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Response to reviewers 

Dual state/rainfall correction via soil moisture assimilation for improved streamflow 

simulation: Evaluation of a large-scale implementation with SMAP satellite data 

Yixin Mao, Wade T. Crow, Bart Nijssen 

 

Revision summary: 

We appreciate the comments from the reviewers. We respond to each reviewer comment 

below, with reviewer comments shown in bold. We have also made minor edits throughout the 

manuscript to make it more succinct and readable. 

 

Response to Reviewer 1 (Christian Massari) 

Major comments: 

1) I have only one major comment which is related to the rainfall correction and its effect 

on the streamflow simulations which to me is a bit ambiguous and should be improved. In 

many parts of the manuscript it is said that the correction of the rainfall has a smaller 

effect since the rainfall forcing used (IMERG-ER) has a good quality (see lines 331 

onward). However, this contradict with the results in Table 3 where the open loop 

simulations show in some cases of very poor performance of flood simulations (which are 

likely due the poor rainfall quality) and with other sentences stating that the IMERG-ER 

has large errors (line 448) in some basins. In fact, when forced by NLDAS2 there is a 

significant increase of the model performance up to 80% of PER which however, is still not 

satisfactory for some basins (see Table 3 Walnut, Chikaskia and Spring). Then, I think 

there two possible reasons. Either SMAP adds little in terms of rainfall correction or 

SMART only corrects for the random error component which is the component the 

hydrological model is less sensitive to as correctly stated by the authors. Therefore the 

systematic error can be very important in this respect. However as between the two 

precipitation products it is difficult to judge which one is really better (at least by looking 

at the performance in terms of KGE). I suggest to compare them with a gauge-based 

dataset like CPC or Stage IV both in terms of rainfall (bias, correlation and error) and in 

terms of streamflow simulations. Indeed it is well known that these two products works 

really well in US (see for example the last study of Beck et al. 2019 where they used Stage 

IV as a reference for validating precipitation products over CONUS). Another solution 

could be to drive VIC model with IMERG final run which is corrected with rain gauge and 

therefore should have a lower bias with its near real time counterpart and thus would 

explain if the systematic error is the real problem. To summarize my suggestion is to 
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include in the study a reference precipitation product against to compare IMERG-ER and 

NLDAS2. That would shed some light on the problems of the poor performance 

simulations. 

 We have responded the reviewer’s comment via the following points: 

 1) We agree with the reviewer that we overstated the “good quality” of IMERG, since it 

is clear from our streamflow results that IMERG rainfall quality is not good in some sub-basins. 

To address this, we have toned down the argument that IMERG has “good quality”, and instead 

emphasized that one reason of the smaller rainfall correction results than found by previous 

studies is because of the relatively better quality IMERG compared to older rainfall products 

(this discussion is now moved to Section 4.1 in the manuscript). In addition, the revised 

manuscript now clearly acknowledges (in Section 3.2.2) that in some sub-basins (the Bird, 

Spring, Illinois and Deep sub-basins in our experiment), SM-based rainfall correction scheme 

can potentially play an important role in improving VIC streamflow estimates because of 

relatively large IMERG error (with respect to the NLDAS-2 baseline). However, such potential 

improvement was not realized because these basins are densely vegetated with (subsequently) 

low SMAP quality. We believe that these revisions make our discussion more consistent, and 

balance and address the contradiction noted by the reviewer. 

 2) Regarding the addition of gauge-based rainfall dataset – the NLDAS-2 product used in 

the study is indeed already based on the gauge-based CPC rainfall (as well as ground radar), 

which is the reason that we used it as the reference precipitation in our study. Even if NLDAS-2 

rainfall is not perfect especially when translating into streamflow results (as can be seen from our 

streamflow analysis), its reliance on gauge observations ensures that it is relatively more reliable 

than the other satellite-based rainfall products considered in this study. Therefore, it provides an 

adequate benchmark to evaluate the lower-quality satellite-based products. We have added a 

more detailed description of the NLDAS-2 rainfall product in Section 2.2.4 to highlight these 

points. 

