Articles | Volume 24, issue 10
https://doi.org/10.5194/hess-24-4777-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-4777-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Socio-hydrological data assimilation: analyzing human–flood interactions by model–data integration
Yohei Sawada
CORRESPONDING AUTHOR
Institute of Engineering Innovation, School of Engineering, the
University of Tokyo, Tokyo, Japan
Risa Hanazaki
Department of Civil Engineering, School of Engineering, the University of Tokyo, Tokyo, Japan
Related authors
Sneha Kulkarni, Yohei Sawada, Yared Bayissa, and Brian Wardlow
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-245, https://doi.org/10.5194/hess-2024-245, 2024
Preprint under review for HESS
Short summary
Short summary
Understanding how drought impacts communities is complex and not yet fully understood. We examined a disaster dataset and compared various drought measures to pinpoint affected regions. Our new combined drought indicator (CDI) was found to be the most effective in identifying more drought events than other traditional drought indices. This underscores the CDI's importance in evaluating drought risks and directing attention to the most impacted areas.
Yohei Sawada
EGUsphere, https://doi.org/https://doi.org/10.48550/arXiv.2403.06371, https://doi.org/https://doi.org/10.48550/arXiv.2403.06371, 2024
Preprint archived
Short summary
Short summary
It is generally difficult to control large-scale and complex systems, such as Earth systems, using small forces. In this paper, a new method to control such systems is proposed. The new method is inspired by the similarity between simulation-observation integration methods in geoscience and model predictive control theory in control engineering. The proposed method is particularly suitable to find the efficient strategies of weather modification.
Le Duc and Yohei Sawada
Hydrol. Earth Syst. Sci., 27, 1827–1839, https://doi.org/10.5194/hess-27-1827-2023, https://doi.org/10.5194/hess-27-1827-2023, 2023
Short summary
Short summary
The Nash–Sutcliffe efficiency (NSE) is a widely used score in hydrology, but it is not common in the other environmental sciences. One of the reasons for its unpopularity is that its scientific meaning is somehow unclear in the literature. This study attempts to establish a solid foundation for NSE from the viewpoint of signal progressing. This approach is shown to yield profound explanations to many open problems related to NSE. A generalized NSE that can be used in general cases is proposed.
Yuya Kageyama and Yohei Sawada
Hydrol. Earth Syst. Sci., 26, 4707–4720, https://doi.org/10.5194/hess-26-4707-2022, https://doi.org/10.5194/hess-26-4707-2022, 2022
Short summary
Short summary
This study explores the link between hydrometeorological droughts and their socioeconomic impact at a subnational scale based on the newly developed disaster dataset with subnational location information. Hydrometeorological drought-prone areas were generally consistent with socioeconomic drought-prone areas in the disaster dataset. Our analysis clarifies the importance of the use of subnational disaster information.
Yohei Sawada, Rin Kanai, and Hitomu Kotani
Hydrol. Earth Syst. Sci., 26, 4265–4278, https://doi.org/10.5194/hess-26-4265-2022, https://doi.org/10.5194/hess-26-4265-2022, 2022
Short summary
Short summary
Although flood early warning systems (FEWS) are promising, they inevitably issue false alarms. Many false alarms undermine the credibility of FEWS, which we call a cry wolf effect. Here, we present a simple model that can simulate the cry wolf effect. Our model implies that the cry wolf effect is important if a community is heavily protected by infrastructure and few floods occur. The cry wolf effects get more important as the natural scientific skill to predict flood events is improved.
Futo Tomizawa and Yohei Sawada
Geosci. Model Dev., 14, 5623–5635, https://doi.org/10.5194/gmd-14-5623-2021, https://doi.org/10.5194/gmd-14-5623-2021, 2021
Short summary
Short summary
A new method to predict chaotic systems from observation and process-based models is proposed by combining machine learning with data assimilation. Our method is robust to the sparsity of observation networks and can predict more accurately than a process-based model when it is biased. Our method effectively works when both observations and models are imperfect, which is often the case in geoscience. Therefore, our method is useful to solve a wide variety of prediction problems in this field.
