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Abstract 10 

Soil moisture (SM) measurements contain information about both pre-storm hydrologic 11 

states and within-storm rainfall estimates, both of which are required inputs for event-based 12 

streamflow simulations. In this study, an existing dual state/rainfall correction system is extended 13 

and implemented in the 605,000 km2 Arkansas-Red River basin with a semi-distributed land 14 

surface model. The Soil Moisture Active Passive (SMAP) satellite surface SM retrievals are 15 

assimilated to simultaneously correct antecedent SM states in the model and rainfall estimates 16 

from the Global Precipitation Measurement (GPM) mission. While the GPM rainfall is corrected 17 

slightly to moderately, especially for larger events, the correction is smaller than that reported in 18 

past studies due primarily to the improved baseline quality of the new GPM satellite product. In 19 

addition, rainfall correction is poorer in regions with dense biomass due to lower SMAP quality. 20 

Nevertheless, SMAP-based dual state/rainfall correction is shown to generally improve 21 

streamflow estimates, as shown by comparisons with streamflow observations across eight 22 

Arkansas-Red River sub-basins. However, more substantial streamflow correction is limited by 23 

significant systematic errors present in model-based streamflow estimates that are uncorrectable 24 

via standard data assimilation techniques aimed solely at zero-mean random errors. These 25 

findings suggest that more substantial streamflow correction will likely require better quality SM 26 

observations as well as future research efforts aimed at reducing systematic errors in hydrologic 27 

systems. 28 

 29 

  30 
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1. Introduction 31 

Accurate streamflow simulation is important for water resources management 32 

applications such as flood control and drought monitoring. Reliable streamflow simulation 33 

requires accurate estimates of pre-storm soil moisture (SM) that control the partitioning of 34 

infiltration and surface runoff during rainfall events, as well as longer-memory subsurface flow 35 

(Freeze and Harlan, 1969; Western et al., 2002; Aubert et al., 2003). Good streamflow 36 

simulations also require realistic rainfall time series estimates. 37 

SM measurements contain information about both antecedent hydrologic states and 38 

within-storm rainfall events. With advances in the quality and availability of in-situ and satellite-39 

measured SM products, researchers have started to explore the potential of using SM 40 

measurements to improve the estimates of both pre-storm SM and within-storm rainfall. For 41 

example, multiple studies have attempted to assimilate SM measurements to improve the 42 

representation of antecedent SM states in hydrologic models via Kalman-filter-based techniques 43 

(e.g., Francois et al., 2003; Brocca et al., 2010, 2012; Wanders et al., 2014; Alvarez-Garreton et 44 

al., 2014; Lievens et al., 2015, 2016; Massari et al., 2015; Mao et al., 2019). Other studies have 45 

explored the use of SM measurements to back-calculate within-storm rainfall or to correct 46 

existing rainfall time series products (e.g., Crow et al., 2011; Chen et al., 2012; Brocca et al., 47 

2013; Brocca et al., 2014; Brocca et al., 2016; Koster et al., 2016). 48 

In the past decade, so-called dual state/rainfall correction systems have been implemented 49 

that combine both SM state-update and rainfall correction schemes to optimally improve 50 

streamflow simulations (e.g., Crow and Ryu, 2009; Chen et al., 2014; Alvarez-Garreton et al., 51 

2016). Specifically, SM measurements (typically from satellite observation) are used to 52 

simultaneously update model states and correct the (typically satellite-observed) rainfall time 53 

series product used to force the model. The updated antecedent states and corrected rainfall are 54 

then combined as inputs into a hydrologic model to produce an improved streamflow simulation 55 

(see Fig. 1 for illustration of the dual correction system). Past studies have suggested that such 56 

systems generally outperform either state-update-only or rainfall-correction-only schemes (Crow 57 

and Ryu, 2009; Chen et al., 2014; Alvarez-Garreton et al., 2016), with the rainfall correction 58 

contributing more during high-flow events and the state updating contributing more during low 59 

flow periods (also see Massari et al., 2018). 60 
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While these past studies were encouraging, they applied the dual correction system only 61 

to catchment-scale, lumped hydrologic models. In this study, a semi-distributed land surface 62 

model, the Variable Infiltration Capacity (VIC) model, is implemented instead. The VIC model, 63 

compared to the previous lumped models, includes a more detailed representation of both energy 64 

and water balance processes (Liang et al., 1994; Hamman et al., 2018). The macroscale grid-65 

based VIC also better matches the true spatial resolution of satellite SM measurements and 66 

provides a means for correcting large-scale streamflow analysis. In addition, earlier dual 67 

correction studies used previous-generation satellite products such as the Advanced 68 

Scatterometer (ASCAT) satellite SM data, the Soil Moisture Ocean Salinity (SMOS) satellite 69 

SM data and the Tropical Rainfall Measuring Mission (TRMM) precipitation data. Here, we use 70 

newer data products from the more recent Global Precipitation Measurement (GPM) mission 71 

(Hou et al., 2014) and the NASA Soil Moisture Active Passive (SMAP) mission (Entekhabi et 72 

al., 2010). Both the SMAP and GPM products provide near-real-time measurements over much 73 

of the global land surface, making them especially useful for regions with scarce ground-based 74 

rainfall and SM observations.  75 

The main objective of this study is to assess the effectiveness of such a dual correction 76 

system to improve streamflow simulations using recent satellite SM and precipitation products. 77 

To address this main objective, we introduce methodological advances. Specifically, we 1) 78 

extended the system to provide a probabilistic streamflow estimate via ensemble simulation and 79 

analysis techniques (note that past studies focused solely on deterministic improvement), 2) 80 

updated the rainfall correction scheme to take full advantage of the higher accuracy and temporal 81 

resolution of newer satellite data products, and 3) investigated the potential cross-correlation of 82 

errors in the dual system, thus validating the theoretical basis of our analysis system. These 83 

methodological contributions will be presented throughout the paper. 84 

The remainder of this paper is organized as follows. Section 2 describes the dual 85 

correction system and our novel methodological contributions, as well as the study domain, 86 

hydrologic model, and datasets used. Results are presented in Sect. 3. Section 4 discusses our 87 

results and identifies lessons learned, and Sect. 5 summarizes our conclusions. 88 

 89 
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 90 

Figure 1. The dual state/rainfall correction framework applied in this study. Satellite-based soil 91 

moisture (SM) data is integrated into a hydrological simulation system via two correction 92 

schemes: 1) a standard data assimilation system to correct modeled SM states (shown in the red 93 

box on the left), and 2) a rainfall correction algorithm to correct rainfall forcing data (shown in 94 

the blue box on the right). Finally, these two contributions are combined to improve streamflow 95 

simulations (shown in the black box at the bottom). 96 

 97 

2. Methods 98 

2.1. Study domain 99 

The dual state/rainfall correction system is applied in the Arkansas-Red River basin 100 

