of the sub-catchments.
The main land use types in the villages are residential,
smaller industries, and farms. Outside the villages, forest
and agricultural arable and grassland are the dominating land
uses. The receiving water bodies of the CSO structures are
tributaries of the river Sûre (or Sauer in German).

2.3 Input data

The input variables of the EmiStatR model are shown in Ta-
ble S1 in the Supplement. Following Torres-Matallana et al.
(2018b), seven input variables were calibrated, namely water
consumption (qst ), infiltration flow (qft ), flow time structure
equivalent to the time of concentration to the combined sewer
overflow structure (tfS), run-off coefficient for impervious
area (Cimp), run-off coefficient for pervious area (Cper), ori-
fice coefficient of discharge (Cd), and the initial water level
(Levini). The main objective of the calibration process is to
appropriately represent the water volume in the CSOC.

The observed precipitation (Pt ) is a 1 year time series for
2010 at a 10 min time interval, measured at stations Esch-
sur-Sûre and Dahl (Fig. 2). The variable water consumption
(qst ) is also dynamic and represented as a time series with
a daily pattern according to factors proposed in the German
ATV-DVWK-A 134 guideline (Evers et al., 2000).

The hydraulic variable measured is the water level in the
CSOC, namely Lev (m). The temporal resolution of the mea-
surements of Lev is 30 s. Regarding the wastewater quality
(WWQ) characterisation, values of CCOD,S and CNH4,S in
the wastewater were derived from DWF measurements at
Goesdorf, Kaundorf, and Nocher-Route. A total of 91 2 h
composite samples were taken and measured in the labora-
tory to determine the concentrations of COD (mgL−1) and
NH4 (mgL−1). This led to the identification of seven at
Goesdorf on 4 May 2011, 48 between 19 June and 21 July
2010 at Kaundorf, and 36 between 9 March and 2 August
2011 at Nocher-Route. The variables CODf and NH4f were
set to zero because the pollution contribution of the infiltra-
tion water is negligible in the study area. The contribution
of ammonium from rainwater NH4r was assumed constant
and set to 2.00 mgL−1, while CODr was equal to zero. Table
S1 summarises the base values of the general input variables,
and Table S2 presents the general characteristics of each CSO
structure for each village and the base values of input vari-
ables. These base values were used when running EmiStatR
in the deterministic mode (see Sect. 3.1). Some of the vari-
ables were calibrated based on observations in the CSOC to
simulate water level and concentrations and loads of pollu-
tants spilled in the CSO to the stream, river, or lake. These
variables are water consumption (qs), infiltration flow (qf),
time flow (tfS), run-off coefficient for the impervious area
(Cimp), run-off coefficient for the pervious area (Cper), orifice
coefficient of discharge (Cd), and initial water level (Levini).

2.4 Selection of model input for uncertainty
quantification

Following recommendations from Nol et al. (2010), not all
model inputs were taken into account in the uncertainty prop-
agation analysis. Only inputs that are very uncertain and to
which the model output is very sensitive were included be-
cause these are the ones that have the largest contribution to
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Figure 2. The three Haute-Sûre sub-catchments and locations of the combined sewer overflow (CSO) structures considered in this study. The
background map is provided by © Google Maps.

output uncertainty (Heuvelink, 1998; Sect. 4.4). The level of
uncertainty of the inputs was defined by expert judgement
and similar case studies in the literature. A quick scan was
used to determine the model sensitivity to each of the model
inputs by running EmiStatR in deterministic mode with input
base values given in Table S1. The level of model sensitivity
was defined by analysing the mathematical model structure
and components of the model, expert judgement, and simula-
tions with EmiStatR. Inputs that rank high on both the level
of uncertainty and on model sensitivity were selected and in-
cluded in the uncertainty propagation analysis.

2.5 Uncertainty quantification of selected model input

Because we used a statistical approach, probability distribu-
tion functions (pdf’s) are the basis for representing the un-
certainties of the selected model inputs. This constitutes the
most difficult step of an uncertainty propagation analysis and
is done in different ways for constants and dynamic variables,
as explained in the following sub-sections.

2.5.1 Uncertain constants

Following Heuvelink et al. (2007), an uncertain continuous
numerical constant C can be characterised by its marginal
(cumulative) pdf (mpdf) as follows:

FC(c)= P(C ≤ c). (6)

Usually, a parametric approach can be taken, meaning that a
common shape for FC is chosen (e.g., normal, lognormal, ex-
ponential, or uniform) so that the mpdf is reduced to a num-
ber of parameters. In this study, the input variables that are
in this category are water consumption (qs), infiltration in-
flow (qf), total area (Atotal), impervious area (Aimp), the run-
off coefficients for impervious area (Cimp) and pervious area
(Cper), population equivalents (pe), flow time structure (tfS),
and initial water level (Levini).
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2.5.2 Univariate autoregressive modelling

Dynamic uncertain inputs may be temporally autocorrelated.
This may dramatically influence the outcome of an uncer-
tainty propagation analysis and must therefore be accounted
for. One way of doing this is by assuming an autoregressive
order one (AR(1)) model as follows:

yt = µ+φ (yt−1−µ)+wt , t = 1,2, . . . ,T ,

y0 ∼N (µ, σ 2), (7)

where yt is the uncertain input at time t , µ is its mean, φ is
the autoregressive parameter (0≤ φ < 1), and wt is a Gaus-
sian white noise time series with mean zero and variance σ 2

w.
The initial value y0 is taken from a normal distribution with
mean µ and variance σ 2. The parameters of the model can be
estimated based on observations, or in the absence of obser-
vations, suitable values are taken based on expert judgement
or literature reference values. Note that the effect of the ini-
tial condition usually fades out quickly and hence is not of
great concern.

The implementation of the AR(1) model in R was done
via the R function arima.sim of the R base package stats
(R-Core-Team and contributors worldwide, 2017), both for
model calibration and simulation.

2.5.3 Multivariate autoregressive modelling

In the case of multiple uncertain dynamic inputs, cross-
correlation between these inputs may also need to be in-
cluded. For example, CCOD,S and CNH4,S and their uncer-
tainties are likely correlated. This can be done using a multi-
variate AR(1) model (Luetkepohl, 2005), which is a natural
extension of the univariate AR(1) model, as follows:

Y (t + 1)= µ+A · [Y (t)−µ] + ε(t),
t = 1, 2, . . . ,T , Y0 ∼N (µ, 3), (8)

where Y (t) is a vector of inputs at time t , A is a square matrix
with parameters that define how the variables at time t+1 de-
pend on those at time t , µ is now a vector of means, and ε(t)
is a vector of zero-mean normally distributed white noise
processes. We further assume that the variance–covariance
matrix C of ε(t) is time invariant. The initial value Y0 is as-
sumed normally distributed and uncorrelated (3 is a diagonal
matrix). In order to estimate the vector µ and matrices A and
C, a sample of the variables of interest is needed. Parameter
estimation is done by means of the R package mAr (Barbosa,
2015).

2.5.4 Input precipitation model

In case precipitation is selected as an uncertain input to be
included in the uncertainty analysis, it too must be charac-

terised by a pdf. Since precipitation, however, is not nor-
mally distributed and has many zeros, we cannot make the
Gaussian assumption, and hence we cannot use the approach
described in Sect. 2.5.2 to model its dynamic behaviour and
uncertainty. In addition, we usually have precipitation mea-
surements nearby so we need to condition the simulations to
these measurements. Recall from Sect. 2.3 that, in the case
study, precipitation data are recorded at stations Esch-sur-
Sûre and Dahl.

Torres-Matallana et al. (2017) present a model to simulate
precipitation inside a target catchment given a known pre-
cipitation time series in a nearby location outside the catch-
ment, while accounting for the uncertainty that is introduced
due to spatial variation in precipitation. The method used
for input precipitation uncertainty characterisation is essen-
tially the same as the application of a Kalman filter/smoother
(Kalman, 1960; Webster and Heuvelink, 2006). Calibration
of the model requires precipitation time series at two loca-
tions near the catchment of interest. Once the model is cal-
ibrated, it is used to simulate precipitation inside the target
catchment from a single precipitation time series nearby the
catchment. Details of the calibration and conditional simula-
tion are presented in Sect. S4.

2.6 Uncertainty analysis

We used a MC simulation (Hammersley and Handscomb,
1964; Kalos and Whitlock, 2008) to analyse how input un-
certainty propagates through the EmiStatR model because it
is flexible and straightforward to implement. It is also feasi-
ble in our case study because EmiStatR is a relatively simple
model that does not involve a long computation time.