Yohei Sawada
Hydrol. Earth Syst. Sci., 24, 3881–3898, https://doi.org/10.5194/hess-24-3881-2020, https://doi.org/10.5194/hess-24-3881-2020, 2020
Short summary
Short summary
Hydrologic data assimmilation is the area in which methods to integrate hydrological models and observations are investigated. Recently, hydrological or land models have been increasing their complexity, with very high spatial resolution. However, it is unclear that the current data assimilation method can directly be applied to those hyperresolution models, so that I investigated the applicability and limitation of the existing method by minimalistic numerical experiments.
Yohei Sawada
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-324, https://doi.org/10.5194/hess-2019-324, 2019
Manuscript not accepted for further review
Short summary
Short summary
Hydrologic data assimmilation is the area in which methods to integrate hydrological models and observations are investigated. Recently, hydrological or land models are increasing their complexity with very high spatial resolution. However, it is unclear that the current data assimilation method can directly be applied to those hyperresolution models so that I investigated the applicability and limitation of the existing method by minimalistic numerical experiments.
Sneha Kulkarni, Yohei Sawada, Yared Bayissa, and Brian Wardlow
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-245, https://doi.org/10.5194/hess-2024-245, 2024
Preprint under review for HESS
Short summary
Short summary
Understanding how drought impacts communities is complex and not yet fully understood. We examined a disaster dataset and compared various drought measures to pinpoint affected regions. Our new combined drought indicator (CDI) was found to be the most effective in identifying more drought events than other traditional drought indices. This underscores the CDI's importance in evaluating drought risks and directing attention to the most impacted areas.
Yohei Sawada
EGUsphere, https://doi.org/https://doi.org/10.48550/arXiv.2403.06371, https://doi.org/https://doi.org/10.48550/arXiv.2403.06371, 2024
Preprint archived
Short summary
Short summary
It is generally difficult to control large-scale and complex systems, such as Earth systems, using small forces. In this paper, a new method to control such systems is proposed. The new method is inspired by the similarity between simulation-observation integration methods in geoscience and model predictive control theory in control engineering. The proposed method is particularly suitable to find the efficient strategies of weather modification.
Le Duc and Yohei Sawada
Hydrol. Earth Syst. Sci., 27, 1827–1839, https://doi.org/10.5194/hess-27-1827-2023, https://doi.org/10.5194/hess-27-1827-2023, 2023
Short summary
Short summary
The Nash–Sutcliffe efficiency (NSE) is a widely used score in hydrology, but it is not common in the other environmental sciences. One of the reasons for its unpopularity is that its scientific meaning is somehow unclear in the literature. This study attempts to establish a solid foundation for NSE from the viewpoint of signal progressing. This approach is shown to yield profound explanations to many open problems related to NSE. A generalized NSE that can be used in general cases is proposed.
Yuya Kageyama and Yohei Sawada
Hydrol. Earth Syst. Sci., 26, 4707–4720, https://doi.org/10.5194/hess-26-4707-2022, https://doi.org/10.5194/hess-26-4707-2022, 2022
Short summary
Short summary
This study explores the link between hydrometeorological droughts and their socioeconomic impact at a subnational scale based on the newly developed disaster dataset with subnational location information. Hydrometeorological drought-prone areas were generally consistent with socioeconomic drought-prone areas in the disaster dataset. Our analysis clarifies the importance of the use of subnational disaster information.
Yohei Sawada, Rin Kanai, and Hitomu Kotani
Hydrol. Earth Syst. Sci., 26, 4265–4278, https://doi.org/10.5194/hess-26-4265-2022, https://doi.org/10.5194/hess-26-4265-2022, 2022
Short summary
Short summary
Although flood early warning systems (FEWS) are promising, they inevitably issue false alarms. Many false alarms undermine the credibility of FEWS, which we call a cry wolf effect. Here, we present a simple model that can simulate the cry wolf effect. Our model implies that the cry wolf effect is important if a community is heavily protected by infrastructure and few floods occur. The cry wolf effects get more important as the natural scientific skill to predict flood events is improved.