 

Response to Reviewer 2 

The topic is of interest to hydrological community and the some of the conclusions made 

are important. However, the quality of writing not up the standard of HESS. As the 

authors have acknowledged that the methods used in this paper have already been 

implemented elsewhere in the literature, and the only “new” contribution is in terms of 

using new datasets, there should have been deeper discussion and analysis regarding the 

outcome of this experiment. I agree that authors have used Ensemble Smoother as an 

extension to EnKF in this work. However, the results suggest improvements only when the 

updates are made at coarse temporal scale (SMAP scale). So, apart from minor differences, 

there may not be statistically significant difference in terms of performance between the 

two techniques. I will be glad if I am proven otherwise. Also, most importantly, there was 
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only a speculative attribution of lack of improvement in performance to the better quality 

of IMERG precipitation. The results lack appropriate robust quantitative analysis in this 

regard. Further comments are listed below. In summary, the manuscript may have to be 

revised thoroughly in a wat that highlights the major contributions, and also show how 

these contributions are helping us to extend our understanding in this domain of research. 

In this process, please also consider addressing the following specific and minor comments: 

Major comments: 

1) SMAP soil moisture estimates have a maximum sensing depth up to 6 cm in vegetated 

areas (Babaeian et al., 2019, Reviews of Geophysics). The deeper soil moisture has stable 

temporal dynamics compared with that of surface soil moisture. Further, the VIC model 

executed at 10, 40 and 93 cm. In the process of assimilation, the SMAP soil moisture are 

rescaled to VIC soil moisture dynamics. So, essentially the noisier timeseries (surface soil 

moisture) is being rescaled using the temporal dynamics of smoother timeseries (VIC soil 

moisture). Can authors assess the implications of this mismatch on the final outcome? 

We agree with the reviewer that matching a satellite-observed soil moisture product with 

that represented in a land surface model (LSM) is a very challenging task, and so far there is no 

standard good solution despite many research efforts (see, e.g., Yilmaz and Crow, 2013; Kumar 

et al., 2015; Nearing et al., 2018). On the one hand, although SMAP is typically described as 

measuring the top ~ 5 cm of soil moisture, the actual vertical support depth is unclear and varies 

nonlinearly as a function of soil moisture and vegetation water content. On the other hand, the 

relationship between the top-layer depth and its soil moisture dynamics in an LSM is complex 

and driven by a large number of poorly known model parameters (although, Shellito et al. (2018) 

found that changing the top-layer depth from 10 cm to 5 cm in the Noah LSM did not affect 

surface soil moisture dynamics much). Therefore, contrasts between the spectral characteristics 

of modelled and observed “surface” soil moisture is a general problem for essentially all land 

data assimilation systems (Qiu et al., 2014) – even those in which a concerted effort is made to 

“match” the vertical support of both estimates. While it likely does introduce some time scale 

error, the moment-matching rescaling techniques as used in our study is one of the standard, 

although imperfect, solutions, which is commonly used in soil moisture data assimilation studies. 

Therefore, we have kept our original procedure and added new discussion in Section 4.2 which 

acknowledges this shortcoming. 

 

2) How is the soil moisture state in the deeper layers being updated? Is there a correction 

factor implemented here, as carried out by Lievens et al. (2015, 2016)? Although authors 

have mentioned in Line 221, an equation will bring clarity to their statement. 
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 In our 3-layer VIC setup, the middle layer is updated using the surface measurement via a 

standard EnKF algorithm (i.e., perturbed and updated based on the error covariance calculated 

based on the ensemble distribution) – this follows the approach of Lievens et al. (2016) but 

differs slightly from Lievens et al. (2015) where an artificial vertical correlation factor was used 

to “nudge” the deeper-layer state. For the bottom layer, we did not include it in the EnKF update, 

which is the same as in Lievens et al. (2015, 2016) and further justified by Mao et al. (2019). We 

still perturbed the bottom layer to create a realistic ensemble estimate. All these modeling 

choices were detailed earlier in Mao et al. (2019), and now clarified in the revised text (and with 

additional equations in Supplemental material). 