(approximately 605,000 km2) located in the south-central United States (Fig. 2). This basin 101 

consists of the Arkansas River and the Red River, both converging eastward into the Mississippi 102 

River. This domain has a strong climatic gradient and is wetter in the east and drier in the west 103 

(Fig. 2). The basin experiences little snow cover in winter except for the mountainous areas 104 

along its far western edge. Vegetation cover tends to be denser in the east (deciduous forest) than 105 

in the west (wooded grassland, shrubs, crops and grassland). 106 
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 107 

 108 

Figure 2. The Arkansas-Red River basin with climatology-averaged annual precipitation 109 

(calculated from NLDAS-2 precipitation data over 1979-2017). The pink shaded areas show the 110 

upstream sub-basins of the eight USGS streamflow sites evaluated in this study, with basin 111 

numbers labeled on the plot (see Table 1 for basin numbers and corresponding sites). 112 

 113 

2.2. Data 114 

2.2.1. SMAP satellite SM data 115 

The SMAP mission provides SM estimates for the top 5 centimeters of the soil column, 116 

with an average revisit time of 2-3 days, a resolution of 36 km and a 50-hour data latency. Both 117 

ascending (PM) and descending (AM) retrievals from the SMAP L3 Passive product data 118 

Version 4 (O'Neill et al., 2016) from March 31, 2015 to December 31, 2017 were used in this 119 

study. A few SMAP pixels with obvious quality flaws (i.e., near-constant retrieval values) were 120 

manually masked out. The internal quality flags provided by the SMAP mission were not applied 121 

in this study to preserve the measurements in the eastern half of the domain, where the data 122 

quality of the entire region is flagged as unrecommended due to relatively heavy vegetation 123 
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cover. The native 36-km SMAP retrievals were used throughout the study without spatial 124 

remapping or temporal aggregation. 125 

2.2.2 GPM satellite precipitation data 126 

The Integrated Multi-satellitE Retrievals for GPM (IMERG) Level 3 Version 05 Early 127 

Run precipitation data was used in this study (Huffman et al., 2018). IMERG merges multiple 128 

satellite observations and provides a near-global precipitation product with a spatial resolution of 129 

0.1º (Huffman et al., 2015). We used the “Early Run” version of this product since its short 130 

latency (4 hours) makes it suitable for near-real-time data assimilation applications. However, 131 

this short latency also prevents correction of the IMERG “Early Run” product using ground-132 

based rain gauge observations. We aggregated the original 30-minute IMERG precipitation 133 

product to our 3-hourly modeling time step and remapped it onto our 1/8º model spatial 134 

resolution. 135 

2.2.3. Other meteorological forcing data 136 

Other than precipitation, the VIC model requires air temperature, shortwave and 137 

longwave radiation, air pressure, vapor pressure and wind speed as forcing inputs. These 138 

variables were taken from the 1/8º gridded North American Land Data Assimilation System 139 

Phase 2 (NLDAS-2) meteorological forcing data product (Xia et al., 2009). We aggregated the 140 

original hourly NLDAS-2 meteorological variables to the 3-hourly modeling time step. 141 

2.2.4. Validation data 142 

Daily streamflow data at eight USGS streamflow sites in the study domain (USGS, 2018) 143 

was used to evaluate the streamflow time series from the dual correction system (Fig. 2 and 144 

Table 1). These eight sites were selected for their lack of human regulation and their dense rain 145 

gauge coverage (Crow et al., 2017). We separately evaluated the rainfall correction scheme, in 146 

which the NLDAS-2 precipitation data was treated as the benchmark. The NLDAS-2 147 

precipitation data was based on daily gauge-based rainfall measurements that were disaggregated 148 

into hourly intervals using ground-based weather radar (Xia et al., 2012). NLDAS-2’s reliance 149 

on gauge observations (to obtain daily rainfall accumulations) ensures that it is more reliable (in 150 

a relative sense) than the remote-sensing-only “Early Run” IMERG products used in this study. 151 
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Consequently, it provides an adequate evaluation benchmark for subsequent attempts to 152 

correction IMERG. 153 

 154 

2.3. Hydrologic modeling 155 

 We used Version 5 of the VIC model (Liang et al., 1994; Hamman et al., 2018). VIC is a 156 

large-scale, semi-distributed model that simulates various land surface processes. In this study, 157 

the VIC model was implemented in the Arkansas-Red River basin with the same setup as in Mao 158 

et al. (2019). Specifically, the model was set up at 1/8º spatial resolution with each grid cell 159 

further divided into multiple vegetation tiles via statistical distributions. Each grid cell was 160 

simulated by VIC separately using a soil column discretized into 3 vertical layers (with domain-161 

average thicknesses of 0.10 m, 0.40 m and 0.93 m, respectively). In VIC, runoff can be generated 162 

by fast-response surface runoff and by slow-response runoff from the bottom soil layer. All 163 

vegetation cover and soil property parameters in the model were taken from Maurer et al. (2002), 164 

which were calibrated against streamflow observations at the most downstream outlet of the 165 

combined Arkansas and Red River basins. The simulation period was from March 2015 to 166 

December 2017 when both the SMAP and GPM products are available. The VIC model was 167 

spun-up by running the period 1979-2015 twice using NLDAS-2 forcing. 168 

The local runoff simulated by VIC at each grid cell was routed through the stream 169 

network using the RVIC routing model (Hamman et al., 2017), which is an adapted version of 170 

the routing model developed by Lohmann et al. (1996, 1998). 171 

 172 

2.4. The dual correction system 173 

In this section, we describe our methodological updates to the rainfall correction scheme, 174 

followed by a description of the state update scheme. Next, we describe how the two schemes are 175 

combined to produce the final ensemble streamflow analysis. 176 

2.4.1. The SMART rainfall correction scheme updates and adaption 177 
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The Soil Moisture Analysis Rainfall Tool (SMART) rainfall correction algorithm (Crow 178 

et al., 2009; 2011; Chen et al., 2012) is based on sequential assimilation of SM measurements 179 

into an Antecedent Precipitation Index (API) model: 180 

1t t tAPI API P −= +        (1) 181 

where t is a time step index; P is the original IMERG precipitation observation [mm]; and γ is a 182 

unitless loss coefficient. We implemented a 3-hourly version of SMART (instead of the daily 183 

version in past studies) to receive the 3-hourly IMERG rainfall input and both the ascending 184 