2.6.1 Monte Carlo simulation

The MC method runs the EmiStatR model repeatedly, each
time using different model input values sampled from their
pdf. The method thus consists of the following steps:

1. Repeat n times:

(a) Generate a set of realisations of the uncertain model
inputs at 10 min resolution.

(b) Run the model at 10 min resolution and store output
for this set of realisations. Later, in order to com-
pute the summary statistics, a temporal aggregation
of the model output to 1 h intervals is done.

2. Compute and store sample statistics from the n model
outputs.

Here, n is the number of MC runs, i.e. the MC sample
size. Common sample statistics that measure the uncertainty
are the standard deviation and quantiles of the distribution
of MC outputs, such as the difference between the 0.95 and
0.05 quantile, which can be easily calculated from the n MC
outputs.
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Sampling from the pdf of uncertain inputs was done using
simple random sampling.

2.6.2 Monte Carlo output summary

Proper presentation of MC outputs is important for achieving
the most from the experiment. Therefore, summary statistics
are one important way to summarise the MC outputs. Com-
monly, a MC study yields n model outputs, which are stored
in the MC result matrix X in Boos and Osborne (2015). From
this matrix, various statistics can be computed. Basic sum-
mary statistics include the mean µMC, the standard deviation
(σMC), and the variance σ 2

MC. From these, we can compute
the coefficient of variation CVMC (σMC/µMC), which is a
dimensionless expression of relative uncertainty. The coef-
ficient of variation is a standardised measure of the spread
of a sampling distribution, which is useful because it allows
a direct comparison of the variation in samples with differ-
ent units or with very different means (Marwick and Krish-
namoorthy, 2019). We computed estimates and standard er-
rors for these statistics and also for the interquartile range
(IQRMC), 0.005 (ζ0.005) and 0.995 (ζ0.995) quantiles, and the
99 % width of the prediction band (ζw, 0.99).

2.6.3 Bootstrap computation for Monte Carlo
summary

Following Boos and Osborne (2015), who argue that “Good
statistical practice dictates that summaries in MC studies
should always be accompanied by standard errors,” we used
the bootstrap method to compute the standard errors of all
MC statistics. These tools are particularly relevant in a case
without analytic solutions (Boos, 2003). According to Boos
and Osborne (2015, p. 228) standard errors for MC output
statistics are often not computed, which is an additional com-
putational step on top of the overall analysis. Standard errors
are straightforward to compute for simple statistics, such as
the sample mean over the replications of the MC output, but
are more difficult to compute for more complex statistics,
such as medians, sample variances, and the classical Pear-
son measures of skewness and kurtosis. Therefore, to avoid
burdensome computations, we opted to compute the standard
errors by the bootstrap method. We briefly explain the boot-
strap method below. For a detailed explanation, we refer to
Efron (1979).

To compute the bootstrap variance of estimators, we fol-
low the logic given by Boos and Osborne (2015). From a
MC sample Y1, . . . ,Yn, we draw a random sample of size n,
with replacement Y ∗1 , . . . , Y

∗
n , and compute an estimator θ̂ of

the MC statistic θ from this resample. We independently re-
peat this process B times, resulting in a sample of estimators

θ̂1, . . . , θ̂B . Then the bootstrap variance estimate, V̂B , is the
sample variance of this sample of estimators as follows:

V̂B =
1

B − 1

B∑
i=1

(
θ̂i −
¯̂
θ
)2
, (9)

where ¯̂θ is the mean of the sample of estimators. The MC
standard error, se, is simply the square root of the bootstrap
variance.

We implemented, in stUPscales (Torres-Matallana et al.,
2019), specific routines for computing, by means of the boot-
strap method, the MC estimators and their standard error for
all MC statistics, where the variance of the model output is
the most important. We compared our results with the results
obtained using the Monte.Carlo.se R package (Boos et al.,
2019).

2.6.4 Contributions of input variables to total
uncertainty

A number of m+ 1 MC analyses are needed to compute the
contributions of input variables to total uncertainty, where
m is the number of model input variables selected for uncer-
tainty quantification. The first MC analysis, MCtot, is done to
compute the total output uncertainty by stochastically vary-
ing all input variables. The uncertainty associated with the
first variable x1 is quantified by a second MC analysis MC1
in which only x1 is equal to its deterministic value, while the
other input variables vary stochastically. Similarly, the other
MC simulations MC2, MC3, . . . , and MCm are used to quan-
tify the uncertainty for the variables x2, x3, . . . , and xm.

To quantify the contributions of individual input variables
to the total uncertainty of the model inputs, the stochastic
sensitivity Si for each uncertain input xi is computed. It is
defined as follows:

Si = 1−
Var(MCi)

Var(MCtot)
. (10)

The index represents the main effect contribution of each in-
put factor to the total variance of the output. The larger the
index, the more important the input uncertainty. We com-
puted stochastic sensitivity indices per time step and aggre-
gated contributions for the whole year. For plotting purpose,
we aggregated the outputs from a 10 min time step to hourly
time steps. The aggregation was done for each individual MC
run before the contributions were computed.

2.7 Water quality impact

The results of the MC uncertainty propagation were also
compared with the water quality standards. Standards are in-
troduced to evaluate the impact of emissions of COD and
NH4 in CSOs in the receiving water. However, as Toffol
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(2006) recognises, although there are European emission
standards for wastewater treatment plant effluent, standards
for combined sewer overflow are not so clear. According
to Steinel and Margane (2011), the European Water Frame-
work Directive (WFD) is mainly concerned with the natu-
ral state of waters. Therefore, emission standards for effluent
discharge are not set. The European Union Council Directive
91/271/EEC (1991) sets standards for COD and total nitro-
gen; hence, similar values have been adopted in many Euro-
pean member states. For more details about guidelines and
design procedures in Europe, see Blumensaat et al. (2012).
We assessed the emissions according to the German guide-
line ATV-DVWK-A 128 (1992), which is the standard for the
dimensioning and design of storm water structures in com-
bined sewers and commonly used in Luxembourg. The Aus-
trian ÖWAV-RB 19 (2007) is also taken into account because
it provides key reference guidelines for the design of urban
water infrastructure in central Europe. Three main indicators
are taken into account, namely hydraulic impact, COD con-
centration, and acute ammonium toxicity.

2.7.1 Hydraulic impact

According to the Austrian guidelines, and as summarised by
Kleidorfer and Rauch (2011), the evaluation of the hydraulic
impact is given by the following:

Q1 ≤ fh ·Qr1, (11)

where 0.1≤ fh ≤ 0.5, Q1 (L s−1) is the maximum sewer
overflow discharge with return period of 1 year, and Qr1
(L s−1) is the maximum water discharge in the river with re-
turn period of once per year. The factor fh is taken as 0.1
in more sensitive streams, whereas it is 0.5 for streams with
more stable bed and higher re-colonisation potential Toffol
(2006). Time series of daily values recorded in 2006 to 2013
of the river Sûre at Heiderscheidergrund were used to com-
pute the daily flow expected, with a return period of once per
year (1.01 years), Qr1.

We used the German guideline ATV-DVWK-A 128
(1992), which computes the throttle discharge at CSOs,
Qt,CSO (L s−1) as follows:

Qt,CSO = ft ·Aimp, (12)

where 7.5≤ ft ≤ 15 and Aimp (ha) are the impervious areas
connected to the combined sewer system. For the overflow
flow MC output mean, the 0.95 and 0.995 quantile, we com-
puted the exceedance percentage over the thresholds, which
is calculated as the proportion of time steps exceeding the
number of total time steps in the year (8759 time steps at
1 h).

2.7.2 COD concentration

Steinel and Margane (2011, Table 14) present the effluent
standards for discharging into freshwater adopted in selected
European countries. A COD concentration of 125 mg L−1 is
reported for European Union countries. Austria has stricter
rules, with a standard of 90 mg L−1 for populations between
50 and 500 inhabitants and 75 mg L−1 for populations greater
than 500 inhabitants. The Goesdorf population was 1025 in-
habitants by 2001 and was 1297 inhabitants by 2011 (Statec,
2020). For NH4 a similar approach was used.