Futo Tomizawa and Yohei Sawada
Geosci. Model Dev., 14, 5623–5635, https://doi.org/10.5194/gmd-14-5623-2021, https://doi.org/10.5194/gmd-14-5623-2021, 2021
Short summary
Short summary
A new method to predict chaotic systems from observation and process-based models is proposed by combining machine learning with data assimilation. Our method is robust to the sparsity of observation networks and can predict more accurately than a process-based model when it is biased. Our method effectively works when both observations and models are imperfect, which is often the case in geoscience. Therefore, our method is useful to solve a wide variety of prediction problems in this field.
Yohei Sawada
Hydrol. Earth Syst. Sci., 24, 3881–3898, https://doi.org/10.5194/hess-24-3881-2020, https://doi.org/10.5194/hess-24-3881-2020, 2020
Short summary
Short summary
Hydrologic data assimmilation is the area in which methods to integrate hydrological models and observations are investigated. Recently, hydrological or land models have been increasing their complexity, with very high spatial resolution. However, it is unclear that the current data assimilation method can directly be applied to those hyperresolution models, so that I investigated the applicability and limitation of the existing method by minimalistic numerical experiments.
Yohei Sawada
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-324, https://doi.org/10.5194/hess-2019-324, 2019
Manuscript not accepted for further review
Short summary
Short summary
Hydrologic data assimmilation is the area in which methods to integrate hydrological models and observations are investigated. Recently, hydrological or land models are increasing their complexity with very high spatial resolution. However, it is unclear that the current data assimilation method can directly be applied to those hyperresolution models so that I investigated the applicability and limitation of the existing method by minimalistic numerical experiments.
Related subject area
Subject: Engineering Hydrology | Techniques and Approaches: Mathematical applications
Enhancing the usability of weather radar data for the statistical analysis of extreme precipitation events
Optimal design of hydrometric station networks based on complex network analysis
Flood trends along the Rhine: the role of river training
Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates
A decision tree model to estimate the value of information provided by a groundwater quality monitoring network
Gradually varied open-channel flow profiles normalized by critical depth and analytically solved by using Gaussian hypergeometric functions
Effects of disregarding seasonality on the distribution of hydrological extremes
Multi-objective automatic calibration of hydrodynamic models utilizing inundation maps and gauge data
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology
Exploiting the information content of hydrological ''outliers'' for goodness-of-fit testing
Andreas Hänsler and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 5069–5084, https://doi.org/10.5194/hess-26-5069-2022, https://doi.org/10.5194/hess-26-5069-2022, 2022
Short summary
Short summary
Spatially explicit quantification of design storms is essential for flood risk assessment and planning. However, available datasets are mainly based on spatially interpolated station-based design storms. Since the spatial interpolation of the data inherits a large potential for uncertainty, we develop an approach to be able to derive spatially explicit design storms on the basis of weather radar data. We find that our approach leads to an improved spatial representation of design storms.
Ankit Agarwal, Norbert Marwan, Rathinasamy Maheswaran, Ugur Ozturk, Jürgen Kurths, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 2235–2251, https://doi.org/10.5194/hess-24-2235-2020, https://doi.org/10.5194/hess-24-2235-2020, 2020
Short summary
Short summary
In the climate/hydrology network, each node represents a geographical location of climatological data, and links between nodes are set up based on their interaction or similar variability. Here, using network theory, we first generate a node-ranking measure and then prioritize the rain gauges to identify influential and expandable stations across Germany. To show the applicability of the proposed approach, we also compared the results with existing traditional and contemporary network measures.