(PM) and descending (AM) SMAP retrievals at the correct time of day. We also extended the 185 

ensemble Kalman filter (EnKF) version of SMART introduced by Crow et al. (2011) to an 186 

ensemble Kalman smoother (EnKS), in which the API state is not only updated at time steps 187 

when SMAP is available, but also updated during measurement gaps (see Supplemental Material 188 

Sect. S1 for mathematical details underlying the SMART EnKS approach). We set γ to 0.98 such 189 

that the un-corrected API time series approximately captures the dynamics of SMAP retrievals 190 

(i.e., with high correlation; see Sect. S3 in Supplemental Material for a sensitivity analysis on γ). 191 

SMAP was rescaled to the API regime through cumulative distribution function (CDF) matching 192 

over the 2.5-year simulation period prior to assimilation. CDF matching was performed 193 

separately for SMAP AM and PM retrievals to account for their mutual systematic differences. 194 

 The SMART algorithm then uses the API increment, δt, to estimate the rainfall correction 195 

amount via a simple linear relation. We implemented an ensemble rainfall correction rather than 196 

the single deterministic rainfall correction used in past SMART applications: 197 

, ,

(j) (j) (j)

corr t pert t tP P = +        (2) 198 

where the superscript (j) denotes the jth ensemble member (ensemble size M = 32); Pcorr,t is the 199 

corrected precipitation for time t; Ppert,t is the perturbed IMERG precipitation; and 𝜆 is a scaling 200 

factor that linearly relates API increment to rainfall correction, which was set to a domain-201 

constant of 0.1 [-] (see Supplemental Material Sect. S4 for discussion on the choice of 𝜆). We 202 

applied the rainfall correction only at timesteps when the original IMERG rainfall observation 203 

was non-zero, taking advantage of the enhanced rain/no rain detection accuracy of IMERG 204 

(Gebregiorgis et al., 2018). This tactic mitigates the spurious introduction of low intensity 205 

rainfall events by SMART (see also Sect. 3.1). Finally, following Crow et al. (2009; 2011), 206 
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negative Pcorr,t values were set to zero, and the final corrected precipitation time series was 207 

multiplicatively rescaled to be unbiased over the entire simulation period against the original 208 

IMERG estimates (so that the long-term mean of the IMERG rainfall time series was preserved). 209 

In this study, the SMART algorithm was run at each of the 36-km SMAP pixels 210 

individually. The original 0.1o IMERG product was remapped to the coarser 36-km resolution 211 

prior to SMART, and the corrected 36-km rainfall was then downscaled to the VIC 1/8o model 212 

resolution. In our implementation of an EnKS-based SMART system, the original IMERG 213 

precipitation was multiplicatively perturbed by log-normally distributed noise with mean and 214 

standard deviation equal to one. SMAP measurement error ranges from 0.03 to 0.045 m3/m3 215 

across the domain, which was estimated from the SMAP ground validation studies (e.g., 216 

Colliander et al., 2017; Chan et al., 2017), and its spatial distribution was set to be proportional 217 

to leaf area index (LAI) (denser vegetation cover corresponds to larger SMAP error). The API 218 

state was directly perturbed by zero-mean Gaussian noise to represent API model error. The 219 

perturbation variance was set to 0.3 mm2 over the entire domain such that the normalized filter 220 

innovation has variance of approximately one (which is a necessary condition for the proper 221 

parameterization of a Kalman filter; see Mehra (1971) and Crow and Bolten (2007)). The SMAP 222 

measurement error and the state perturbation variance are the two primary variables impacting 223 

innovation statistics. Since we had a relatively good estimate of the measurement error, the state 224 

perturbation level can be uniquely determined via an analysis of normalized innovation variances 225 

(Crow and van den Berg, 2010).  226 

2.4.2. State updating via EnKF 227 

As illustrated in Fig. 1 (the red box on the left), the SMAP SM retrievals were also 228 

assimilated into the VIC model to update model states using an EnKF. The EnKF 229 

implementation in this study generally follows Mao et al. (2019). Specifically, a 1D filter was 230 

implemented for each 36-km SMAP pixel separately and at each pixel SMAP was assimilated to 231 

update the SM states of multiple underlying finer 1/8o VIC grid cells. Resolution differences 232 

between the coarser assimilation observations and finer modeling grid were accounted for via the 233 

inclusion of a spatial averaging step within the observation operator (Mao et al., 2019). 234 

Following Lievens et al. (2015; 2016) and Mao et al. (2019), only the upper two layers of SM 235 

states in VIC were updated by the EnKF, although the bottom layer SM does respond to the 236 
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update of the upper two layers through drainage (see Sect. S2 in Supplemental Material for 237 

mathematical details of the EnKF implemented here). An ensemble of 32 Monte Carlo model run 238 

ensembles was used for the EnKF. 239 

 The SMAP retrievals were rescaled (separately for AM and PM retrievals) to match the 240 

2.5-year mean and standard deviation of the VIC-simulated surface-layer SM time series prior to 241 

assimilation. The error statistics of IMERG precipitation and unscaled SMAP retrievals were 242 

assumed to be the same as those applied in SMART (Sect. 2.4.1). Following Mao et al. (2019), 243 

VIC SM states were directly perturbed during the EnKF forecast step by zero-mean, additive 244 

Gaussian noise with a standard deviation of 0.5 mm over the entire study domain. This noise 245 

represents uncertainty in VIC’s ability to propagate states estimates forward in time (note that the 246 

bottom layer SM was perturbed, even though not directly updated by EnKF, to create a realistic 247 

ensemble spread for probabilistic estimates of baseflow and, thus, streamflow). 248 

Although VIC modeling errors are likely spatially auto-correlated, we tested whether 249 

accounting for spatial correlation improved filter performance. Since it did not significantly 250 

improve the results, we did not account for spatial correlation in our EnKF implementation. This 251 

finding is consistent with Gruber et al. (2015) who described the limited benefit of 2-D filtering, 252 

versus a 1-D baseline, when assimilating distributed SM retrievals into a land surface model. We 253 

will further discuss this point in Sect. 4. 254 

2.4.3. Combining the state update and the rainfall correction schemes 255 

The ensemble of updated model states and the corrected rainfall forcing were combined 256 

to produce final streamflow estimates (black box in the bottom of Fig. 1). We first randomly 257 

paired ensemble members of corrected rainfall and updated VIC states and selected 32 such pairs 258 

to balance competing considerations of computational cost and statistical stability. For each pair, 259 

the VIC model was re-run with the updated states inserted sequentially over time and forced by 260 

the corrected rainfall. Other meteorological forcings were kept unchanged. The runoff output 261 