2.7.3 Acute ammonium toxicity

Following Kleidorfer and Rauch (2011), who argue that “the
ammonia (NH3) concentration depends on the ammonium
(NH4) concentration and on the dissociation equilibrium be-
tween NH3 and NH4 (which is influenced by temperature and
pH-value)”. According to Kleidorfer and Rauch (2011), the
Austrian guideline ÖWAV-RB 19 (2007) establishes a maxi-
mum value of 2.5 mgL−1 for the ammonium (NH4) concen-
tration calculated for a 1 h duration for salmonid streams. For
cyprinid streams, a maximum value of 5.0 mgL−1 is recom-
mended.

3 Results

3.1 Selection of model inputs for uncertainty
quantification

In this section, we assess the degree of uncertainty and sen-
sitivity for all input variables, following the procedure de-
scribed in Sect. 2.4. We summarise the results in Tables 1 and
2. To better support our decisions, we also include a graphi-
cal assessment of the degree of uncertainty and sensitivity of
each input, as in Tscheikner-Gratl et al. (2017, see Fig. S1).

3.1.1 Wastewater

Water consumption, qs, is a fairly uncertain input variable,
and the model output is sensitive to this variable. Volume
and flow of CSO are sensitive to changes in qs. Regarding
water quality output, the total load of NH4 is very sensitive
to changes in qs. Pollution of sewage as COD load per capita
per day, CCOD,S, is the first selected input variable for prop-
agation of uncertainty, due to the fact that it is both a very
uncertain input variable and the model output (average and
99.9 percentile overflow COD concentration) is very sensi-
tive to it. Pollution of sewage as NH4 load per capita per day,
CNH4,S, is also included in the uncertainty propagation anal-
ysis. It is a very uncertain input variable, and the model out-
put (overflow load and concentrations of NH4) is very sensi-
tive to it. The variables CCOD,S and CNH4,S are very uncer-
tain because these are correlated to the temporal and spatial
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pattern of water consumption, which has a daily, weekly, and
seasonal temporal variability.

3.1.2 Infiltration water

Inflow of infiltration water, qf, is a very uncertain input vari-
able because this inflow depends on the number of anoma-
lies in the pipes (cracks or wrong connections) that allows
infiltrations flowing into and out of the system. The distri-
bution of these anomalies has a strong random component,
and hence, qf is very uncertain, and the model output is sen-
sitive to it. Although this is a very uncertain input, the quick-
scan analysis showed that model output sensitivity is not very
high, as indicated in Table 1. For this reason, we did not in-
clude this variable in the uncertainty propagation analysis.

Pollution of infiltration water as COD load per capita per
day, CODf, and pollution of infiltration water as NH4 load
per capita per day, NH4f, are not uncertain because in the
Haute-Sûre study area the values of these variables are neg-
ligible.

3.1.3 Rainwater

Precipitation, P , is the main driving force of the model, and
given the spatial variability of the rain fields, this input is
considered very uncertain. The model output, additionally, is
very sensitive to it. As a consequence, this input variable is
treated as the third input variable in the uncertainty propa-
gation analysis. Pollution of run-off as COD concentration,
CODr, is the fourth input variable considered in the uncer-
tainty propagation, given that it is a very uncertain and very
sensitive input variable, particularly to the load and concen-
tration of COD in the overflow.

Pollution in rainwater as NH4 concentration, NH4r, is con-
sidered fairly uncertain. The model output (overflow load and
concentration of NH4) is very sensitive to it. Although model
output is very sensitive to this model input variable, model in-
put uncertainty is not very high, as indicated in Table 1. For
this reason, it was not included in the uncertainty propagation
analysis.

3.1.4 Sub-catchment

The model is very sensitive to the total area Atotal and to the
run-off coefficient for the pervious area (Cper) and sensitive
to the impervious area Aimp and to the run-off coefficient for
impervious area (Cimp). However, we did not include Atotal
in the uncertainty analysis because it can be fairly accurately
derived from spatial databases, and hence, their uncertainty
is not large. Although model output is very sensitive to the
input variable Cper, the uncertainty about this variable is not
very high, as indicated in Table 1. The reason behind this is
that Cper can be derived fairly accurately from geographic in-
formation system (GIS) products, such as land use and soil
type maps. Therefore, we did not include this variable in
the uncertainty propagation analysis. The population equiva-

lents, pe, is a sensitive variable but not very uncertain. Hence,
this variable was not included in the uncertainty analysis. The
theoretical largest flow time in the catchment tfS is not uncer-
tain and not sensitive.

3.1.5 CSO structure

Although model output is very sensitive to maximum throt-
tled outflow Qd,max and volume V , these are not included in
the uncertainty analysis because their values are accurately
known. The same is true for the variables curve level–volume
lev2vol, orifice diameter Dd, and discharge coefficient Cd.
These variables are accurately known and, therefore, not con-
sidered as being uncertain variables. The initial water level in
the chamber Levini is very uncertain, but the model output is
not sensitive to this variable. Therefore, Levini was not in-
cluded in the uncertainty analysis.

3.2 Uncertainty quantification of selected model input

After ranking all inputs on levels of uncertainty and model
sensitivity, we selected four input variables to be included in
the uncertainty analysis. These are CCOD,S, CNH4,S, CODr,
and P (Table 2).

3.2.1 Sewage per capita COD and Ammonium

The fit of pdf’s for the two uncertain inputs, CCOD,S and
CNH4,S, was based on measurements under dry weather flow
conditions. Measurement campaigns were done in Goesdorf
from 28 April to 24 June 2011, in Kaundorf from 22 June to
18 August in 2010 and from 20 July to 5 August in 2011, and
in Nocher-Route from 18 November 2010 to 27 April 2011.
Samples of COD and NH4 in mg L−1 (91 in total for each
variable) were analysed. An average wastewater amount
was calculated for Goesdorf (153 L PE−1 d−1), Kaundorf
(112 L PE−1 d−1), and Nocher-Route (94.3 L PE−1 d−1). Ta-
ble 3 presents summary statistics of the dry weather flow
measurements of COD and NH4 and the corresponding value
of CCOD,S and CNH4,S. COD is converted to CCOD,S by
means of a simple conversion from mg L−1 to g PE−1 d−1,
by multiplying COD by the measured per capita flow
(112 L PE−1 d−1) and dividing by 1000. NH4 was converted
to CNH4,S in a similar way.

Closer inspection showed that CCOD,S and CNH4,S ob-
servations are best characterised by a lognormal distribution
(Sect. S5). Since CCOD,S and CNH4,S are dynamic and cross-
correlated, we calibrated a bivariate AR(1) model with state
vector Y = [log(CCOD,S) log(CNH4,S)]

T . The estimated pa-
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Table 1. Results of deterministic sensitivity analysis. Average percentage of change in model output caused by ±10 % change in model
inputs (qs, CCOD,S, CNH4,S, CODr, pe, and P as time series; VAR(1) model for CCOD,S and CNH4,S; and AR(1) model for CODr and
AR(1) conditioned for P ; see Appendix A for nomenclature definitions). Output change greater than 15 % is considered very high. Variable
Cd (not shown in the table) leads to a percentage of change of less than 0.3 %, while variables tfS and Levini (not shown in the table) lead to
no change in the output. Values greater than 15 are shown in bold.

