Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-501-2020
https://doi.org/10.5194/hess-24-501-2020
Research article
 | 
03 Feb 2020
Research article |  | 03 Feb 2020

Efficient screening of groundwater head monitoring data for anthropogenic effects and measurement errors

Christian Lehr and Gunnar Lischeid

Related authors

Technical Note: An illustrative introduction to the domain dependence of spatial Principal Component patterns
Christian Lehr and Tobias Ludwig Hohenbrink
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-172,https://doi.org/10.5194/hess-2024-172, 2024
Preprint under review for HESS
Short summary
Detecting dominant changes in irregularly sampled multivariate water quality data sets
Christian Lehr, Ralf Dannowski, Thomas Kalettka, Christoph Merz, Boris Schröder, Jörg Steidl, and Gunnar Lischeid
Hydrol. Earth Syst. Sci., 22, 4401–4424, https://doi.org/10.5194/hess-22-4401-2018,https://doi.org/10.5194/hess-22-4401-2018, 2018
Short summary
Identifying the connective strength between model parameters and performance criteria
Björn Guse, Matthias Pfannerstill, Abror Gafurov, Jens Kiesel, Christian Lehr, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 21, 5663–5679, https://doi.org/10.5194/hess-21-5663-2017,https://doi.org/10.5194/hess-21-5663-2017, 2017
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Stochastic approaches
Towards a community-wide effort for benchmarking in subsurface hydrological inversion: benchmarking cases, high-fidelity reference solutions, procedure, and first comparison
Teng Xu, Sinan Xiao, Sebastian Reuschen, Nils Wildt, Harrie-Jan Hendricks Franssen, and Wolfgang Nowak
Hydrol. Earth Syst. Sci., 28, 5375–5400, https://doi.org/10.5194/hess-28-5375-2024,https://doi.org/10.5194/hess-28-5375-2024, 2024
Short summary
A comprehensive framework for stochastic calibration and sensitivity analysis of large-scale groundwater models
Andrea Manzoni, Giovanni Michele Porta, Laura Guadagnini, Alberto Guadagnini, and Monica Riva
Hydrol. Earth Syst. Sci., 28, 2661–2682, https://doi.org/10.5194/hess-28-2661-2024,https://doi.org/10.5194/hess-28-2661-2024, 2024
Short summary
An ensemble-based approach for pumping optimization in an island aquifer considering parameter, observation and climate uncertainty
Cécile Coulon, Jeremy T. White, Alexandre Pryet, Laura Gatel, and Jean-Michel Lemieux
Hydrol. Earth Syst. Sci., 28, 303–319, https://doi.org/10.5194/hess-28-303-2024,https://doi.org/10.5194/hess-28-303-2024, 2024
Short summary
Improving understanding of groundwater flow in an alpine karst system by reconstructing its geologic history using conduit network model ensembles
Chloé Fandel, Ty Ferré, François Miville, Philippe Renard, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 4205–4215, https://doi.org/10.5194/hess-27-4205-2023,https://doi.org/10.5194/hess-27-4205-2023, 2023
Short summary
The effects of rain and evapotranspiration statistics on groundwater recharge estimations for semi-arid environments
Tuvia Turkeltaub and Golan Bel
Hydrol. Earth Syst. Sci., 27, 289–302, https://doi.org/10.5194/hess-27-289-2023,https://doi.org/10.5194/hess-27-289-2023, 2023
Short summary

Cited articles

Bartlein, P. J.: Streamflow anomaly patterns in the U.S.A. and southern Canada — 1951–1970, J. Hydrol., 57, 49–63, https://doi.org/10.1016/0022-1694(82)90102-0, 1982. 
Buell, C. E.: The topography of the empirical orthogonal functions, Preprints, Fourth Conference on Probability and Statistics in Atmospheric Sciences, 18–21 November 1975, Tallahassee, Florida, USA, American Meteorological Society, 188–193, 1975. 
Buell, C. E.: On the physical interpretation of empirical orthogonal functions, Preprints, Sixth Conference on Probability and Statistics in Atmospheric Sciences, 9–12 October 1979, Banff, Alberta, Canada, American Meteorological Society, 112–117, 1979. 
Coppola, E., Szidarovszky, F., Poulton, M., and Charles, E.: Artificial Neural Network Approach for Predicting Transient Water Levels in a Multilayered Groundwater System under Variable State, Pumping, and Climate Conditions, J. Hydrol. Eng., 8, 348–360, https://doi.org/10.1061/(ASCE)1084-0699(2003)8:6(348), 2003. 
Coulibaly, P., Anctil, F., Aravena, R., and Bobde, B.: Artificial neural network modeling of water table depth fluctuations, Water Resour. Res., 37, 885–896, https://doi.org/10.1029/2000WR900368, 2001. 
Download
Short summary
A screening method for the fast identification of well-specific peculiarities in hydrographs of groundwater head monitoring networks is suggested and tested. The only information required is a set of time series of groundwater head readings all measured at the same instants of time. The results were used to check the data for measurement errors and to identify wells with possible anthropogenic influence.