from VIC for each pair was then routed to the gauge locations, resulting in an ensemble of basin-262 

outlet streamflow time series. To further separate the relative contribution of the state update and 263 

the rainfall correction schemes to overall streamflow improvement, two additional streamflow 264 

simulations were performed. The first was the “state-updated streamflow” case, where VIC was 265 

re-run with the updated states and forced by the original IMERG precipitation. The resulting 266 
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streamflow reflects only the impact of state updating on streamflow simulations. The second was 267 

the “rainfall-corrected streamflow” case, where VIC was forced by the SMART-corrected 268 

rainfall ensemble but without inserting the updated states. The resulting streamflow reflects only 269 

the effect of SMART rainfall correction. 270 

The EnKF state update and SMART rainfall correction schemes were executed 271 

independently to minimize the risk of cross-correlated error (Crow et al., 2009). In particular, 272 

note that VIC state estimates created using SMART forcing – see the black “Hydrologic 273 

prediction” box in Fig. 1 – were not fed back into the EnKF state update analysis. Nevertheless, 274 

cross-correlated error in (EnKF) state and (SMART) rainfall estimates potentially may still be 275 

present since the two schemes are informed by the same SM measurement time series. Such 276 

cross-correlated error could, in turn, degrade the quality of probabilistic streamflow estimates. In 277 

fact, due to this concern, Massari et al. (2018) intentionally avoided combining the state and 278 

rainfall correction schemes. To further investigate this risk, we performed a set of synthetic 279 

experiments where we compared probabilistic streamflow estimates obtained via the following 280 

two scenarios: 1) a single set of synthetically generated SM measurements assimilated into the 281 

state and rainfall correction schemes, mimicking the original dual correction system; 2) two 282 

separate sets of SM measurements with mutually independent errors assimilated separately into 283 

the two schemes, thereby explicitly avoiding error cross-correlation in the system. Results show 284 

that the two scenarios achieve very similar streamflow correction performance and, therefore, 285 

minimal risk of degraded streamflow estimates (see Sect. S5 in Supplemental Material). 286 

 287 

2.5. Evaluation strategies and metrics  288 

We evaluated the rainfall correction results in addition to the dual-corrected streamflow 289 

results in terms of both deterministic and probabilistic metrics. 290 

The 1/8o gauge-informed NLDAS-2 precipitation data was remapped to the 36-km 291 

SMART resolution grid as the benchmark for evaluating rainfall. Deterministically, the 292 

ensemble-mean SMART-corrected rainfall was compared to the original IMERG precipitation 293 

(remapped to 36 km), and its improvement was evaluated in terms of: 1) time series correlation 294 

coefficient (r); 2) percent error reduction (PER) in terms of the root-mean-squared error 295 
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(RMSE); 3) additional categorical skill metrics, including false alarm ratio (FAR), probability of 296 

detection (POD) and threat score (TS) (Wilks, 2011; Crow et al., 2011; Chen et al., 2012; Brocca 297 

et al., 2016). Probabilistically, the normalized ensemble skill (NENSK) was calculated, which 298 

measures the ensemble-mean error normalized by ensemble spread: 299 

   
ENSK

NENSK
ENSP

=        (3) 300 

where the ensemble skill (ENSK) is the temporal mean of ensemble-mean squared error, and the 301 

ensemble spread (ENSP) is the temporal mean of ensemble variance (De Lannoy et al., 2006; 302 

Brocca et al., 2012; Alvarez-Garreton et al., 2014; Mao et al., 2019). If an ensemble of time 303 

series correctly represents the uncertainty of an analysis, NENSK will equal one (Talagrand et 304 

al., 1997; Wilks, 2011). NENSK > 1 indicates an under-dispersed ensemble while NENSK < 1 305 

indicates an over-dispersed ensemble. For all metrics, precipitation datasets were aggregated to 306 

multiple temporal accumulation periods (the native 3-hour period without aggregation; 1-day; 3-307 

day) for evaluation at different time scales. 308 

The dual-corrected streamflow was evaluated at the outlet of the eight USGS sub-basins 309 

shown in Fig. 2. Deterministically, the ensemble-median corrected streamflow was compared to 310 

the baseline streamflow, or the so-called “open-loop” streamflow, which is simply the single 311 

VIC simulation forced by IMERG precipitation without any correction, in terms of 1) PER; and 312 

2) the Kling-Gupta efficiency (KGE) (Gupta et al. 2009). The latter combines the performance of 313 

correlation, variance and bias. Ensemble-median instead of ensemble-mean streamflow was used 314 

for more stable evaluation results in the case of a skewed streamflow ensemble caused by model 315 

nonlinearity. In addition to ensemble-median evaluations, NENSK was calculated for the entire 316 

streamflow ensembles. 317 

 318 

3. Results 319 

3.1. SMART rainfall correction 320 

3.1.1. The impact of SMART methodological choices 321 
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Figure 3 shows the rainfall improvement in terms of correlation coefficient r based on 322 

both an EnKS- (the left column) and EnKF-based (the right column) implementation of SMART. 323 

For EnKF results, both δ and P in Eq. (2) were aggregated to 3-day windows prior to correction 324 

to ensure SM data availability in every correction window (and the 3-day correction was 325 

subsequently downscaled to 3-hour time steps uniformly). Overall, the EnKF implementation 326 

results in less r improvement than the EnKS implementation, which confirms the benefit of 327 

applying SMART using a smoothing approach. 328 

The impact of our (previous choice) to update rainfall only at non-zero IMERG time 329 

steps is examined via domain-median categorical metrics (Fig. 4). When we correct rainfall 330 

every time step (Fig. 4 Column 1), FAR is largely degraded (by 0.1 – 0.4) at low rainfall event 331 

thresholds especially with shorter accumulation periods (3-hour and 1-day; see Fig. 4a). This is 332 

likely due to SMART misinterpreting SM retrieval noise as small rainfall events (Chen et al., 333 

2014). POD is improved at these low thresholds (Fig. 4b), but not enough to compensate for the 334 

large FAR degradation. Therefore, TS, which accounts for both false alarms and missed events, 335 

is also degraded at low thresholds (by as large as 0.2 at 3-hourly). In contrast, when we only 336 

correct rainfall at non-zero IMERG time steps (Fig. 4 Column 2), the FAR degradation is much 337 

less (note the different y-axes in the two columns in Fig. 4). While this approach does sacrifice 338 