Input variable

Output variable qs CCOD,S CNH4,S qf CODr NH4r Atotal Aimp Cimp Cper pe Qd,max V Dd P

VChamber 4.2 0.0 0.0 3.0 0.0 0.0 8.6 7.1 5.9 7.2 4.2 16.7 7.5 0.8 13.4
VSv 2.9 0.0 0.0 1.7 0.0 0.0 19.6 11.6 13.5 16.1 2.9 13.1 16.5 0.2 17.8
QSv 0.6 0.0 0.0 0.2 0.0 0.0 2.7 1.5 1.1 1.8 0.6 13.1 14.8 0.6 12.4

BCOD,Sv 2.9 2.4 0.0 1.7 7.7 0.0 20.1 11.8 13.7 16.6 5.3 15.7 14.5 0.2 20.7
CCOD,Sv,Av 0.7 4.6 0.0 0.5 5.4 0.0 0.5 0.6 0.6 0.7 4.0 3.2 4.0 0.2 1.1
CCOD,Sv,99.9 1.6 6.7 0.0 0.8 3.4 0.0 2.8 2.3 1.9 2.4 5.1 0.0 0.0 0.0 9.2
CCOD,Sv,Max 1.6 6.7 0.0 0.8 3.4 0.0 2.8 2.3 1.9 2.4 5.1 0.0 0.0 0.0 9.2

BNH4,Sv 3.1 0.0 3.3 1.8 0.0 6.7 20.4 12.0 13.8 16.8 6.4 17.0 13.4 0.3 22.1
CNH4,Sv,Av 0.9 0.0 5.8 0.6 0.0 4.2 0.6 0.8 0.9 0.9 5.3 4.3 5.4 0.2 1.5
CNH4,Sv,99.9 1.6 0.0 7.6 0.8 0.0 2.4 3.5 2.6 2.3 2.9 6.1 0.0 0.0 0.0 11.3
CNH4,Sv,Max 1.6 0.0 7.6 0.8 0.0 2.4 3.5 2.6 2.3 2.9 6.1 0.0 0.0 0.0 11.3

rameters of the model, using the methodology described in
Sect. 2.5.3, are as follows:

µ=

[
4.40947
3.70411

]
A=

[
0.99165 −0.00319
−0.00009 0.99455

]
C=

[
0.00913 0.00224
0.00224 0.00185

]
. (13)

The defined multivariate autoregressive model also cap-
tures the dynamic behaviour, temporal correlation, and cross-
correlation of the input variables, deriving the probability
distributions of CCOD,S and CNH4,S from measurements in
the Haute-Sûre catchment, which agreed well with values re-
ported in the literature (Katukiza et al., 2014; Heip et al.,
1997).

3.2.2 Run-off COD concentration

Regarding CODr, due to the fact that no field measurements
were available, expert judgement and reference values from
the literature were the basis for characterising the pdf of
this input variable. The variable was assumed to be lognor-
mally distributed with a mean value of 71 mg L−1. Although,
House et al. (1993) and Welker (2008) reported a higher
value, namely 107 mg L−1 for CODr, we selected a lower
value due to the specific characteristics of the CSO system
in the Haute-Sûre catchment. The value of 150 mg L−1 as
standard deviation of CODr leads to a coefficient of varia-
tion (SD ·mean−1) equal to 2.11, which is greater than the
coefficient of variation for CCOD,S (0.84). We allow the stan-
dard deviation of CODr to be greater than the standard devi-
ation of CCOD,S because COD measurements in rain water
are very uncertain.

3.2.3 Input precipitation model

Precipitation and its associated uncertainty was modelled as
an autoregressive model conditioned to the observed precipi-
tation at a nearby measurement station. We assumed a multi-
variate lognormal distribution and included a temporal corre-
lation of the simulated time series. Calibration of the precip-
itation model is done with the mAr package, as explained in
Sect 2.5.4, and using a 10 min precipitation time series of sta-
tions Esch-sur-Sûre and Dahl for 2010. Upon calibration of
the multivariate autoregressive model, we proceeded with the
conditional simulation of Yc (Sect. S4.2, Eq. 5). For this, we
computed the parameters of the model, as shown in Eq. (14).
The model parameters are given by (Torres-Matallana et al.,
2017) the following:

µ1 = 2.85501
µδ = 0.10194 B=

[
0.95650 0.03980
0.02429 0.88304

]
σ 2

1 = 0.07241
σ 2
δ = 0.07951
ρ1δ =−0.03876.

(14)

Next, we generated conditional simulations of the 10 min
precipitation for 2010 for each subcatchment using the ap-
proach described in Sect. 2.5.4. Note that this involves sim-
ulating log-transformed precipitation, which can easily be
transformed to precipitation data using the antilog. The sim-
ulation procedure was repeated as many times as simulated
precipitation time series were required for the MC uncer-
tainty propagation analysis.

The simulated precipitation time series captured the main
statistics of the observed time series well. The reader can
find evidence for this in the Supplement (Table S4 and
Fig. S2). Despite the satisfactory performance of the pro-
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Table 2. Input variables of the EmiStatR model and selection of
inputs for uncertainty analysis based on input uncertainty level and
model sensitivity level (Note: ++ is very uncertain/sensitive; – – is
not uncertain/sensitive).

Input Input Model Uncertainty
variable uncertainty sensitivity analysis

Wastewater

1. qs + + No
2. CCOD,S ++ ++ Yes
3. CNH4,S ++ ++ Yes

Infiltration water

4. qf ++ + No
5. CODf – – – – No
6. NH4f – – – – No

Rainwater

7. P ++ ++ Yes
8. CODr ++ ++ Yes
9. NH4r + ++ No

Sub-catchment

10. Atotal + ++ No
11. Aimp + + No
12.Cimp + + No
13. Cper + ++ No
14. pe + + No
15. tfS – – – No

CSO structure

16. Qd,max – ++ No
17. V – ++ No
18. Dd – – – – No
19. Cd – – – – No
20. Levini ++ – – No

posed method, some cases showed an overestimation of the
simulated precipitation, mainly due to high values of the ra-
tio of the multiplicative factor δ(t). This behaviour was also
recognised by McMillan et al. (2011), who stated that the
multiplicative factor used in their study “does not capture the
distribution tails, especially during heavy precipitation where
input errors would have important consequences for run-off
prediction”.

3.3 Uncertainty analysis

Model output sensitivity and the degree of uncertainties eval-
uation of each model input helped to define the four in-
put variables included in the uncertainty analysis, namely
CCOD,S, CNH4,S, CODr, and P . In this section, we present
the results of the uncertainty propagation for these four se-
lected input variables to the model output, both for water
quantity (volume in the combined sewer overflow chamber,

CSOC, and overflow volume and flow) and for water qual-
ity (loads and concentrations of chemical oxygen demand,
COD, and ammonium, NH4).

3.3.1 Monte Carlo output and uncertainty
quantification

The seven output variables from EmiStatR were analysed by
MC input uncertainty propagation. A detailed description of
the Monte Carlo simulation size and timing is presented in
the Supplement (Sect. S6).

Figure 3 illustrates the uncertainty propagation outcomes
for the first Monte Carlo simulation, in which all input vari-
ables vary stochastically. The MC simulations were per-
formed for the entire year of 2010 at 10 min time steps, which
were aggregated to hourly time steps in the figure. The aggre-
gation function was used for precipitation, CSO chamber vol-
ume, CSO spill volume, and loads was the sum, whereas for
CSO spill flow and concentrations the aggregation function
was the mean. The top of Fig. 3 shows input precipitation
as main driving input. For illustration purposes, two events
with a 2 d duration each are shown. The first event occurred
in spring (May 2010) and the second in autumn (September
2010), and this shows that the uncertainty is high when there
is a high precipitation event. The more intense the precipita-
tion input, as seen in Fig. 3 in the top left (May event), the
greater the uncertainty bandwidth for overflow flow and for
COD and NH4 loads (Fig. 3e–h) and concentrations (Fig. 3i–
l). The MC-estimated statistics and the standard errors (se)
are presented in Table 4. The table shows the uncertainty
quantification of outputs obtained from the MC uncertainty
propagation for the first MC simulation (all selected input
variables are uncertain).

Table 4 shows the standard deviation (SD) and the coef-
ficient of variation (cv) for the seven output variables con-
sidered in the uncertainty propagation. For the volume in the
CSO chamber, VChamber, the annual mean standard deviation,
σMC, (8.27 m3) is lower than the mean, µMC, (92.51 m3).
This goes along with an annual mean coefficient of varia-
tion (CVMC) of 0.100. A (CVMC) greater than one means
large uncertainty. The overflow spill volume, VSv, had a co-
efficient of variation of 0.070, while it was 1.585 for the
overflow flow, QSv. This shows that the relative uncertainty
of the overflow flow is very large. Regarding the overflow
COD load, the annual mean (1.18 kg) is similar as the annual
mean standard deviation (1.27 kg). Similar behaviour was
observed for the overflow COD concentration, which had an
annual mean value of 170 mg L−1 and a standard deviation
of 162 mg L−1. For overflow NH4 load and overflow NH4
concentration, the annual mean also had the same order of
magnitude as the annual mean standard deviation. Overflow
COD and NH4 loads had a coefficient of variation of 0.087
and 0.075, respectively, whereas the coefficient of variation
for concentrations were 0.988 and 0.815, respectively. This
suggests that overflow concentrations are more uncertain.
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Table 3. Summary statistics of dry weather flow measurements for CCOD,S and CNH4,S characterisation.

