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S1. The ensemble Kalman smoother (EnKS) version of the Soil Moisture Analysis Rainfall 

Tool (SMART) 

 The Soil Moisture Analysis Rainfall Tool (SMART) is a rainfall correction scheme 

developed and updated by Crow et al. (2009; 2011) and Chen et al. (2012). It is based on 

sequential assimilation of soil moisture (SM) measurements into a simple Antecedent 

Precipitation Index (API) model to obtain SM increments, and then linearly relates these 

increments to rainfall accumulation errors. In the study we extended the ensemble Kalman filter 

(EnKF) version of SMART developed by Crow et al. (2011) to an ensemble Kalman smoother 

(EnKS) version with probabilistic rainfall estimates. 

Following Crow et al. (2009; 2011), the API model is used to capture the response of 

moisture storage (represented by the API state) to rainfall input: 

   
1t t tAPI API P −= +        (S1) 

where t is a timestep index; P is the original uncorrected precipitation observation and γ is a loss 

coefficient (dimensionless) that accounts for storage loss through evaporation, drainage, etc. In 

the ensemble version of SMART (Crow et al., 2011), Eq. (S1) is converted to:   

   1

(j) (j) (j) (j)

t t t t tAPI API P  −= + +       (S2) 



2 
 

where the superscript (j) denotes the jth ensemble member; η is multiplicative noise with mean 1 

added to the observed precipitation to represent random precipitation forcing error; and ω is 

zero-mean Gaussian noise to represent random API model structure and parameterization error. 

The API state can be related directly to SM content via rescaling (Crow et al., 2009). The 

rescaled SM measurement, θ, can therefore be assimilated to update the API states via the 

standard EnKS technique both at the measurement timestep and during the data gap before the 

measurement timestep. Mathematically, if two adjacent measurements come in at time k and 

time m with m – k ≥ 1, then the measurement at time m is used to calculate the gain K and API 

increment δ for each timestep i at timestep m as well as during the gap (i.e., k < i ≤ m): 
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where K is the Kalman gain; Tim is the covariance matrix between API states at time i and m; R is 

the measurement error variance for the rescaled SM measurements; the superscript (j) denotes 

the jth ensemble member; the superscripts “-” and “+” denote API states before and after an 

update, respectively; к is zero-mean Gaussian noise added to represent the random SM 

measurement error. Tim is calculated as: 
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where M is the ensemble size; tAPI −
 is the ensemble-mean API states before update. 

The SMART algorithm then uses ensemble-mean API increment δ to estimate the rainfall 

correction amount via a simple linear relation. We extended this relation to produce an ensemble 

of corrected rainfall time series (instead of the single rainfall estimates in past studies) where 

each ensemble member of the perturbed rainfall time series is corrected by the corresponding 

member of δ.: 
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where “[ ]” denotes temporally aggregated P or δ (in the SMART study in this paper, this 

window was set to the 3-hour native SMART timestep without aggregation); l is the new time 

index for the aggregated windows; 𝜆 is a scaling factor that can either be calibrated or set to a 

prescribed constant. Finally, negative Pcorr resulted from Eq. (S6) are reset to zero, and the final 

corrected precipitation time series is (multiplicatively) rescaled to be unbiased over the entire 

simulation period toward the original precipitation observation time series. 

 

S2. The impact of the λ parameter in the SMART rainfall correction scheme 

 In the SMART rainfall correction scheme, λ is a scaling factor that linearly relates the 

API state increment to rainfall correction amount. It can either be calibrated or set to a prescribed 

constant. We experimented with two strategies of determining λ in this study: 1) calibrating a 

temporally constant λ at each SMAP pixel separately to optimize the rainfall correlation with 

respect to the NLDAS-2 benchmark rainfall, and 2) setting λ to a spatial constant of 0.1, which is 

applicable for any region that may not have a good rain gauge coverage. 

 The rainfall correction results from the two strategies are shown in Fig. S1, in which 

Column 1 shows the improvement of correlation coefficient r after SMART correction with λ 

tuned at each pixel to maximize r (with respect to the NLDAS-2 benchmark), and Column 2 

shows results obtained using a domain-constant value of λ = 0.1. Simply setting λ = 0.1 results in 

slightly smaller correlation improvement compared to the optimal λ case for all temporal 

accumulation periods (3-hour, 1-day and 3-day), especially for locations in the eastern and 

western ends of the domain. In general, these reductions are small, and since constant-λ is a more 

generally applicable case, we decided to use the λ = 0.1 strategies for all the results presented in 

the main manuscript. 
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Figure S1. Maps of correlation coefficient improvement after SMART EnKS rainfall correction. 

The left column shows the results with λ tuned at each pixel to optimize the correlation 

coefficient of corrected rainfall relative to the NLDAS-2 benchmark, and the right column shows 

the results with domain-constant λ = 0.1 [-] (this column is identical to the left column in Fig. 3 

in the main manuscript). Each row shows results based on different temporal accumulation 

period: 3-hourly, 1-day and 3-day aggregation, respectively. The number on the lower left corner 

of each subplot shows the domain-median correlation improvement. 