 

3) Equations will help to understand the mathematically involved procedure like data 

assimilation. 

 We have added the key equations and descriptions in Supplemental Material as 

suggested. 

 

4) Authors may have to discuss the sensitivity of choosing gamma parameter in Eq. (1). 

 First, we would like to emphasize that the gamma parameter in Equation (1) was already 

manually tuned with the objective of maximizing the correlation coefficient between the 

uncorrected API time series and the SMAP time series over the domain, such that the API model 

as stated in Equation (1) captures the SMAP-observed SM dynamics as much as possible. In 

addition, this issue has been examined in past studies. Using a very similar system, Crow et al. 

(2011) found that the magnitude of rainfall correction was minimally sensitive to variations in 

gamma in the effort of mimicking a more complex soil water balance model.   

 Second, we have added a sensitivity analysis to examine the impact of gamma on rainfall 

correction results, as suggested by the reviewer. Figures 1 and 2 below show the domain-median 

correlation coefficient improvement and percent RMSE reduction (PER), respectively, after 

correction at different gamma values (in the manuscript, gamma = 0.98 was used). We see that 

around the chosen gamma = 0.98, the sensitivity of rainfall correction performance to gamma is 

relatively small, and gamma = 0.98 results in optimal PER when evaluating at 1-day and 3-day 

time steps (although performance is even better at gamma = 0.99 for the other measures shown). 

However, we also see that the correction performance is significantly degraded if gamma is far 

from the chosen value (i.e., if gamma < 0.95). These results should confirm that the chosen 

gamma value in the manuscript is reasonable and roughly optimal. This analysis is now 

presented in the revised Supplemental Material. 
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Figure 1.  Domain-median correlation coefficient improvement of IMERG rainfall after SMART 

correction (with respect to the NLDAS-2 reference) at different γ values. The improvement is 

evaluated for 3-hour (3H), 1-day (1D) and 3-day (3D) accumulation intervals. 

 

 

Figure 2. Same as Figure 1, but evaluated by percent RMSE reduction (PER). 
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5) L 210: There is also a need for authors to explain why the error variance of 0.3 mm2 is 

chosen and its sensitivity. 

 According to the Kalman filter theory, the time series of the normalized filter innovation 

should have mean zero and variance one. The normalized filter innovation, e, is defined as 

 ek= k k
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where k is the time step index, y  is the measurement, y−  is the estimated measurement before 

update, H is the vector mapping from state to measurement space, P−  is the estimated state error 

covariance, and R is the measurement error variance. Since we have a relatively good estimate of 

measurement error, the only degree of freedom to tune the innovation variance is the state error 

level, for which 0.3 mm2 was found to roughly satisfy the statistical requirement on the filter 

innovation. Since the innovation is required to have these statistical properties by the Kalman 

filter theory, this is not something that can be freely altered and we did not carry out a sensitivity 

analysis. This point has been clarified in the revised text. 

 

6) L: 228: When only top two layers are being updated, why is it that all the three layers 

are perturbed? 

 While the perturbation of the bottom layer does not affect the EnKF updating procedure, 

we need to perturb the bottom layer to generate a realistic ensemble for it since we are interested 

in probabilistic streamflow estimation (and the bottom layer soil moisture impacts VIC 

streamflow estimates via its role in determining baseflow). While ensemble spread in the first 

two soil layers will eventually propagate into the (third) bottom layer, such spread does not 

explicitly account for errors that originate in the bottom layer. We have clarified it in the text.  

  

7) L: 230-233: I find that this statement in qualitative in nature. So, it cannot be considered 

as a finding. 

 We did carry out the experiment of comparing the state update performance with and 

without considering the spatial auto-correlation of states, and found that considering spatial auto-
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correlation did not improve EnKF result (detailed results not shown). We have clarified this in 

the revised text. 