COD CCOD,S log(CCOD,S) NH4 CNH4,S log(CNH4,S)
(mg L−1) (g PE−1 d−1) log(g PE−1 d−1) (mg L−1) (g PE−1 d−1) log(g PE−1 d−1)

Min 61.9 6.9 1.936 16.10 1.745 0.556
P5 216.8 23.8 3.167 20.55 2.102 3.018
Mean 925.5 104.2 4.378 44.38 4.733 1.473
P95 2032.0 236.8 5.466 79.00 7.684 2.039
Max 3454.0 528.5 6.270 81.20 10.771 2.377
SD 631.7 87.5 0.751 18.56 1.917 0.410

Table 4. Monte Carlo estimated statistics and standard errors (se) determined by bootstrapping for the MC simulations, where all selected
input variables are uncertain R (model was run at 10 min time steps, and MC results were aggregated to 1 h averages over a 1 year period).
See Appendix A for output variable nomenclature and units. Note: Interq. – interquartile; quant. – quantile; pbw – prediction band width;
SD – standard deviation; var – variance; cv – coefficient of variation.

Mean Interq. range 0.005 quant. 0.995 quant. 99 % pbw 0.05 quant. 0.95 quant. 90 % pbw SD var cv
µMC IQR ζ0.005 ζ0.995 ζw,0.99 ζ0.05 ζ0.95 ζw,0.90 σMC σ 2

MC CVMC

VChamber 92.51 13.65 77.55 109.16 31.60 81.02 104.28 23.25 8.27 2984 0.100
se 2.53 1.17 2.18 3.17 1.48 2.27 2.95 1.36 0.56 482 0.001

VSv 3.18 3.69 0.85 6.60 5.76 0.94 5.76 4.82 1.98 1100 0.070
se 0.51 0.73 0.24 0.95 0.95 0.26 0.91 0.83 0.35 259 0.012

QSv 55.49 76.77 0.37 267.1 266.7 1.24 165.3 164.1 64.50 7332 1.585
se 5.67 10.26 0.13 13.75 14.54 0.22 10.82 10.89 4.57 1,102 0.048

BCOD,Sv 1.18 1.69 0.04 6.11 6.06 0.07 3.49 3.41 1.27 394 0.087
se 0.20 0.31 0.02 1.02 1.00 0.03 0.59 0.59 0.21 81.71 0.013

BNH4,Sv 0.052 0.077 0.004 0.174 0.170 0.006 0.125 0.120 0.045 0.546 0.075
se 0.009 0.014 0.002 0.029 0.028 0.002 0.022 0.021 0.008 0.115 0.013

CCOD,Sv, av 170.0 164.6 3.80 909.7 905.9 15.49 465.8 450.3 161.9 36 151 0.988
se 9.02 11.38 0.33 40.12 40.40 1.02 24.66 24.03 7.94 4,615 0.016

CNH4,Sv, av 7.19 6.65 0.47 29.20 28.74 0.86 17.51 16.64 5.66 46.93 0.815
se 0.41 0.61 0.02 1.23 1.22 0.06 0.91 0.87 0.29 6.62 0.016

Low standard errors (se) for the coefficient of variation
were obtained for all seven outputs. These were never greater
than 0.05, which indicates that the selected MC replication
size (1500 for mc1) is a suitable value. This holds for all out-
put statistics because, in all cases, the standard error is small
in comparison to the estimated value.

3.3.2 Contributions of input variables to total
uncertainty

The contributions of input variables to the total uncertainty
of the model inputs were also computed using the procedure
described in Sect. 2.6.4. A total of four MC simulations with
a total of 6000 runs were performed to estimate Si (Eq. 10).
Afterwards, four contributions were evaluated per time step
and aggregated for the whole year. Following Eq. (10), the
per time step contribution of input variables to output vari-
ables in terms of percentage of variance, stochastic sensitiv-
ity Si of the input variables CCOD,S, CNH4,S, CODr, and P
were calculated. An example of the contributions analysis per

time step is presented in Fig. 4. Here we remark that a high
uncertainty over time is shown mainly for the spring event.

The aggregated-over-time contributions of input variables
to output variables in terms of percentage of variance and
stochastic sensitivity Si of the input variables were also cal-
culated (Table 5). Note that P is the only source of uncer-
tainty for VChamber and VSv, while uncertainty in NH4 inputs
only propagates to NH4 outputs, which is similar for COD
(Fig. 4).

We found, as expected, that precipitation, P , is the only
source of uncertainty from all uncertain input considered for
water quantity output variables VChamber and VSv. Regard-
ing average values for the whole year, for the water quality
output variables BCOD,Sv and CCOD,Sv, av, CCOD,S has the
largest contribution to the output variance, which is about
66 % for BCOD,Sv and about 62 % for CCOD,Sv, av. The sec-
ond variable that contributes to the uncertainty of these COD
output variables is P , with about 3 % for BCOD,Sv and 9 %
for CCOD,Sv, av. Similarly, the input variable CNH4,S plays
an important role in the contribution of total uncertainty for
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Figure 3. Uncertainty propagation outcomes for the first Monte Carlo simulation, where all input variables vary stochastically. The 99 %
prediction interval is shown as a light grey shading, the 90 % prediction interval as a dark grey shading, and the mean value as a blue line.
The MC simulations were performed for the entire year of 2010 at a 10 min time step, aggregated to hourly time steps in the figure. (a, b)
Input precipitation. (c, d) In the overflow spill flow, the upper dashed red line indicates the 75 L s−1 threshold and the lower dotted red line
the 37.5 L s−1 threshold. (e, f) Load of overflow COD. (g, h) Load of overflow NH4. (i, j) In the average spill COD concentration, the upper
dashed red line indicates the 125 mg L−1 threshold, and the lower dotted red line indicates the 90 mg L−1 threshold. (k, l) In the average
spill NH4 concentration, the upper dashed red line indicates the 5.0 mg L−1 threshold and lower dotted red line the 2.5 mg L−1 threshold.
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Figure 4. (a, b) Temporal contributions of input variables to the load of overflow COD, (c, d) load of overflow NH4, (e, f) concentration of
overflow COD, and (g, h) concentration of overflow NH4 in terms of variance. The MC simulations were performed for the entire year of
2010 at a 10 min time step, which were aggregated to hourly time steps. For illustration, two periods are shown from 28 to 30 May 2010
(left) and from 7 to 9 September 2010 (right). In the legend, CODs refers to CCOD,S, and NH4s refers to CNH4,S.

BNH4,Sv (on average about 34 % of the variance for the whole
year) and CNH4,Sv, av (about 35 %). Equally contributing to
the uncertainty of these NH4 output variables is P with about
66 % for BNH4,Sv and 65 % for CNH4,Sv, av. From these re-
sults, we can infer that precipitation is a main source of un-
certainty for all six outputs considered.

3.4 Uncertainty and water quality impact

Quantification and assessment of the water quality impact is
an important step after the uncertainty propagation. As de-
scribed in Sect. 2.7, the assessment of water quality standards
was done by taking into account the reference thresholds rec-
ommended in the European Union guidelines for COD and
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Table 5. Aggregated-over-time contribution of input variables to
output variables in terms of percentage of total variance.

Stochastic sensitivity, Si , of input variable (%)

Output variable Total CCOD,S CNH4,S CODr P

VChamber 100.0 0.0 0.0 0.0 100.0
VSv 100.0 0.0 0.0 0.0 100.0
BCOD,Sv 100.0 65.7 0.0 2.9 31.4
CCOD,Sv, av 100.0 62.4 0.0 8.7 28.9
BNH4,Sv 100.0 0.0 34.4 0.0 65.6
CNH4,Sv, av 100.0 0.0 35.3 0.0 64.7

the German and Austrian guidelines for hydraulic impact and
acute ammonium toxicity.