S. Vorogushyn and B. Merz
Hydrol. Earth Syst. Sci., 17, 3871–3884, https://doi.org/10.5194/hess-17-3871-2013, https://doi.org/10.5194/hess-17-3871-2013, 2013
J. López and F. Francés
Hydrol. Earth Syst. Sci., 17, 3189–3203, https://doi.org/10.5194/hess-17-3189-2013, https://doi.org/10.5194/hess-17-3189-2013, 2013
A. I. Khader, D. E. Rosenberg, and M. McKee
Hydrol. Earth Syst. Sci., 17, 1797–1807, https://doi.org/10.5194/hess-17-1797-2013, https://doi.org/10.5194/hess-17-1797-2013, 2013
C.-D. Jan and C.-L. Chen
Hydrol. Earth Syst. Sci., 17, 973–987, https://doi.org/10.5194/hess-17-973-2013, https://doi.org/10.5194/hess-17-973-2013, 2013
P. Allamano, F. Laio, and P. Claps
Hydrol. Earth Syst. Sci., 15, 3207–3215, https://doi.org/10.5194/hess-15-3207-2011, https://doi.org/10.5194/hess-15-3207-2011, 2011
N. V. Dung, B. Merz, A. Bárdossy, T. D. Thang, and H. Apel
Hydrol. Earth Syst. Sci., 15, 1339–1354, https://doi.org/10.5194/hess-15-1339-2011, https://doi.org/10.5194/hess-15-1339-2011, 2011
A. Elshorbagy, G. Corzo, S. Srinivasulu, and D. P. Solomatine
Hydrol. Earth Syst. Sci., 14, 1931–1941, https://doi.org/10.5194/hess-14-1931-2010, https://doi.org/10.5194/hess-14-1931-2010, 2010
F. Laio, P. Allamano, and P. Claps
Hydrol. Earth Syst. Sci., 14, 1909–1917, https://doi.org/10.5194/hess-14-1909-2010, https://doi.org/10.5194/hess-14-1909-2010, 2010
Cited articles
Barendrecht, M. H., Viglione, A., Kreibich, H., Merz, B., Vorogushyn, S.,
and Blöschl, G.: The Value of Empirical Data for Estimating the
Parameters of a Sociohydrological Flood Risk Model, Water Resour. Res., 55, 1312–1336, https://doi.org/10.1029/2018WR024128, 2019.
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical
weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015.
Ciullo, A., Viglione, A., Castellarin, A., Crisci, M., and Di Baldassarre,
G.: Socio-hydrological modelling of flood-risk dynamics: comparing the
resilience of green and technological systems, Hydrol. Sci. J., 62, 880–891, https://doi.org/10.1080/02626667.2016.1273527, 2017.
Dang, Q. and Konar, M.: Trade Openness and Domestic Water Use, Water Resour. Res., 54, 4–18, https://doi.org/10.1002/2017WR021102, 2018.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., and Blöschl, G.: Socio-hydrology: conceptualising human-flood interactions, Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013,
2013.
Di Baldassarre, G., Sivapalan, M., Rusca, M., Cudennec, C., Garcia, M., Kreibich, H., Konar, M., Mondino, E., Mård, J., Pande, S., Sanderson, M. R., Tian, F., Viglione, A., Wei, J., Wei, Y., Yu, D. J., Srinivasan, V., and Blöschl, G.: Sociohydrology: Scientific Challenges in Addressing a Societal Grand Challenge, Water Resour. Res., 55, 6327–6355, https://doi.org/10.1029/2018wr023901, 2019.
Gonzales, P. and Ajami, N.: Social and Structural Patterns of
Drought-Related Water Conservation and Rebound, Water Resour. Res., 53, 10619–10634, https://doi.org/10.1002/2017WR021852, 2017.
Hersbach, H., Bell, W., Berrisford, P., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., and Dee, D.: Global reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF Newsletter, 159, 17–24, https://doi.org/10.21957/vf291hehd7, 2019.