POD at low thresholds (Fig. 4e), the overall TS for 1-day and 3-day aggregation is improved for 339 

most event thresholds, especially the higher ones. As mentioned in Sect. 2.4.1, one possible 340 

reason for the success of this SMART choice is the improved rain/no rain detection quality of the 341 

baseline IMERG precipitation product, which was found to have improved miss-rain, false-rain 342 

and hit rate relative to older TRMM TMPA-RT products over the Continental U.S. (Gebregiorgis 343 

et al., 2018). It is thus beneficial to retain IMERG’s rain/no rain detection skill and not subject it 344 

to SMART-based correction. 345 

With regards to binary rain/no-rain determination, one strategy for mitigating FAR 346 

problems is to arbitrarily set a (greater than zero) minimum accumulation threshold that must be 347 

exceeded for an event to be registered. To this end we carried out a sensitivity analysis to 348 

examine the impact of using a non-zero rain/no rain threshold versus our baseline assumption of 349 

a zero threshold. However, this analysis was unable to isolate an optimized threshold value for 350 

distinguishing rain/no rain cases. Instead, a continuous trade-off exists between POD and FAR at 351 
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different rainfall thresholds. However, a zero rain/no rain threshold does appear slightly 352 

beneficial for PER and the correlation coefficient improvement (see Sect. S6 in Supplemental 353 

Material). 354 

3.1.2. Rainfall correction evaluation 355 

 After rainfall correction at 1-day and 3-day accumulation periods, PER exhibits a 356 

domain-median error reduction of ~8% (Fig. 5 Column 1). The PER improvement is consistent 357 

with the improvement of the categorical metrics at high-event thresholds (Fig. 4 Column 2), 358 

since PER is more sensitive to high rainfall values. Three-hourly PER shows little improvement 359 

(Fig. 5a), suggesting that the deterministic correction is more effective at an accumulation period 360 

that more closely matches the SMAP retrieval interval. The same finding can also be drawn from 361 

the correlation and categorical results (Fig. 3 Column 2 and Fig. 4 Column 2). Overall, the 362 

correlation coefficient improves more in the western part of the domain, which is likely 363 

attributable to the better quality of SMAP retrievals in the lightly vegetated western portion of 364 

the basin. However, RMSE is reduced more in the eastern part of the domain, which is likely due 365 

to the increased frequency of large rainfall events in this region, and SMART’s tendency to be 366 

more effective for the correction of moderate-to-large precipitation events. Note that SMART 367 

rainfall correction cannot be evaluated in terms of overall bias, since – like all SM data 368 

assimilation systems - the SMART algorithm rescales the corrected time series back to the 369 

uncorrected mean prior to its evaluation. 370 

The probabilistic metric NENSK (Fig. 5 Column 2) is less than one for most of the 371 

domain at a 3-hour time step, indicating an over-dispersed ensemble on average. However, when 372 

evaluating at 1-day and 3-day accumulation periods, NENSK is closer to one, indicating a better 373 

representation of the uncertainty of the rainfall estimates. As we aggregate over longer 374 

accumulation windows (e.g., 3-day), NENSK becomes slightly greater than one (i.e., under-375 

dispersed ensemble), since the SMART algorithm assumes only a random rainfall error but no 376 

systematic bias. As a result, it slightly underestimates the uncertainty range over longer-term 377 

periods. Ensemble rainfall tends to be under-dispersed on the west edge of the domain with low 378 

rainfall, indicating that we are underestimating rainfall uncertainty in this region. 379 

In summary, SMART successfully uses SMAP SM retrievals to correct IMERG rainfall 380 

during relatively larger events, with slight to moderate deterministic improvement. However, 381 
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SMART correction is less successful for small rainfall events and can even lead to slight 382 

degradation. The correction is more effective, and the ensemble representation is better, when 383 

rainfall estimates are temporally aggregated to periods consistent with SMAP retrieval intervals 384 

(i.e., 1-day to 3-day accumulation periods). 385 

 386 

  387 

Figure 3. Maps of correlation coefficient improvement after SMART rainfall correction (i.e., 388 

improvement of correlation with respect to NLDAS-2 benchmark rainfall realized upon 389 

implementation of SMART). The left column shows the SMART EnKS experiments (a, b, c), 390 

and the right column shows the EnKF experiments (d, e, f). Each row shows results based on 391 

different temporal accumulation periods (i.e., 3-hourly, 1-day and 3-day aggregation, 392 

respectively). The number on the lower left corner of each subplot shows the domain-median 393 

correlation improvement. 394 
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 395 

Figure 4. Change in categorical metrics (FAR, POD and TS) before and after SMART 396 

correction for 3-hourly, 1-day and 3-day accumulation periods. Metrics at different rainfall 397 

thresholds are shown on the x axis (e.g., the 80th percentile means that an event is defined as 398 

exceeding the 80th percentile of non-zero rainfall accumulation over the listed time accumulation 399 

period). The left column (a, b, c) is for SMART with rainfall corrected at all time steps; the right 400 

column (d, e, f) is for SMART with rainfall corrected only at non-zero time steps. Note that the 401 

y-axis range is different for the two columns. 402 

 403 
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 404 

Figure 5. Maps of SMART rainfall correction results (with λ = 0.1, EnKS, and rainfall corrected 405 

only during time steps with non-zero rainfall). Each column shows the following metrics, 406 

respectively: percent RMSE reduction (PER) (a, b, c), and ensemble NENSK (d, e, f). Each row 407 

shows results based on different temporal accumulation period: 3-hourly, 1-day and 3-days, 408 

respectively. The number in the lower left corner of each subplot shows the domain-median 409 

statistic. 410 

 411 

3.2. Streamflow from the dual correction system 412 

3.2.1. Evaluation of streamflow improvement 413 

The final daily streamflow performance from the dual correction system is listed in Table 414 

2 (the “dual” columns) for each sub-basin. Overall, streamflow estimates are improved but with 415 

large variability across sub-basins. Specifically, PER ranges from approximately 6% to 34% and 416 

KGE improvement ranges from slightly negative to +0.95 across all sub-basins. For sub-basins 417 
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with better baseline streamflow performance (as measured by KGE, i.e., the Ninnescah, Walnut 418 

and Chikaskia sub-basins), the relative improvement after the dual correction is generally 419 

smaller. 420 

Table 2 also summarizes the streamflow improvement from each of the correction 421 

schemes alone (i.e., the “state update only” and “rainfall correction only” columns). For sub-422 

basins with relatively better open-loop model performance, the contribution of state updating 423 

generally surpasses that of rainfall correction. Conversely, at sub-basins with relatively poorer 424 

open-loop model performance (i.e., the Bird, Spring, Illinois and Deep sub-basins), streamflow 425 

improvement is primarily attributable to the SMART rainfall correction. 426 

3.2.2. Impact of rainfall forcing error 427 

To further understand the relationship between open-loop simulation performance, 428 

rainfall forcing error and correction performance, we forced the VIC model by the NLDAS-2 429 

benchmark rainfall (without state update). The subsequent streamflow improvement level is 430 

assumed to approximate the maximum improvement achievable via rainfall correction alone 431 

