Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-501-2020
https://doi.org/10.5194/hess-24-501-2020
Research article
 | 
03 Feb 2020
Research article |  | 03 Feb 2020

Efficient screening of groundwater head monitoring data for anthropogenic effects and measurement errors

Christian Lehr and Gunnar Lischeid

Related authors

Detecting dominant changes in irregularly sampled multivariate water quality data sets
Christian Lehr, Ralf Dannowski, Thomas Kalettka, Christoph Merz, Boris Schröder, Jörg Steidl, and Gunnar Lischeid
Hydrol. Earth Syst. Sci., 22, 4401–4424, https://doi.org/10.5194/hess-22-4401-2018,https://doi.org/10.5194/hess-22-4401-2018, 2018
Short summary
Identifying the connective strength between model parameters and performance criteria
Björn Guse, Matthias Pfannerstill, Abror Gafurov, Jens Kiesel, Christian Lehr, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 21, 5663–5679, https://doi.org/10.5194/hess-21-5663-2017,https://doi.org/10.5194/hess-21-5663-2017, 2017
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Stochastic approaches
An ensemble-based approach for pumping optimization in an island aquifer considering parameter, observation and climate uncertainty
Cécile Coulon, Jeremy T. White, Alexandre Pryet, Laura Gatel, and Jean-Michel Lemieux
Hydrol. Earth Syst. Sci., 28, 303–319, https://doi.org/10.5194/hess-28-303-2024,https://doi.org/10.5194/hess-28-303-2024, 2024
Short summary
Improving understanding of groundwater flow in an alpine karst system by reconstructing its geologic history using conduit network model ensembles
Chloé Fandel, Ty Ferré, François Miville, Philippe Renard, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 4205–4215, https://doi.org/10.5194/hess-27-4205-2023,https://doi.org/10.5194/hess-27-4205-2023, 2023
Short summary
The effects of rain and evapotranspiration statistics on groundwater recharge estimations for semi-arid environments
Tuvia Turkeltaub and Golan Bel
Hydrol. Earth Syst. Sci., 27, 289–302, https://doi.org/10.5194/hess-27-289-2023,https://doi.org/10.5194/hess-27-289-2023, 2023
Short summary
Characterization of the highly fractured zone at the Grimsel Test Site based on hydraulic tomography
Lisa Maria Ringel, Mohammadreza Jalali, and Peter Bayer
Hydrol. Earth Syst. Sci., 26, 6443–6455, https://doi.org/10.5194/hess-26-6443-2022,https://doi.org/10.5194/hess-26-6443-2022, 2022
Short summary
Influence of low-frequency variability on high and low groundwater levels: example of aquifers in the Paris Basin
Lisa Baulon, Nicolas Massei, Delphine Allier, Matthieu Fournier, and Hélène Bessiere
Hydrol. Earth Syst. Sci., 26, 2829–2854, https://doi.org/10.5194/hess-26-2829-2022,https://doi.org/10.5194/hess-26-2829-2022, 2022
Short summary

Cited articles

Bartlein, P. J.: Streamflow anomaly patterns in the U.S.A. and southern Canada — 1951–1970, J. Hydrol., 57, 49–63, https://doi.org/10.1016/0022-1694(82)90102-0, 1982. 
Buell, C. E.: The topography of the empirical orthogonal functions, Preprints, Fourth Conference on Probability and Statistics in Atmospheric Sciences, 18–21 November 1975, Tallahassee, Florida, USA, American Meteorological Society, 188–193, 1975. 
Buell, C. E.: On the physical interpretation of empirical orthogonal functions, Preprints, Sixth Conference on Probability and Statistics in Atmospheric Sciences, 9–12 October 1979, Banff, Alberta, Canada, American Meteorological Society, 112–117, 1979. 
Coppola, E., Szidarovszky, F., Poulton, M., and Charles, E.: Artificial Neural Network Approach for Predicting Transient Water Levels in a Multilayered Groundwater System under Variable State, Pumping, and Climate Conditions, J. Hydrol. Eng., 8, 348–360, https://doi.org/10.1061/(ASCE)1084-0699(2003)8:6(348), 2003. 
Coulibaly, P., Anctil, F., Aravena, R., and Bobde, B.: Artificial neural network modeling of water table depth fluctuations, Water Resour. Res., 37, 885–896, https://doi.org/10.1029/2000WR900368, 2001. 
Download
Short summary
A screening method for the fast identification of well-specific peculiarities in hydrographs of groundwater head monitoring networks is suggested and tested. The only information required is a set of time series of groundwater head readings all measured at the same instants of time. The results were used to check the data for measurement errors and to identify wells with possible anthropogenic influence.