 

8) Figure 3 is not explained properly. What is the meaning of improvement in correlation? 

Is it correlation (NLDAS, IMERG_Corrected) – correlation(NLDAS, IMERG_Original)? 

There is no detail about it in the manuscript. 

 Figure 3 shows the improvement of the IMERG rainfall product relative to the NLDAS-2 

reference before and after the SMART rainfall correction - the formula written out by the 

reviewer is correct. However, we have decided to leave out this formula to avoid extra notation, 

but instead added a clearer description in the caption. 

 

9) L: 302: If delta and P are aggregated to 3-day windows prior to correction in the case of 

EnKF, why are there minor changes in the spatial maps in Fig. 3 (d-f)? Will it not be 

sensible to just have a 3-day window map? 

Even if EnKF corrects the 3-day accumulated rainfall amounts, the 3-day rainfall delta is 

downscaled uniformly to every 3-hour time step under the 3-day window. Therefore, the 3-

hourly (or daily) rainfall can still be improved to be closer to truth, even if the correction does 

not capture the fine temporal resolution. We have clarified this in the revised text. 

 

10) Interestingly, there seems to be an overlap in the spatial patterns of Figs. 2 and 3. It 

appears that there is a correlation improvement in the western part, which received lower 

rainfall compared to the eastern region. Is there such dependence of rainfall amount on the 

performance of correction? 

 We have added discussion on the spatial pattern of rainfall correction as suggested by the 

reviewer (first paragraph of Section 3.1.2). Specifically, SMAP tends to have better quality (in 

terms of correlation improvement) in the western part of the domain due to less vegetation, 

which is one possible reason that it adds more value to the SMART rainfall correction in the 

western region. RMSE is reduced more in the eastern part of the domain, which is likely due to 

the better correction for larger rainfall events (which mostly happen in the east). 
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11) I think it will be better if bias and error maps are also plotted to comprehensively 

characterize the errors. 

 The error (in terms of RMSE) reduction map was already included in the manuscript 

(Figure 5, left column). We do not include a bias correction map since the SMART algorithm 

does not correct overall rainfall bias – it rescales the corrected time series back to have the same 

mean as the uncorrected time series (this is pointed out in the first paragraph of Section 3.1.1). 

 

12) L: 333-334: This is one of the most important statements made by authors. I think it is 

important to support this statement with rigorous analysis. I think it may not be fair to 

compare these results with that of Table 2. This is because of a) the experimental setup has 

changed, b) case study has changed, and c) the reference dataset has changed. 

 First, we have toned down the argument that IMERG has “good quality”, and instead 

emphasized the main reason for the smaller rainfall correction results than those found by 

previous studies is the relatively better quality IMERG compared to older rainfall products. We 

have also pointed out that SMAP’s quality is low in dense-biomass regions, which limits its 

ability to correct IMERG rainfall. Therefore, the revised manuscript now relies less heavily on 

this argument to explain key results. 

 Nevertheless, the tendency for marginal data assimilation improvement to decrease as the 

skill of the background increases is a very well-developed general concept in land data 

assimilation (Reichle et al., 2008; Qing et al., 2011; Bolten and Crow, 2012; Dong et al., 2019) – 

and has already been demonstrated for the specific case of using soil moisture to correct rainfall 

(Crow et al., 2011). In addition, Crow and Ryu (2009) already provided exactly the rigorous 

analysis requested by the author. That is, using a conceptually equivalent rainfall correction 

approach and a set of well-controlled synthetic experiments, they examined the impact of 

baseline precipitation analysis on marginal precipitation skill improvements. Their conclusions 

(also) clearly demonstrate that rainfall correction margins are degraded by improvements in 

baseline precipitation skill (i.e., the exact point made here). Finally, while the approaches applied 

in Table 2 differ slightly, it should be noted that various correction approaches (e.g. the 

SM2RAIN used by Brocca et al. (2013, 2014) and the SMART approach applied by Crow et al. 