(Table 2 “NLDAS2-forced” columns). While almost all sub-basins show streamflow 432 

improvement simply by switching to NLDAS-2 rainfall forcing, the improvement is especially 433 

large for sub-basins with poorer open-loop streamflow estimates. In these basins, PER is over 434 

65% and the negative KGE for the open loop case improves to near zero or positive values for 435 

the NLDAS-forced case. This suggests that, despite advances in the quality of remotely sensed 436 

rainfall data products, poor open-loop streamflow simulations at these sub-basins are still largely 437 

attributable to poor-quality IMERG rainfall forcing error. In these basins, SM-based rainfall 438 

correction scheme can potentially play an important role in improving VIC streamflow estimates. 439 

Unfortunately, this potential is not always realized. Note how the SMART-based rainfall-440 

correction-only case generally fails to match NLDAS-forced case in the Spring, Illinois and 441 

Deep sub-basins (Table 2). This is likely because these basins are located in relatively high 442 

biomass areas where SMAP retrievals (and thus SMART corrections) are less accurate. 443 

In contrast, the sub-basins with better open-loop streamflow results (i.e., the Ninnescah, 444 

Walnut and Chikaskia sub-basins) demonstrate less streamflow improvement when switching to 445 

the NLDAS-2 rainfall forcing. The sub-basin with best (IMERGE-forced) open-loop streamflow 446 

results, Chikaskia, even experiences a small degradation when forced by the NLDAS-2 rainfall 447 
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(Table 2). This suggests that the NLDAS-2 benchmark rainfall at this sub-basin is not obviously 448 

superior than the IMERG baseline. Nevertheless, SMART is still able to extract information 449 

from SMAP and slightly correct IMERG rainfall and subsequent streamflow estimates. 450 

3.2.3. Impact of model parameterization 451 

The dual correction scheme presented in this study is designed to correct only the random 452 

error present in a hydrologic simulation system. It does not correct systematic error or overall 453 

bias. Figure 6 shows example time series of the open-loop, USGS-observed and dual-corrected 454 

streamflow at three sub-basins (the Chikaskia, Deep and Illinois) with various levels of open-455 

loop performance. Although the dual system often nudges the simulated streamflow in the 456 

correct direction (especially during high-flow periods) and results in overall improved evaluation 457 

statistics, systematic error (in the model process representation as well as rainfall forcing) clearly 458 

exists. This systematic error, although difficult to quantify, cannot be corrected by the data 459 

assimilation approach discussed here. The NENSK statistic partly reflects such systematic error. 460 

NENSK is significantly above one at most sub-basins, indicating an under-dispersed ensemble 461 

on average. In other words, at most sub-basins the ensemble spread created by the dual system 462 

only represents the random uncertainty around the open-loop streamflow and neglects systematic 463 

error that accounts for a significant fraction of total streamflow error. 464 

The level of systematic error is tied closely to the quality of the hydrologic model 465 

parameters often estimated through calibration. The VIC parameters used in this study were 466 

taken from Maurer et al. (2002) and derived based on streamflow at the outlets of large basins. 467 

To further examine the effect of systematic error on data assimilation, we calibrated the model 468 

parameters for the eight sub-basins separately using streamflow acquired from the USGS (Table 469 

1). Specifically, VIC parameters that control infiltration, soil conductivity and baseflow 470 

generation as well as the recession rate of the grid-cell-scale unit hydrograph in RVIC were 471 

calibrated using the MOCOM multi-objective autocalibration method (Yapo et al., 1998). Basin-472 

constant parameters were calibrated toward USGS streamflow time series during 2015 to 2017 473 

(forced by the baseline IMERG precipitation) to optimize daily KGE and monthly bias. Only a 474 

subset of the eight sub-basins achieved better-than-open-loop streamflow results via this 475 

traditional calibration method, due mainly to the relatively large IMERG forcing error present in 476 

some sub-basins that prevents the calibration scheme from finding an improved 477 
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parameterization. Figure 7 shows three example sub-basins (i.e., Chikaskia, Deep and Illinois) 478 

with relatively good calibration outcomes. Comparing Fig. 7 to Fig. 6, we observe that the 479 

streamflow improvement achieved by parameter calibration (i.e., systematic error reduction) 480 

alone is as, or more, important than that achieved by data assimilation (via random error 481 

reduction) in all three sub-basins. In both cases (i.e., the default and calibrated VIC parameters), 482 

NENSK is significantly above one, indicating that we underestimate the streamflow simulation 483 

uncertainty when only random errors are considered. 484 
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Figure 6. Example time series of streamflow results from the dual correction system. In the 486 

lower panel, black line: USGS observed streamflow; magenta line: baseline VIC simulation; 487 

light blue lines: ensemble updated streamflow results; solid blue line: ensemble-mean updated 488 

streamflow. In the upper panel, orange line: uncorrected IMERG rainfall aggregated to the sub-489 

basin-average; light grey lines: ensemble corrected rainfall. Only part of the simulation period is 490 

shown for clear display; however, statistics shown on each panel are based on the entire 491 

simulation period (approximately 2.5 years). 492 

 493 
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Figure 7. Same as Fig. 6, but calibrated VIC model parameters. 495 

 496 

4. Discussion 497 

4.1. SMART rainfall correction 498 

Overall, SMART improves the IMERG rainfall product (see Figures 3 to 5); however, the 499 

magnitude of improvement is somewhat smaller than that found in previous studies, especially in 500 

terms of correlation r (domain-median improvement of 0.01 to 0.02). Table 3 summarizes results 501 

from past studies that applied remotely sensed SM to correct rainfall time series. Over the past 502 

decade, the quality of the baseline satellite-derived rainfall product has improved considerably, 503 

from the TRMM 3B40-RT product used by Crow et al. (2009) and Crow et al. (2011) with r = 504 

~0.5, to the TRMM 3B42-RT product used by Brocca et al. (2016) with r = ~0.6 – 0.7, to the 505 

IMERG product used in our study with r over 0.8. This tendency is confirmed by Gebregiorgis et 506 

al. (2018) who demonstrated the improved accuracy of IMERG relative to TRMM over the 507 

Continental U.S. in terms of correlation, RMSE, bias and categorical metrics. This improvement 508 

is relevant here because the marginal value of data assimilation tends to decrease as the skill of 509 

the background land surface model increases (Reichle et al., 2008; Qing et al., 2011; Bolten and 510 