Kobayashi, S., Ota, Y., Harada, A., Ebita, M., Moriya, H., Onoda, K., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Kreibich, H., Di Baldassarre, G., Vorogushyn, S., Aerts, J. C. J. H., Apel, H., Aronica, G. T., Arnbjerg‐Nielsen, K., Bouwer, L. M., Bubeck, P., Caloiero, T., Chinh, D. T., Cortès, M., Gain, A. K., Giampá, V., Kuhlicke, C., Kundzewicz, Z. W., Llasat, M. C., Mård, J., Matczak, P., Mazzoleni, M., Molinari, D., Dung, N. V., Petrucci, O., Schröter, K., Slager, K., Thieken, A. H., Ward, P. J., and Merz, B.: Adaptation to flood risk: Results of international paired flood event studies, Earth's Future, 5, 953–965, https://doi.org/10.1002/2017EF000606, 2017.
Lievens, H., Reichle, R. H., Liu, Q., De Lannoy, G. J. M., Dunbar, R. S., Kim, S. B., Das, N. N., Cosh, M., Walker, J. P., and Wagner, W.: Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates, Geophys. Res. Lett., 44, 6145–6153, https://doi.org/10.1002/2017GL073904, 2017.
Minamide, M. and Zhang, F: Adaptive Observation Error Inflation for
Assimilating All-Sky Satellite Radiance, Mon. Weather. Rev., 145, 1063–1081, https://doi.org/10.1175/MWR-D-16-0257.1, 2017.
Miyoshi, T. and Yamane, S.: Local Ensemble Transform Kalman Filtering with
an AGCM at a T159/L48 Resolution, Mon. Weather Rev., 135, 3841–3861, https://doi.org/10.1175/2007MWR1873.1, 2007.
Moradkhani, H., Hsu, K. L., Gupta, H., and Sorooshian, S.: Uncertainty
assessment of hydrologic model states and parameters: Sequential data
assimilation using the particle filter, Water Resour. Res., 41, W05012, https://doi.org/10.1029/2004WR003604, 2005.
Mostert, E.: An alternative approach for socio-hydrology: case study research, Hydrol. Earth Syst. Sci., 22, 317–329, https://doi.org/10.5194/hess-22-317-2018, 2018.
Mount, N. J., Maier, H. R., Toth, E., Elshorbagy, A., Solomatine, D., Chang, F.-J., and Abrahart, R. J.: Data-driven modelling approaches for sociohydrology: opportunities and challenges within the Panta Rhei Science Plan, Hydrolog. Sci. J., 61, 1192–1208, https://doi.org/10.1080/02626667.2016.1159683, 2016.
Okamoto, K., Sawada, Y., and Kunii, M.: Comparison of assimilating all-sky and clear-sky infrared radiances from Himawari-8 in a mesoscale system, Q. J. Roy. Meteor. Soc., 145, 745–766, https://doi.org/10.1002/qj.3463, 2019.
Pande, S. and Savenije, H. H. G.: A sociohydrological model for smallholder
farmers in Maharashtra, India, Water Resour. Res., 52, 1923–1947, https://doi.org/10.1002/2015WR017841, 2016.
Pathiraja, S., Anghileri, D., Burlando, P., Sharma, A., Marshall, L., and Moradkhani, H.: Time-varying parameter models for catchments with land use change: the importance of model structure, Hydrol. Earth Syst. Sci., 22, 2903–2919, https://doi.org/10.5194/hess-22-2903-2018, 2018.
Penny, S. G. and Miyoshi, T.: A local particle filter for high-dimensional geophysical systems, Nonlin. Processes Geophys., 23, 391–405, https://doi.org/10.5194/npg-23-391-2016, 2016.
Poterjoy, J., Wicker, L., and Buehner, M.: Progress toward the application
of a localized particle filter for numerical weather prediction, Mon. Weather Rev., 147, 1107–1126, https://doi.org/10.1175/MWR-D-17-0344.1, 2019.
Qin, J., Liang, S., Yang, K., Kaihotsu, I., Liu, R., and Koike, T.:
Simultaneous estimation of both soil moisture and model parameters using
particle filtering method through the assimilation of microwave signal, J. Geophys. Res., 114, D15103, https://doi.org/10.1029/2008JD011358, 2009.