3.4.1 Hydraulic impact

From the time series of daily values for 2006 to 2013 of the
river Sûre, a daily flow expected with a return period of once
per year (1.01 years),Qr1 of 16 m3 s−1 was computed at Hei-
derscheidergrund, which corresponds with the entire catch-
ment area of the Haute-Sûre storm water system (182.1 ha).
Therefore, we estimated the river daily flow in the Goesdorf
CSO structure as a proportion to 30 ha, which is equal to
2.6 m3 s−1. Following Eq. (11), the maximum sewer over-
flow discharge with return period of 1 year, Q1 can have a
value between 0.26 and 1.32 m3 s−1. Accordingly, with the
German guideline ATV-DVWK-A 128 (1992; Eq. 12), two
additional thresholds are defined for the maximum sewer
overflow discharge with return period of 1 year for the Goes-
dorf catchment (Aimp = 5.0 ha). Q1 is expected to vary be-
tween 37.5 and 75.0 L s−1. We contrasted these values with
those obtained from the uncertainty analysis. From Table 4,
we obtained a 1 h mean value for the overflow spill flow,QSv,
of 55.5 L s−1, 90 % prediction band width of 164.1 L s−1, and
standard deviation of 64.5 L s−1. Figure 3a and b present the
overflow spill flow for the two periods chosen for illustration.
The upper dashed red line indicates the 75 L s−1 threshold,
and the lower dotted red line indicates the 37.5 L s−1 thresh-
old. Table 6 (top) shows the exceedance percentage of over-
flow spill flow over the 37.5 and 75.0 L s−1 thresholds for the
mean, 0.95 quantile, and 0.995 quantile. We found a 0.49 %
exceedance of the mean value over the 37.5 L s−1 threshold
and about 1.7 % for the quantiles. As expected, slightly lower
percentages were found for the 75.0 L s−1 threshold.

3.4.2 COD concentration

A reference COD concentration emission in CSOs was pre-
sented in Sect. 2.7.2. For the European Union, a value of
125 mg L−1 is used. We obtained a 1 h average spill COD
concentration with a mean of 170 mg L−1, standard devi-
ation of 162 mg L−1, and a 90 % prediction band width
of 450 mg L−1. Figure 3i and j present the average spill
COD concentration. The upper dashed red line indicates

the 125 mg L−1 threshold and the lower dotted red line the
90 mg L−1 threshold. The mean COD concentration in the
overflow volume was higher than the thresholds. However,
note that when entering the river system it will quickly be di-
luted, suggesting that the negative impact on the environment
will be dampened by the receiving water body.

Table 6 (centre row) shows the exceedance percentage of
overflow COD concentration over the 90 and 125 mg L−1

thresholds for the mean, 0.95 quantile, and 0.995 quan-
tile. We found a 1.62 % exceedance of the mean value over
the 90 mg L−1 threshold and about 1.8 % for the quantiles.
Slightly lower percentages were found for the 125 mg L−1

threshold for the mean value (1.03 %). For the quantiles equal
values were found as for the 90 mg L−1 threshold.

3.4.3 Acute ammonium toxicity

We compared the acute ammonium toxicity reference values
presented in Sect. 2.7.3 (2.5 mg L−1 for the ammonium con-
centration calculated for a 1 h duration for salmonid streams,
and for cyprinid streams, a maximum value of 5.0 mg L−1)
was calculated with the values we found for ammonium. An
average spill NH4 concentration with a mean of 7.19 mg L−1,
standard deviation of 5.66 mg L−1, and 90 % prediction band
width of 16.64 mg L−1 was obtained. Figure 3k and l show
the average spill NH4 concentration for the two periods cho-
sen for illustration. The ammonium (NH4) concentrations in
the overflow flow are higher than the reference values, which
are given for concentrations in the river.

Table 6 (bottom row) shows the exceedance percentage
of overflow NH4 concentration over the 2.5 and 5.0 mg L−1

thresholds for the mean, 0.95 quantile, and 0.995 quantile.
We found a 1.8 % exceedance of the mean and quantile val-
ues over the 2.5 and 5.0 mg L−1 thresholds. A slightly lower
percentage (1.1 %) was found for the 5.0 mg L−1 threshold
with regards to mean value.

4 Discussion

This study aimed to select and characterise the main sources
of input uncertainty in urban water systems, while account-
ing for temporal auto- and cross-correlation of uncertain
model inputs, by propagating input uncertainty through the
EmiStatR model and quantifying and assessing the contri-
butions of each uncertainty source to model output uncer-
tainty dynamically (over time). In the following discussion,
we start with the uncertainty and water quality impact of the
model outputs to the environment, in relation to the uncer-
tainty analysis. Next, we discuss the accuracy of Monte Carlo
analysis, followed by a discussion of other sources of un-
certainty. Finally, we highlight some limitations and possible
solutions to the approach used in this work.
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Table 6. Frequency (percentage) over time that environmental
thresholds are exceeded for different statistics of the overflow spill
flow, COD, and NH4 concentration.

Output variable Threshold Statistic Exceedance
percentage

QSv 37.5 Mean 0.49
(L s−1) 37.5 0.95 quantile 1.71

37.5 0.995 quantile 1.74
75.0 Mean 0.31
75.0 0.95 quantile 1.51
75.0 0.995 quantile 1.72

CCOD,Sv, av 90.0 Mean 1.62
(mgL−1) 90.0 0.95 quantile 1.80

90.0 0.995 quantile 1.82
125.0 Mean 1.03
125.0 0.95 quantile 1.80
125.0 0.995 quantile 1.82

CNH4,Sv, av 2.5 Mean 1.78
(mgL−1) 2.5 0.95 quantile 1.80

2.5 0.995 quantile 1.82
5.0 Mean 1.05
5.0 0.95 quantile 1.78
5.0 0.995 quantile 1.82

4.1 Uncertainty and water quality impact

Next, we discuss how the uncertainty propagation analysis
done gives additional insight regarding hydraulics, COD con-
centration, and the acute ammonium toxicity impact on water
quality over the river Sûre due to the CSO discharges un-
der study. After doing the uncertainty propagation analysis,
we not only have the predictions of model outputs, but we
also know how uncertain these are. An added value arises
when we take into account the uncertainty information. For
the case of the overflow spill flow, the expected model output
(mean of 55.5 L s−1) is below the environmental threshold
of 75 L s−1, but the 0.95 quantile (164.1 L s−1) is very much
above the threshold. This indicates that there is a consider-
able chance of it being above the threshold.

Regarding water quality outputs, although the mean model
output for COD and NH4 concentrations is fairly above that
of the thresholds, the 0.95 quantile is 2.7 times above the
mean value for COD concentration and 2.4 times above the
mean value for NH4. Also, here we can conclude that we are
not certain that we are below the threshold because there is a
considerable probability that the true values are above, even
though the expected value is below the threshold.

We were able to compute the water quantity and quality
at the CSO outlet to the river. We found that water quality
(COD and NH4) were sometimes above the environmental
threshold. Even if the expected value was below the thresh-
old, there could still be a considerable probability that the
quality was above the threshold because of the large uncer-

tainty. Therefore, policy and decision-makers and water man-
agers need to be aware of this because, whenever concentra-
tions are above the threshold, this may harm the environment.
Nevertheless it is worth noting that we computed the concen-
tration in the outlet of the CSO. When this spilled water en-
ters the river, it will quickly mix with the much cleaner river
water and concentrations will drop quickly, so it is only a
local problem. How local it is and how the river water qual-
ity is distributed in space and time is not an easy problem
to solve and requires the use of hydrological and hydraulic
river models, e.g. SIMBA (IFAK, 2007) or MIKE 11 (DHI,
2017). Those models have been well developed and, for some
of them, uncertainty analyses have also been done (Beven
and Binley, 1992; Refsgaard, 1997; Beven and Freer, 2001;
Vrugt et al., 2003a; Vrugt et al., 2008; Beven et al., 2010;
Andrés-Doménech et al., 2010; Beven, 2012; Jerves-Cobo
et al., 2020; Yu et al., 2020), but obviously such uncertainty
analyses can only be done if the inputs and the uncertainty
associated with these inputs to these models are known. One
of these inputs is the inlet from CSO. That is where our pa-
per makes a very valuable contribution because our work has
quantified water quantity and quality of CSO structures, in-
cluding uncertainty, and that is exactly what these river mod-
els need to be able to do an uncertainty propagation analysis.
We also recognise other attempts at quantity (e.g. Sriwastava
et al., 2018) and quality, especially with measurements taken
at CSOs, which demonstrate that the measured water quality
at the WWTP influent is expected to render a low represen-
tativity of the conditions at the CSOs (e.g. Brombach et al.,
2005; Diaz-Fierros T et al., 2002). We present some compar-
isons with these studies in the following lines.