(2011)) have been inter-compared and found to perform similarly (Brocca et al., 2016), 

suggesting that their results are fairly cross-comparable (as in Table 2). Therefore, our 

hypothesis here is supported by a range of earlier studies and a well-demonstrated concept in 

land data assimilation. We have clarified these points in Section 4.1 in the revised manuscript. 

 



 9 

13) Figure 3: Since there is a median correlation improvement difference of only 0.01, can’t 

we just use EnKF, which is much simpler compared to Ensemble Smoother? 

First of all, the EnKS is not really more complicated or computationally demanding than 

the EnKF. As a result, there is no significant downside to use the EnKS instead of an EnKF. 

Secondly, since the baseline correlation coefficent of IMERG is already quite good (domain-

median correlation coefficient above 0.8 relative to NLDAS-2 reference), it is a relatively 

difficult task to further improve it, and even small correlation improvements are significant (in 

the context of remaining unexplained variability). Finally, the correlation improvement achieved 

by EnKS is also much more obvious in certain parts of the domain (e.g., western end; see Figure 

3) compared to that by EnKF, despite the relatively small difference in domain-median 

improvement. 

 

14) Figure 4: It is understandable that in the case of correcting rainfall at all timesteps, 

SMART can misinterpret SM retrieval noise as small rainfall corrections. Can this issue be 

alleviated by considering a threshold of, say 2 mm to classify rain/no-rain and continuously 

correct the rainfall. This way the SM retrieval noise can still be pushed to zero, and there 

may some reduction of uncertainty due to rain/no-rain classification. 

 We have added a sensitivity analysis as suggested by the reviewer. Specifically, we alter 

the threshold of classifying IMERGE rain/no rain (this threshold is essentially set to zero in the 

original manuscript, and SMART only corrects time steps during which rainfall occurs), and 

observe its impact on the rainfall correction results (i.e., categorical metrics at different rainfall 

scales as well as correlation improvement and percent RMSE reduction (PER)).  

 The following figures show the SMART correction results with different rain/no rain 

thresholds. For categorical metrics (Figure 1), having a rain/no rain threshold of 1 mm/3 hours or 

2 mm/3 hours mitigates the issue of worsened POD at small rainfall events comparing to zero 

threshold, but also removes the (although small) FAR improvement. For mid-ranged rainfall 

events, a positive threshold mitigates the issue of worsened FAR as in the zero threshold case, 

but POD improvement becomes smaller. For larger rainfall events, POD improvement and TS 

improvement become slightly smaller (i.e., closer to zero) when using a positive rain/no rain 

threshold (note that the small positive rain/no rain threshold value can be considered as a 

“larger” rainfall event at some pixels with overall low precipitation, therefore affecting the 

categorical metrics toward the right side on the categorical metrics plots). 

 In addition to the categorical metrics, setting the rain/no rain threshold to either 1 mm/3 

or 2 mm/3 hours slightly lowers values of correlation coefficient improvement and PER versus 

the baseline case of applying a rain/no rain threshold of zero accumulation (Figures 2 and 3). 
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In summary, there is no obvious optimized number for the rain/no rain threshold since 

there is a trade-off between POD and FAR. Although the overall TS at smaller rainfall events 

improves with a positive threshold, the correction for larger events, which are what SMART 

correction is more useful for, slightly worsens. A positive rain/no rain threshold does not benefit 

correlation coefficient and PER (which are sensitive to both POD and FAR performance). Based 

on these analyses, we have decided to keep the original analysis in the manuscript to have a zero 

rain/no rain threshold for SMART correction. We have added this sensitivity analysis to the 

revised Supplemental Material (and briefly mentioned key results of the analysis in the revised 

main text). 

