Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-615-2020
https://doi.org/10.5194/hess-24-615-2020
Research article
 | 
13 Feb 2020
Research article |  | 13 Feb 2020

Dual state/rainfall correction via soil moisture assimilation for improved streamflow simulation: evaluation of a large-scale implementation with Soil Moisture Active Passive (SMAP) satellite data

Yixin Mao, Wade T. Crow, and Bart Nijssen

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to revisions (further review by editor and referees) (08 Oct 2019) by Niko Wanders
AR by Yixin Mao on behalf of the Authors (10 Oct 2019)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (10 Oct 2019) by Niko Wanders
RR by Christian Massari (17 Oct 2019)
RR by Anonymous Referee #2 (07 Nov 2019)
ED: Publish as is (08 Nov 2019) by Niko Wanders
AR by Yixin Mao on behalf of the Authors (20 Nov 2019)
Download
Short summary
The new generation of satellite soil moisture observations are used to correct the streamflow in a regional-scale river basin simulated by a mathematical model. The correction is done via both the direct updating of soil moisture and correction of rainfall input. Results show some streamflow improvement, but the magnitude is small. A larger improvement will need future generations of even higher-quality satellite soil moisture data and better process representation in the mathematical model.