Crow, 2012; Dong et al., 2019). Since SMART is fundamentally a data assimilation approach, 511 

the added value of its SM-based correction tends to decrease as the accuracy of the baseline 512 

product (it is correcting) increases. This tendency, previously noted in Crow and Ryu (2009) and 513 

Crow et al. (2011), is clearly illustrated in Table 3. Therefore, large improvement over time in 514 

the quality of satellite-based rainfall products appears to have partially undercut the value of SM-515 

based rainfall correction. It should be noted that the SM/rainfall correction algorithms applied in 516 

Table 3 differ slightly. However, Brocca et al. (2016) found comparable performance even when 517 

inter-comparing very different rainfall correction approaches, suggesting that the various studies 518 

listed in Table 3 are relatively inter-comparable. 519 

 520 

4.2. Dual correction for streamflow 521 
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Although we applied the dual correction system to the entire Arkansas-Red basin, we 522 

selected only eight smaller sub-basins for our streamflow evaluation due to the limited 523 

availability of unregulated streamflow observations at basin outlets. While the dual correction 524 

approach generally improved VIC streamflow estimates, especially during relatively high flow 525 

events in areas with poor IMERG data, the magnitude of this correction was relatively modest. 526 

Results in Sect. 3 indicated three general reasons for this. First, the latest generation of satellite 527 

rainfall products (e.g., IMERG) has significantly improved precision compared to its 528 

predecessors. The already high-quality rainfall estimates are more difficult for SM retrievals to 529 

contribute substantial rainfall correction skill (see discussion in Sect. 4.1 above). Second, the 530 

dual correction approach is designed to correct only the zero-mean random error component in 531 

the total streamflow error but not systematic error or bias. However, systematic error sources, 532 

typically associated with inaccurate model structure and/or parameterization and large rainfall 533 

bias, can account for a significant fraction of overall streamflow error (Sect. 3.2.3). The 534 

existence of systematic error is particularly problematic from a probabilistic perspective, since 535 

the ensemble streamflow produced by the dual system only represents random error, and 536 

therefore largely underestimates simulation uncertainty. Finally, in certain sub-basins (i.e., the 537 

Bird, Spring, Illinois and Deep sub-basins) where VIC streamflow is substantially degraded by 538 

random error in IMERG data products, SMART-based dual correction often underperformed due 539 

to the reduced accuracy of SMAP-based rainfall correction in eastern areas of the domain with 540 

relatively dense biomass (see Fig. 3). 541 

In addition to these factors, additional research is needed to fully investigate the impact 542 

of several simplifications applied in the dual correction data assimilation system. For example, 543 

the impact of error spatial correlation on downstream streamflow performance should be fully 544 

examined before extending our findings to large-scale river systems. Specifically, while a 1-D 545 

filter with spatially uncorrelated model representation error may be appropriate for small-basin 546 

correction, ignoring the spatial correlation structure of errors could potentially have a more 547 

profound impact on the correction performance at large river outlets where streamflow originates 548 

from runoff from a large number of grid cells. Multiple studies have investigated the effects of 549 

spatial error patterns in hydrologic data assimilation. For example, Reichle and Koster (2003) 550 

investigated the impact of spatial error correlation in the model SM states on its assimilation 551 

performance; Gruber et al. (2015) examined the impact of a 2-D filter with spatially auto-552 
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correlated error versus a 1-D filter on SM updating quality; Pan et al. (2009) and Pan and Wood 553 

(2009; 2010) evaluated the surface SM assimilation performance with VIC by comparing a 1-D 554 

filter, a 2-D filter and a multiscale autoregressive filtering approach, as well as considering 555 

spatial and temporal structure of precipitation error. However, all these studies focused 556 

exclusively on the performance of SM simulations. Direct assessment of the impact of spatial 557 

error patterns on the routed streamflow results is needed, especially from a probabilistic 558 

perspective since the ignorance of spatial error patterns (and therefore their potential to mutually 559 

cancel as runoff is routed through a river network) will lead to an incorrect ensemble 560 

representation of streamflow uncertainty. 561 

Another factor that may have limited the dual correction performance, particularly the 562 

state updating scheme, is the rescaling of the SMAP retrievals to the VIC top-layer SM regime. 563 

Matching a satellite-observed SM product with that represented in a land surface model (LSM) is 564 

a necessary pre-processing step in a data assimilation system; however, it has the well-known 565 

limitation of neglecting potential bias-correction information contained in the satellite-observed 566 

product. While this problem is well-discussed in the literature (see, e.g., Yilmaz et al., 2013; 567 

Kumar et al., 2015; Nearing et al., 2018), no robust solutions currently exist. Ideally, the physical 568 

source of remote sensing and modelling biases could be isolated and addressed. However, this is 569 

very difficult to do in practice. For instance, although SMAP is typically described as measuring 570 

the top ~ 5 cm of SM, the actual vertical support depth is unclear and varies nonlinearly as a 571 

function of SM and vegetation water content. In addition, the relationship between the top-layer 572 

depth and its SM dynamics in an LSM is complex and driven by multiple poorly known model 573 

parameters (although, Shellito et al. (2018) found that changing the top-layer depth from 10 cm 574 

to 5 cm in the Noah LSM did not significantly affect surface SM dynamics). Therefore, like 575 

other existing SM data assimilation applications, we are forced to resort to an ad hoc solution 576 

where satellite-based observations are rescaled to match the climatological characteristics of 577 

equivalent model products. 578 

 579 

5. Conclusion 580 

In this paper, we applied a dual state/rainfall correction data assimilation system in the 581 

Arkansas-Red River basin. Built upon the dual system developed in past studies, we have made 582 
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several methodological advances. First, we implemented the dual correction system with a more 583 

complex, semi-distributed land surface model (VIC) and applied it in a regional-scale basin. 584 