  

 

Figure 3: Change in categorical metrics (FAR, POD and TS) before and after SMART 

correction for 3-hourly, 1-day and 3-day accumulation periods. The left column (panels a, b and 

c) is the same as in Fig. 4 (right column) in the main text with SMART only correcting IMERG 

rainfall events with non-zero accumulation. The middle and right columns show the same 

metrics with SMART only correcting IMERG rainfall for events where accumulation rates 

exceed thresholds of 1 mm/3 hours and 2 mm/3 hours, respectively. 
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Figure 4: Correlation coefficient (with respect to the NLDAS-2 reference precipitation) 

improvement before and after SMART correlation for 3-hourly, 1-day and 3-day accumulation 

periods. As in Fig. 7, the left column (panels a, b and c) is the same as in Fig. 4 (right column) in 

the main text with SMART only correcting IMERG rainfall events with non-zero accumulation. 

The middle and right columns show the same metrics with SMART only correcting IMERG 

rainfall for events where accumulation rates exceed thresholds of 1 mm/3 hours and 2 mm/3 

hours, respectively. 

 



 12 

 

Figure 5: Same as Figure 4 above, but for percent RMSE reduction (PER; with respect to the 

NLDAS-2 reference precipitation). The left column (panels a, b and c) is the same as in Fig. 5 

(left column) in the main text 

 

15) L: 318 is a speculative statement with no strong analysis. 

 We have reworded the statement to list the improved rain/no rain detection of IMERG as 

one possible reason for the success of our tactic. 

 

16) Section 3.1.2: (in alignment with my Comment 12) I think correlation may not be 

sufficient to conclude on the quality of rainfall product. There can be other forms of error 

(such as bias), which are not being considered in this analysis. 

 As mentioned above in Response to Reviewer 2 Major Comment 11, the original 

manuscript did include both an RMSE analysis (Figure 5, left column) as well as results based on 

a range of categorical metrics (e.g., POD, FAR and TS – see Figure 4) in the manuscript, with 

discussion in Section 3.1.2. We have added discussion of their spatial pattern in the revised test. 
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Overall bias is not designed to be corrected by the SMART algorithm and can therefore not be 

used as a metric for improvement (we have clarified this in Section 3.1.2). 

 

17) Authors should provide some insights into the spatial patterns in Fig. 5. If median value 

is all that is needed in the discussion, then what is the need to have such spatial maps? 

 We have added discussion of the spatial pattern of the rainfall correction as suggested by 

the reviewer in Section 3.1.2. Specifically, RMSE is reduced more in the eastern part of the 

domain, which is likely due to the better correction for larger rainfall events (which mostly 

happens in the east). NENSK maps show that ensemble rainfall tends to be under-dispersed on 

the west edge of the domain with low rainfall, indicating that we are underestimating rainfall 

uncertainty in this region. 

 

18) Section 3.2.1: I think there is a need to compare the rainfall products with a third 

product to get a complete picture of relative errors between the products. 

 As mentioned above in Response to Reviewer 1 Major Comments, NLDAS-2 

precipitation is derived from daily gauge-based rainfall measurements and hourly ground-radar 

data, and is widely used. As a result, it is expected to be as generally reliable as any other 

ground-based rainfall product available in the region. Even if NLDAS-2 rainfall is not perfect (as 

can be seen from our streamflow results), its reliance on gauge observations ensures that it is 

relatively more reliable than the IMERG (and SMART-corrected) rainfall products considered in 

this study. Therefore, it provides an adequate benchmark for relative variation in skill and 

accuracy for these lower-quality products (we have added clarification on these in Section 2.2.4). 

We do not see any advantages of including an additional product for validation, particularly 

since that product will (inevitably) not be independent from NLDAS-2 (due to a shared 

dependence on common rain gauge datasets). 

 

19) There is no discussion regarding Figs. 6 and 7 in the manuscript. 

 Figures 6 and 7 were discussed in Section 3.2.3 (the impact of VIC parameterization).. 
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20) Fig. 7 Deep Site: Between June and July although there are spikes in the ensemble, why 

isn’t there a peak in dual corrected time series (which is ensemble-mean)? Also, since these 

are unregulated catchments, any peak can be attributed to rainfall event. So, if there are 

spikes in the ensemble during this period, does it mean a) there is an anomalous rainfall or 

b) the assimilation technique erroneously updated the rainfall during this period? I think 

these streamflow timeseries should also contain rainfall timeseries to look at where the 

update is being carried out. 