Rasmussen, J., Madsen, H., Jensen, K. H., and Refsgaard, J. C.: Data assimilation in integrated hydrological modeling using ensemble Kalman filtering: evaluating the effect of ensemble size and localization on filter performance, Hydrol. Earth Syst. Sci., 19, 2999–3013, https://doi.org/10.5194/hess-19-2999-2015, 2015.
Roobavannan, M., Kandasamy, J., Pande, S., Vigneswaran, S., and Sivapalan,
M.: Role of Sectoral Transformation in the Evolution of Water Management
Norms in Agricultural Catchments: A Sociohydrologic Modeling Analysis, Water Resour. Res., 53, 8344–8365, https://doi.org/10.1002/2017WR020671, 2017.
Sawada, Y., Koike, T., and Walker, J. P.: A land data assimilation system
for simultaneous simulation of soil moisture and vegetation dynamics, J. Geophys. Res.-Atmos., 120, 5910–5930, https://doi.org/10.1002/2014JD022895, 2015.
Sawada, Y., Nakaegawa, T., and Miyoshi, T.: Hydrometeorology as an inversion
problem: Can river discharge observations improve the atmosphere by ensemble
data assimilation?, J. Geophys. Res.-Atmos., 123, 848–860, https://doi.org/10.1002/2017JD027531, 2018.
Sawada, Y., Okamoto, K., Kunii, M., and Miyoshi, T.: Assimilating
every-10-minute Himawari-8 infrared radiances to improve convective
predictability, J. Geophys. Res.-Atmos., 124, 2546–2561, https://doi.org/10.1029/2018JD029643, 2019.
Sivapalan, M., Savenije, H. H. G., and Blöschl, G.: Socio-hydrology: A new science of people and water, Hydrol. Process., 26, 1270–1276, https://doi.org/10.1002/hyp.8426, 2012.
Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C.
A., and Wescoat, J. L.: Socio-hydrology: Use-inspired water sustainability
science for the Anthropocene, Earth's Future, 2, 225–230, https://doi.org/10.1002/2013EF000164, 2014.
Toride, K., Neluwala, P., Kim, H., and Yoshimura, K.: Feasibility Study of
the Reconstruction of Historical Weather with Data Assimilation, Mon. Weather Rev., 145, 3563–3580, https://doi.org/10.1175/MWR-D-16-0288.1, 2017.
van Emmerik, T. H. M., Li, Z., Sivapalan, M., Pande, S., Kandasamy, J., Savenije, H. H. G., Chanan, A., and Vigneswaran, S.: Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health: Murrumbidgee River basin, Australia, Hydrol. Earth Syst. Sci., 18, 4239–4259, https://doi.org/10.5194/hess-18-4239-2014, 2014.
Viglione, A., Di Baldassarre, G., Brandimarte, L., Kuil, L., Carr, G., Salinas, J. L., Scolobig, A., and Blöschl, G.: Insights from socio-hydrology modelling on dealing with flood risk – Roles of collective memory, risk-taking attitude and trust, J. Hydrol., 518, 71–82, https://doi.org/10.1016/j.jhydrol.2014.01.018, 2014.
Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., and Schoups, G.:
Hydrologic data assimilation using particle Markov chain Monte Carlo
simulation: Theory, concepts and applications, Adv. Water Resour., 51, 457–478, https://doi.org/10.1016/j.advwatres.2012.04.002, 2013.
Yu, D. J., Sangwan, N., Sung, K., Chen, X., and Merwade, V.: Incorporating
institutions and collective action into a sociohydrological model of flood
resilience, Water Resour. Res., 53, 1336–1353, https://doi.org/10.1002/2016WR019746, 2017.
Short summary
In socio-hydrology, human–water interactions are investigated. Researchers have two major methodologies in socio-hydrology, namely mathematical modeling and empirical data analysis. Here we propose a new method for bringing the synergic effect of models and data to socio-hydrology. We apply sequential data assimilation, which has been widely used in geoscience, to a flood risk model to analyze the human–flood interactions by model–data integration.
In socio-hydrology, human–water interactions are investigated. Researchers have two major...