Second, the latest satellite products, the SMAP SM product and the IMERG rainfall product, 585 

were incorporated into the system. Third, the existing dual correction algorithm was extended to 586 

maximize the use of information contained in the more accurate, and temporally more frequent, 587 

satellite data products. Fourth, the SMART approach has been modified to produce an ensemble 588 

streamflow product to generate probabilistic estimates. Fifth, we confirmed via a formal 589 

synthetic experiment that error cross-correlation that potentially exists in the dual correction 590 

system does not cause noticeable degradation of streamflow improvement and the dual 591 

correction scheme applied here is optimal. 592 

 Our results show that, overall, the SMART algorithm is able to correct IMERG rainfall 593 

slightly to moderately, and the correction is more effective during larger rainfall events and at 594 

daily to multi-daily time scales. The ensemble produced by the correction scheme represents the 595 

rainfall uncertainty relatively well. However, the rainfall correction we achieved is generally 596 

smaller than found by previous studies, mainly due to improved quality of the baseline satellite 597 

rainfall product over time. In addition, although SMAP arguably also has higher quality than 598 

older remotely-sensed SM products, its quality remains relatively low in dense-biomass regions, 599 

resulting in reduced rainfall correction via SMART. 600 

Combined with analogous improvement in pre-storm SM states, the relatively small 601 

rainfall correction is propagated into VIC and generally results in improved streamflow 602 

estimates. However, the improvements found are relatively small and vary greatly between sub-603 

basins. Due to its deleterious impact on SMAP retrieval uncertainty, small improvement is found 604 

in sub-basins containing dense biomass. Furthermore, the dual data assimilation system is only 605 

designed to correct zero-mean random errors and not systematic errors or bias. However, 606 

systematic errors can account for a substantial fraction of the total streamflow error. This results 607 

in relatively modest streamflow correction via the Kalman-filter-based correction system and the 608 

significant underestimation of uncertainty in VIC streamflow estimates. 609 

 Given the above findings, we provide the following recommendations for future 610 

research: 611 
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1) Higher-quality SM retrievals are necessary to push the current limit of rainfall 612 

correction (and, consequently, streamflow correction) especially in areas of dense vegetation. 613 

2) However, even with better SM data quality, data assimilation techniques aimed solely 614 

at random error sources are unlikely to substantially reduce streamflow errors in many sub-615 

basins, since random errors often account for only a relatively small portion of the total error. 616 

Instead, approaches that reduce systematic errors in streamflow simulation are needed. To date, 617 

this is still a challenging task in large-scale hydrologic modeling, since robust calibration is 618 

difficult to achieve with limited streamflow data and many distributed parameters. With the 619 

availability of the near-global and distributed satellite products such as SMAP and IMERG, more 620 

creative methods are needed to extract useful information from the large volume of remote 621 

sensing observations. For example, the characteristics of SM dynamics and its response to 622 

rainfall can be directly extracted from the datasets themselves, which can potentially inform 623 

hydrologic model representation. These new areas of research have the potential to improve 624 

hydrologic modeling beyond the correction of random errors. 625 

 626 

Code availability 627 

The VIC model used in the study can be found at https://github.com/UW-Hydro/VIC. 628 
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Table 1. List of USGS streamflow sites used for verification. 849 

Basin number USGS station no. USGS station name Short name 

1 07144200 Little Arkansas River at Valley Center, KS L Arkansas 

2 07144780 Ninnescah River AB Cheney Re, KS Ninnescah 

3 07147800 Walnut River at Winfield, KS Walnut 

4 07152000 Chikaskia River near Blackwell, OK Chikaskia 

5 07177500 Bird Creek Near Sperry, OK Bird 

6 07186000 Spring River near Wace, MO Spring 

7 07196500 Illinois River near Tahlequah, OK Illinois 

8 07243500 Deep Fork near Beggs, OK Deep 

 850 

  851 
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Table 2. Daily streamflow results from the dual correction system for the eight USGS sub-basins 852 

shown in Fig. 1. In addition to the deterministic KGE improvement, PER and probabilistic 853 

NENSK results from the dual system (“dual” columns), the table also lists the open-loop 854 

streamflow KGE (“open-loop KGE” column), KGE improvement and PER as a result of state 855 

update or rainfall correction scheme alone (“state update only” and “rainfall correction only” 856 

columns, respectively), and KGE improvement and PER when forced by the NLDAS-2 857 

benchmark precipitation without state update (“NLDAS-2 forced” column). 858 

 Open-loop 

KGE 

KGE improvement PER NENSK 

  Dual State 

update 

only 

Rainfall 

correction 

only 

NLDAS2-

forced 

Dual State 

update 

only 

Rainfall 

correction 

only 

NLDAS2-

forced 

Dual 

L Arkansas -0.12 +0.17 +0.23 -0.01 +0.57 7.3% 10.8% 1.2% 40.0% 1.98 

Ninnescah 0.25 +0.15 +0.06 +0.16 +0.20 14.0% 5.5% 13.7% 30.4% 0.35 

Walnut 0.54 -0.02 -0.03 +0.03 -0.23 5.8% 5.7% 2.8% 23.3% 2.70 

Chikaskia 0.67 +0.07 +0.05 +0.02 -0.45 15.0% 11.1% 6.6% 2.2% 1.96 

Bird -1.49 +0.95 +0.58 +0.63 +0.95 33.5% 17.0% 25.8% 68.9% 2.01 

Spring -3.64 +0.83 +0.65 +0.33 +3.93 13.2% 8.7% 7.0% 83.4% 13.11 

Illinois -1.91 +0.50 +0.36 +0.26 +2.72 17.6% 7.4% 12.9% 81.8% 13.78 

Deep -0.77 +0.49 +0.39 +0.37 +1.55 20.8% 13.1% 21.2% 68.3% 2.34 

 859 

  860 
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Table 3. Review of SMART rainfall correction results in literature along with the results in this 861 

study. 862 

Literature 

 

 

Baseline 

rainfall 

product 

Benchmark 

rainfall 

product 

SM 

product 

Domain Accumulation 

period 

Baseline 

correlation 

r 

r 

improvement 

Baseline 

RMSE 

(mm) 

PER 

Crow et al. 

(2009) 

TRMM 

3B40RT 

CPC rain 

gauge analysis 

AMSR-E Southern 

Great Plain 

3-day ~ 0.5 ~ + 0.2 13.0 ~ 

30% 

    CONUS 3-day ~ 0.55 ~ + 0.05 11.8 ~ 

15% 

Crow et al. 

(2011) 

TRMM 

3B40RT 

CPC rain 

gauge analysis 

AMSR-E CONUS 3-day ~ 0.55 ~ + 0.1 13.1 ~ 

20% 

Chen et al. 

(2012) 

Princeton 

Global 

Forcing 

Dataset 

CPC rain 

gauge analysis 

SMMR, 

SMM/I, 

ERS 

Global 10-day ~ 0.35 ~ + 0.15 - - 

Brocca et al. 

(2016) 

TRMM 

3B42RT 

AWAP rain 

gauge product 

SMOS Australia 1-day 0.62 +0.01 5.6 7% 

     5-day 0.71 +0.05 14.0 14% 

This study IMERG 

Early Run 

NLDAS-2 SMAP L3 

Passive 

Arkansas-

Red 

1-day 0.80 +0.02 6.1 8% 

     3-day 0.82 +0.02 11.0 8% 

 863 

  864 



 

41 
 

 865 