 

S3. Investigation of cross-correlation of errors in the dual system 

S3.1. Background and methods 

It is well known that correlated errors in different parts of a Kalman filter result in sub-

optimal filter outputs. Therefore, in the original paper detailing the dual state/rainfall correction 

system, Crow and Ryu (2009) advised that the corrected rainfall (informed by the SM 

measurements) should not be fed back into the state EnKF correction scheme into which the 
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same SM measurements are assimilated. Instead, corrected rainfall and states should be 

combined via an offline model simulation (see Fig. 1 and Sect. 2.4.3 in the main manuscript). 

Later studies that applied the dual correction system all followed this general guideline (e.g., 

Chen et al., 2014; Alvarez-Garreton et al., 2016). However, although this guideline helps avoid 

first-order error correlation in the system, it does not completely eliminate the possibility of error 

cross-correlation. Specifically, the corrected rainfall and the updated states are informed by the 

same SM measurement, thus they potentially inherit the same error from the SM measurement. 

When fusing the two schemes together, such inherited error could potentially be amplified, 

degrading streamflow performance or cause a probabilistic estimate (based on an implicit 

assumption of independent errors) to be biased or have inaccurate uncertainty spread. In other 

words, it is possible that the current system still suffers from some second-order issue of 

overusing the information of SM measurements. Massari et al. (2018) intentionally avoided 

combining the state update scheme and the rainfall correction scheme in their study due to this 

legitimate concern. 

To further investigate this issue, we designed a set of synthetic experiments and applied 

in an arbitrary small domain within the Arkansas-Red (a box around the Little Arkansas 

subbasin, see Table 1 and Fig. 2 in the main manuscript for its location). Synthetic 

measurements, instead of the real SMAP measurements, were generated and assimilated into the 

dual correction system so that we have complete control over all the error statistics and 

correlation, which is impossible in a real-data case. Specifically, a single perturbed VIC 

realization (with perturbed forcing and states) was treated as the synthetic “truth”. Synthetic 

measurement can then be generated at daily interval by degrading the true surface-layer SM by 

adding random measurement errors. Precipitation perturbation was assumed to be temporally 

auto-correlated (first-order autoregressive noise with parameter ϕ = 0.9), and all the other error 

assumptions and dual correction setup were consistent with those described in Sect. 2.4 in the 

main manuscript. 

We generated two sets of synthetic measurements based on the same truth with the same 

measurement error statistics but mutually independent realizations of errors. Then, two scenarios 

of dual correction were designed and carried out (see Fig. S2 for illustration): 
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Scenario 1: the same set of synthetic SM measurement were assimilated into both the state 

update and the rainfall correction schemes. This scenario mimics the issue in the real-data dual 

system with error cross-correlation in the two schemes and potentially degraded streamflow; 

Scenario 2: two sets of synthetic SM measurements (with mutually independent errors) were 

assimilated into the two schemes separately. This scenario completely avoids the issue of error 

cross-correlation. 

The final runoff performance from the dual correction system were evaluated toward the 

truth, and the runoff performance from the two scenarios was compared. Differences in the 

performance of the two scenarios would indicate degradation caused by error cross-correlation. 

For these synthetic experiments, runoff was evaluated locally at each grid cell without routing, 

since we know the true condition locally. 

S3.2. Results 

Deterministic and probabilistic results from the two scenarios were compared in Fig. S3 

and Fig. S4. Clearly, runoff results show only very little difference between the two scenarios in 

terms of both PER and NENSK (see Sect. 2.5 in the main manuscript for details of the two 

metrics). This is true for both the total runoff and the fast- and slow-response runoff components 

separately. This suggests that the streamflow performance is not noticeably degraded by 

assimilating the same SM retrievals to both the state update and rainfall correction schemes. 

Although the cross-correlated error theoretically exists in the system, they are not big enough to 

cause problematic streamflow results. In other words, we are not over-using the information 

contained in SM retrievals in the system. This is true both from a deterministic sense and in 

terms of probabilistic representation. We also experimented the case where the synthetic 

measurements were assumed to have temporally auto-correlated errors instead of white errors, 

which in theory creates bigger risk of degradation in the subsequent streamflow, but drew similar 

conclusions as above (results not shown). 

The synthetic results in this section validates that we can safely assimilate the SMAP 

retrievals into both schemes of the dual correction system without significantly degrading the 

final streamflow performance. 
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Figure S2. Illustration of the synthetic experiments for investigating error cross-correlation. 

 

 

Figure S3. Percent RMSE reduction (PER) of synthetic daily runoff results from the error cross-

correlation experiment. Blue color indicates runoff improvement after dual correction while red 

color indicates degraded runoff. The two columns show the results from the two assimilation 



8 
 

scenarios described in Sect. S3. The three rows show results of total runoff, fast-response runoff 

and slow-response runoff, respectively. The number on top of each subplot indicates the domain-

median PER. 

 

 

Figure S4. Same as Fig. S3 but for NENSK. Lighter color (either green or purple) indicates 

closer-to-one (thus better) NENSK. 
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