Sriwastava et al. (2018) apply an uncertainty propagation
to a complex hydrodynamic model to quantify uncertainty in
sewer overflow volume. They used MC for the uncertainty
propagation and Latin hypercube sampling (LHS) as an effi-
cient sampling scheme. Although LHS ensures a full cover-
age of the sample space and provides a faster convergence
than simple random sampling, the LHS application in the
case of dynamic model inputs (e.g. precipitation, COD, and
NH4 inputs) is not trivial, and its implementation is more
complex than in the case of sampling from static variables
(i.e. uncertain constants). In our study, we sampled the time
series of dynamic inputs using an implementation in stUP-
scales (Torres-Matallana et al., 2019; Torres-Matallana et al.,
2018a).

Diaz-Fierros T et al. (2002), in a study in the city of San-
tiago de Compostela (northwestern Spain; population about
100 000 inhabitants), where a combined sewer system feeds
to a grossly undersized wastewater treatment plant, reported
an event mean concentration (Diaz-Fierros T et al., 2002; Ta-
ble 4) for the output variables CCOD,Sv, av and CNH4,Sv, av of
329.1 and 8.7 mg L−1, respectively. These values are larger
than those found by Brombach et al. (2005) and are more
in agreement with our findings, especially for the case of
CNH4,Sv, av. Diaz-Fierros T et al. (2002) reported values of
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CCOD,Sv, av as high as 1073 mg L−1, which agrees with the
right-hand tail of the distribution obtained in our study (i.e.
a 0.995 quantile of 909.7 mg L−1). Similarly, for the case of
CNH4,Sv, av, Diaz-Fierros T et al. (2002) reported values as
high as 32.5 mg L−1, which is comparable with the 0.995
quantile (29.20 mg L−1) found in our study.

It is worth noting that, regarding measurements taken at
CSOs, the measured water quality at the WWTP influent is
expected to render a low representativity of the conditions
at the CSOs, as reported by Diaz-Fierros T et al. (2002)
and Brombach et al. (2005). Thus, when comparing model
outputs with independent measurements, one should bear in
mind that discrepancies between measured and predicted val-
ues are not only caused by errors in model inputs, model pa-
rameters, and model structure but are also the result of errors
in the water quality measurements.

4.2 Accuracy of Monte Carlo analysis

Regarding the Monte Carlo replication size for uncertainty
propagation, we presented the results in Fig. S4 for three out-
put variables and three replications size 250, 1000, and the
selected 1500 (Nash–Sutcliffe efficiency, NSE, closer to 1.0
for most of the output variables). We compute replications
for 50, 100, and from 250 to 2000 at steps of 250 replications
and the comparison of two equal MC runs (MC1 and MC2)
with different seed for the pseudo-random number generator.
The results suggest that the output variables related to COD
(load and concentration) have a larger dispersion when we
compare MC1 and MC2 for the same replications size. This
is also reflected in the larger standard errors reported in Ta-
ble 4 for, for example, the overflow COD load. Nevertheless,
1500 runs are a feasible MC replication size for running a
relatively simple and fast model as EmiStatR (7.29 min in av-
erage execution time, using parallel computing and 50 cores
for a time series with 4464 time steps). For a more complex
full hydrodynamic model with a high computational bur-
den, 1500 replications repeated four times to compute con-
tributions may be not possible. Therefore, we suggest check-
ing the intermediate results of the MC convergence test. We
found that for quantity variables as the spill overflow vol-
ume and quality variables as the overflow NH4 load in 250
replications (7.10 min in average execution time using par-
allel computing and three cores for a time series with 4464
time steps) per individual MC execution was enough, which
makes an execution of this kind of uncertainty propagation
more feasible.

Figures 3 and 4 show that there is a large uncertainty for
the early May event and smaller uncertainty for the Septem-
ber event. This is due mainly to the presence of a large dry
period before the spill event in May, i.e. a shorter dry period
preceding the spill flow leads to a lower uncertainty. This
finding suggest also an interaction between the antecedent
dry period and the concentration of pollutants.

4.3 Other sources of uncertainty

In this work, we only looked at input uncertainty and not at
parameter and model structural uncertainty. Further research
can be done on those topics. Neumann (2007) address how
uncertainty ranges for parameters of full-scale systems are
obtained and how model structure uncertainty manifests it-
self and can be quantified for a performance evaluation and
the design of urban water infrastructure. Moreno-Rodenas
et al. (2019) also studied and depicted how a model param-
eter is an important source of uncertainty. They emphasised
that “still, uncertainty analysis is seldom applied in practice,
and the relative contribution of the individual model elements
is poorly understood.”. Also, they highlighted that, after in-
ferring the river process parameters with system measure-
ments of flow and dissolved oxygen, combined sewer over-
flow pollution loads became the dominant uncertainty source
along with rainfall variability. These findings agreed with our
results.

Bachmann-Machnik et al. (2018) recognised that the most
important parameters causing uncertainties in the sewer sys-
tem model are the connected area and the storm water run-
off quality. Our analysis confirms these findings, specifically
regarding the storm water run-off quality. In our study, the
input variable run-off COD was an important source of un-
certainty with relation to the annual mean overflow COD re-
leased from the CSO.

4.4 Limitations and possible improvements

Despite the extensive temporal uncertainty propagation anal-
ysis, the approach also has some limitations which we
present hereafter, addressing possible solutions in future
work.

1. Incorporation of the spatial distribution of model
inputs. Specifically for precipitation,Breinholt et al.
(2012) stated that, due to a poor representation of the
spatial precipitation that is measured by point gauges
and the complexity of the sewer systems, large out-
put uncertainty can be expected. We also infer that we
obtained a large output uncertainty due to neglecting
the inherent spatial variability in precipitation. There-
fore, we suggest that further research is needed to ac-
count for spatial variability in precipitation that can
bring light an understanding of how this variability im-
pacts the output uncertainty and thus quantify it prop-
erly. This issue should also be related to the problem
of change of support. When modelling precipitation,
we also ignored the support effect, i.e. we ignored that
the sub-catchment area is much greater than a point.
Future research may address this issue of change-of-
support. Studies that tackled this issue are available, e.g.
Leopold et al. (2006); Wadoux et al. (2017); Cecinati
et al. (2018).
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2. Linkage of sub-models and uncertainty compensation
effect. Tscheikner-Gratl et al. (2019) addressed the
question as to whether there is an increase in uncertainty
by linking integrated models or whether a compensation
effect could take place by which overall uncertainty in
key water quality parameters decreases. Some further
insight into this topic could be obtained by quantifying
uncertainties at sub-model level and analysing whether
the uncertainty at sub-model level is greater or smaller
than at the overall level. With our implementation, this
is not a difficult task because EmiStatR has a stringent
modular design in which it is easy to analyse outputs
and their uncertainties at sub-model level.

3. Accounting for cross-correlation between the inputs
precipitation and run-off COD concentration. It is
worth noting that we did not include correlation be-
tween CODr and P . Including such a correlation would
yield a more realistic model of the uncertainty because
these variables are known to have a strong correlation. It
is highly recommended that correlations between CODr
and precipitation be included because loads in chemical
oxygen demand are correlated with the overland flow
due to precipitation, which may transport distributed
pollutants to the sewer system. Also, the inputs CCOD,S
and CNH4,S can be related with a daily curve that re-
flects the pattern of consumption in the household, like
the German ATV-DVWK-A 134 curve. We used the lat-
est version of EmiStatR (version 1.2.2.0), which consid-
ers these kinds of patterns.

4. Absence of high frequency water quality observations to
compare with model outputs and uncertainty prediction
bands. In order to gain an understanding of the temporal
dynamics of nutrients (nitrogen, N, and phosphorus, P),
Yu et al. (2020) applied high-frequency monitoring in a
groundwater-fed, low-lying urban polder in Amsterdam
(the Netherlands). They argued that although spatial and
temporal concentration patterns from discrete sampling
campaigns of water quality parameters, such as E. coli,
showed a clear dilution pattern, the temporal patterns of
N and P were still poorly understood, given their reac-
tive nature and more complex biogeochemistry. There-
fore, high-frequency measurement is a key factor in un-
derstanding these temporal dynamics and patterns.

5. Absence of a joint spatio-temporal uncertainty analy-
sis. According to Zhou et al. (2020), the limitations in
algorithms for classic uncertainty estimates is the rea-
son that only the uncertainty in one dimension (either
temporal variability or spatial heterogeneity) is consid-
ered, whereas the variation in the other dimension is
dismissed, resulting in an incomplete assessment of the
uncertainties. Zhou et al. (2020) also showed that clas-
sic metrics underestimate the uncertainty through aver-
aging, which means a loss of information in the varia-

tion across spatio-temporal scales. To handle this limi-
tation, suitable methods are the 3D variance partitioning
for a new uncertainty estimation in both spatio-temporal
scales (Zhou et al., 2020) or spatio-temporal geostatis-
tics (Gräler et al., 2016).