As suggested by the reviewer, we have added rainfall data to the streamflow time series 

plot (the uncorrected IMERG rainfall (i.e., Figure 6) as well as the SMART-corrected rainfall 

ensemble (i.e., Figure 7). With the help of these (newly plotted) rainfall time series, the ensemble 

spikes at the Deep site between June and July (as an example) can be explained as follows: 

 1) For the spike around early July 2017: IMERG detected a small rainfall event, which 

correctly corresponded to a small rise in the gauge-observed streamflow. The ensemble of 

SMART-corrected rainfall is spread around the original IMERG time series without extreme 

peaks, but there are a few dual-corrected streamflow ensemble members with much-higher-than-

observed spikes. This is likely because, given the hydrologic conditions during that time, 1) 

streamflow has a highly non-linear response to rainfall input in the VIC model, and/or 2) 

streamflow has a highly non-linear response to the SM state update in the VIC model. 

 2) For the spike around mid-June: the gauge-observed streamflow showed almost no 

spike at all while the uncorrected IMERG showed a small rainfall event, which indicates that this 

may be a false alarm event detected by IMERG. In this case, the few high-flow outlier ensemble 

members in the dual-corrected streamflow are likely due to both an inaccurate IMERG detection 

that is not successfully corrected by SMART, and the highly nonlinear response of streamflow to 

rainfall/SM state. 

 3) Because of the sometimes highly non-linear response of simulated streamflow to 

rainfall/state update, we plotted ensemble-median instead of ensemble-mean of the streamflow 

time series since the ensemble-median is a more stable representation of the “average” behavior 

of the streamflow ensemble. The ensemble-mean would, as the reviewer pointed out, bias toward 

a few outliers. 
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Updated Figure 6. Example time series of streamflow results from the dual correction system. 

In the lower panel, black line: USGS observed streamflow; magenta line: baseline VIC 

simulation; light blue lines: ensemble updated streamflow results; solid blue line: ensemble-

mean updated streamflow. In the upper panel, orange line: uncorrected IMERG rainfall 

aggregated to the sub-basin-average; light grey lines: ensemble corrected rainfall. Only part of 

the simulation period is shown for clear display; however, statistics shown on each panel are 

based on the entire simulation period (approximately 2.5 years). 
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Updated Figure 7. Same as Figure 6, but calibrated VIC model parameters. 

 

21) The discussion section is speculative not very convincing. Authors may have to carry 

out robust analysis to substantiate their findings. 

 We have re-organized our results and discussion sections to incorporate all the major 

comments from reviewers and streamlined our major findings. Specifically: 

1) We have toned down the argument that IMERG has “good quality”, and instead 

emphasized that the main reason for the smaller rainfall correction results than those found by 

previous studies is the relatively better quality IMERG compared to older rainfall products. 

2) In addition, we pointed out that SMAP’s quality is low in dense-biomass regions, 

resulting in underperformed SMART rainfall correction in such regions. 

 3) We have emphasized our finding that systematic error accounts for a significant 

fraction of the total streamflow error, and the systematic error cannot be corrected by Kalman-

filter-based data assimilation techniques which aimed solely at reducing zero-mean random 

errors. 

 

Minor Comments: 

22) Figure 4: the x-axis is not explained properly. 

 We have added more description of the x-axis in the figure caption. 

23) Abstract opens with statement that soil moisture is necessary for accurate streamflow 

simulations. However, the conclusions are slightly contradictory. Please consider revising 

the abstract appropriately. 

 We have reworded the first few sentences in the abstract. We also would like to point out 

that soil moisture probably still contains information to help simulate streamflow more 

accurately, but the findings of this study show that our current satellite measurement and data 

assimilation techniques are not fully extracting this information. 
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