6. Uncertainty analysis with complex models. In this re-
search, we were able to conduct a comprehensive Monte
Carlo uncertainty propagation analysis, which required
a large number of Monte Carlo runs. This was possi-
ble because we used a strongly simplified urban wa-
ter system model, EmiStatR. For more complex mod-
els that take much more computing time, the applica-
tion of a Monte Carlo uncertainty propagation analy-
sis is more challenging. However, given sufficient, re-
sources it is possible because each model run can be
run independently, and hence, the analysis is extremely
suitable for parallelisation and cloud computing. In par-
ticular, the use of graphics processing units (GPUs) for
heavy computation is promising. Some recent examples
that demonstrate the potential of GPUs for this purpose
are Eränen et al. (2014), Sten et al. (2016), and Sandric
et al. (2019). Sriwastava et al. (2018) applied uncer-
tainty propagation to a complex hydrodynamic model
by selecting a small subset of dominant input/model pa-
rameters that explain most of the model output variance.

7. Convolution of precipitation to run-off. Equation (2) in-
dicates that the run-off that enters the combined sewage
in EmiStatR has the same shape as the precipitation,
with an offset. Thus, for precipitation, no convolution
is applied. In a new release of EmiStatR, we will incor-
porate convolution of precipitation when transforming
precipitation to run-off.

5 Conclusions

In this final section, we conclude by highlighting the impor-
tance of temporal uncertainty propagation analysis and the
selection and characterisation of uncertain model inputs im-
pacting model sensitivity. We also point out that uncertainty
propagation analysis helps to identify the sources that con-
tribute the most and can provide better evidence for the im-
pact assessment of pollutant release from sewer systems to
the environment, in particular to the receiving waters.

1. Uncertainty analysis is important because it quantifies
the accuracy of model outputs and quantifies the uncer-
tainty source contributions. The latter provides essen-
tial information to help take informed decisions about
how to improve the accuracy of the model output. But
MC uncertainty analysis is only possible if it is com-
putationally feasible. We used a simplified urban water
system model with the capability to apply it for the min-
imisation of transient pollution from urban wastewater
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systems in parallel mode, which minimises model run-
ning time, allowing for uncertainty propagation, long-
term simulations, and the evaluation of complex scenar-
ios. These capabilities are crucial also for, for example,
real-time control applications, where simplified models
of fast running times are desirable.

2. Input variables that were very uncertain, and for which
model output was very sensitive, were selected to be
included in the uncertainty propagation analysis. We
found four main input variables to be analysed, namely
(1) precipitation, P , (2) chemical oxygen demand
sewage pollution per capita load per day, CCOD,S, (3)
ammonium pollution per capita load per day, CNH4,S,
and (4) chemical oxygen demand CODr concentration.

3. Selected input variables for uncertainty propagation
can be characterised in terms of the input uncertainty
in four specific cases, depending on the type of input
variable. (i) Uncertain constant inputs, characterised by
their marginal (cumulative) pdf, e.g. water consump-
tion, infiltration flow, impervious area and run-off co-
efficients; (ii) temporally autocorrelated dynamic un-
certain inputs, characterised by univariate time series
autoregressive modelling, e.g. CODr; (iii) temporally
cross-correlated multiple dynamic uncertain inputs,
characterised by multivariate time series modelling,
considering cross- and no-correlations among variables,
e.g. CCOD,S and CNH4,S; and (iv) rain gauge input pre-
cipitation, characterised by autoregressive model condi-
tioned to the observed precipitation (P ).

4. Model input uncertainty propagation through the sim-
plified, combined sewer overflow model (EmiStatR)
helped us to understand how uncertainty propagates
and how large the uncertainty of EmiStatR outputs is
in a case study. Three output variables were considered
for water quantity and four variables for water qual-
ity. The Monte Carlo uncertainty propagation analysis
showed that, among the water quantity output variables,
the overflow flow, QSv, is the more uncertain output
variable and has a large coefficient of variation (cv of
1.585). Among water quality variables, the annual av-
erage spill COD concentration, CCOD,Sv, av, and the av-
erage spill NH4 concentration, CNH4,Sv, av, were found
to have large uncertainty (coefficients of variation of
0.988 and 0.815, respectively). Also, low standard er-
rors (se) for the coefficient of variation were obtained
for all seven outputs. They were never greater than 0.05,
which indicated that the selected MC replication size
(1500 simulations) was a suitable value.

5. Main sources of uncertainty model outputs. For water
quantity outputs it was precipitation, while for COD,
water quality outputs were P , CCOD,S, and CODr, and
for NH4, outputs were P and CNH4,S.

6. Uncertainty propagation analysis can explain the im-
pact of water quality indicators to the receiving river for
the Luxembourg case study more comprehensively. Al-
though the mean model water quality outputs for COD
and NH4 concentrations are fairly above the thresholds,
the 0,95 quantile is 2.7 times above the mean value for
COD concentration and 2.4 times above the mean value
for NH4. We conclude that we are not certain that envi-
ronmental thresholds are not exceeded because there is
a considerable probability that values are above them,
even though the expected value is below the thresh-
olds. This is valid for concentrations in the spilled CSO;
therefore, it is important to highlight that the results con-
firmed our hypothesis that annual mean COD and NH4
river concentrations are lower than the released CSO
concentrations due to dilution and are thus compliant
with the water quality thresholds given by the guide-
lines consulted.
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Appendix A

Table A1. List of variables of EmiStatR.

csmrt Combined sewer mixing ratio at time t (–)
pet Population equivalents of the connected CSO structure at time t (PE)
qft Infiltration water inflow flux at time t (Ls−1 ha−1)

qst Individual water consumption of households at time t (LPE−1 d−1)
tfS Delay in time response related to flow time in the sewer system (time step)
Aimp Impervious area of the catchment (ha)
Atotal Total area of the catchment (ha)
BCOD,Sv COD load in the spill overflow (g)
BNH4,Sv Spill overflow NH4 load (g)
Cd Orifice coefficient of discharge in the CSOC structure (–)
Cimp Run-off coefficient for impervious areas (–)
Cper Run-off coefficient for pervious areas (–)
CCODt Mean dry weather pollutant (COD) concentration at time t (mgL−1)

CCOD,S COD sewage pollution per capita load per day (gPE−1 d−1)

CCOD,Sv,99.9 A 99.9th percentile spill COD concentration (mgL−1)

CCOD,Sv, av Average spill COD concentration (mgL−1)

CCOD,Sv,max Maximum overflow COD concentration (mgL−1)

CNH4,S NH4 sewage pollution per capita load per day (gPE−1 d−1)

CNH4,Sv,99.9 A 99.9th percentile spill NH4 concentration (mgL−1)

CNH4,Sv, av Average spill NH4 concentration (mgL−1)

CNH4,Sv,max Maximum spill NH4 concentration (mgL−1)

CODf Infiltration pollution COD (gPE−1 d−1)

CODrt Concentration due to rainwater pollution (COD) at time t (mgL−1)
Dd Orifice diameter (m)
Lev Measured water level in the CSOC (m)
Levini Initial water level in the CSOC (m)
NH4f Infiltration pollution NH4 (gPE−1 d−1)

NH4r Concentration due to rainwater pollution (NH4) (mgL−1)

Pt Precipitation at time t (mm min−1)
Qd,max Maximum throttled outflow (L s−1)
Qft Infiltration flow at time t (Ls−1)

Qrt Flow contribution of rainwater to the combined sewage flow at time t (m3 s−1)
Qst Dry weather flow of the residential sewage in the catchment at time t (Ls−1)

QCSFt Combined sewer flow at time t (m3 s−1)
QDWFt Total dry weather flow at time t (Ls−1)

QSv Overflow spill flow (Ls−1)

V Volume of the CSOC structure (m3)
Vdt Volume of throttled outflow to the WWTP at time t (m3)
Vdwt Total dry weather volume (amount of dry weather water in combined sewage flow) at time t (m3)
Vrt Rain weather volume at time t (m3)
VChambert Water volume in the CSO chamber at time t (m3)
VSvt Spill overflow volume at time t (m3)

ε numerical precision term (m3)
1t Time interval (min)
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