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Abstract. In socio-hydrology, human–water interactions are
simulated by mathematical models. Although the integration
of these socio-hydrological models and observation data is
necessary for improving the understanding of human–water
interactions, the methodological development of the model–
data integration in socio-hydrology is in its infancy. Here
we propose applying sequential data assimilation, which
has been widely used in geoscience, to a socio-hydrological
model. We developed particle filtering for a widely adopted
flood risk model and performed an idealized observation
system simulation experiment and a real data experiment
to demonstrate the potential of the sequential data assim-
ilation in socio-hydrology. In these experiments, the flood
risk model’s parameters, the input forcing data, and empir-
ical social data were assumed to be somewhat imperfect. We
tested if data assimilation can contribute to accurately re-
constructing the historical human–flood interactions by in-
tegrating these imperfect models and imperfect and sparsely
distributed data. Our results highlight that it is important to
sequentially constrain both state variables and parameters
when the input forcing is uncertain. Our proposed method
can accurately estimate the model’s unknown parameters –
even if the true model parameter temporally varies. The small
amount of empirical data can significantly improve the sim-
ulation skill of the flood risk model. Therefore, sequential
data assimilation is useful for reconstructing historical socio-
hydrological processes by the synergistic effect of models
and data.

1 Introduction

Socio-hydrology is an emerging research field in which two-
way feedback between social and water systems is investi-
gated (Sivapalan et al., 2012, 2014). Understanding complex
socio-hydrological phenomena contributes to solving water
crises around the world. Socio-hydrology has been recog-
nized as an important scientific grand challenge in meeting
the United Nations’ Sustainable Development Goals (Di Bal-
dassarre et al., 2019).

The most popular approach to socio-hydrology is develop-
ing dynamic models which compute nonlinear interactions
between humans and water. For instance, Di Baldassarre et
al. (2013) developed a simplified model, which described
human–flood interactions, to understand the levee effect in
which high levees generate a false sense of security and in-
duce social vulnerabilities to severe floods in communities
(see also Viglione et al., 2014; Ciullo et al., 2017). Van
Emmerik et al. (2014) developed a stylized model, which
described two-way feedback between the environment and
economic activities, to understand the historical competi-
tion for water between agricultural development and environ-
ment health in Australia (see also Roobavannan et al., 2017).
Pande and Savenije (2016) modeled economic activities of
smallholder farmers to analyze the agrarian crisis in Marath-
wada, India. While the socio-hydrological models described
above assumed the existence of a single lumped decision
maker, Yu et al. (2017) incorporated a collective action
into their model and analyzed the dynamics of community-
managed flood protection systems in coastal Bangladesh.
Please refer to Di Baldassarre et al. (2019) for a comprehen-
sive review of socio-hydrological modeling.
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In addition to these modeling approaches, both qualitative
and quantitative data related to socio-hydrological processes
are important for understanding human–water interactions.
For instance, Mostert (2018) revealed historical changes in
river management, from water resources development to pro-
tection and restoration, by analyzing qualitative data. Dang
and Konar (2018) applied econometric methods to analyze
quantitative data in both human and water domains and quan-
tified the causal relationship between trade openness and wa-
ter use. Kreibich et al. (2017) performed a detailed case study
analysis on paired floods, i.e. consecutive flood events which
occurred in the same region with the second flood causing
significantly lower damage. They found that the reduction in
vulnerability played a key role in the successful adaptation to
the second flood.

Although it is expected that the integration of model
and data contributes to accurately understanding the socio-
hydrological processes (Mount et al., 2016), the method-
ological development of the model–data integration in socio-
hydrology is in its infancy. Generally, mathematical mod-
els can provide spatiotemporally continuous state variables
and quantitative scenarios for future socio-hydrological de-
velopments. In addition, mathematical models can quantita-
tively provide possible scenarios unrealized in the real world,
which gives insight to targeted processes (e.g., Viglione et
al., 2014). The major limitation of socio-hydrological models
is that they are often inaccurate due to the uncertainty in their
input forcing, parameters, and descriptions of the processes.
On the other hand, hydrological and social data are often
more reliable than numerical models and can provide a more
complete understanding of the socio-hydrological processes
(e.g., Mostert, 2018), although data also have uncertainties.
However, in many cases, relevant data in socio-hydrology
are sparsely distributed so that it is difficult to completely
reconstruct the historical socio-hydrological processes from
data. The other limitation of the data-driven approach is that
the quantification of the causal relationship cannot be easily
done by empirical data only (e.g., Dang and Konar, 2018).
Considering the advantages and disadvantages of model and
data, previous studies used social statistics to calibrate and
validate their socio-hydrological models (e.g., Barendrecht
et al., 2019; Roobavannan et al., 2017; Ciullo et al., 2017;
van Emmerik et al., 2014; Gonzales and Ajami, 2017).

In geosciences, sequential data assimilation has been
widely used for the model–data integration. Data assimila-
tion sequentially adjusts the predicted state variables and
parameters of dynamic models by integrating observation
data into models based on Bayes’ theorem. Data assimila-
tion has been widely applied to numerical weather predic-
tion (e.g., Miyoshi and Yamane, 2007; Bauer et al., 2015;
Poterjoy et al., 2019; Sawada et al., 2019), atmospheric re-
analysis (e.g., Kobayashi et al., 2015; Hersbach et al., 2019),
and hydrology and land surface modeling (e.g., Moradkhani
et al., 2005; Sawada et al., 2015; Rasmussen et al., 2015;
Lievens et al., 2017). The applicability of the data assimi-

lation approach to socio-hydrological models has yet to be
investigated.

In this study, we aim to develop the methodology of se-
quential data assimilation for the flood risk model proposed
by Di Baldassarre et al. (2013). From a series of idealized ex-
periments and a real data experiment in the city of Rome, we
demonstrate the potential of data assimilation to accurately
reconstruct the historical human–flood interactions. We fo-
cus on the case in which the socio-hydrological model’s pa-
rameters, input forcing data, and social data are somewhat
inaccurate.

2 Method

2.1 Model

In this study, we used a socio-hydrological flood risk model
proposed by Di Baldassarre et al. (2013). This model concep-
tualizes human–flood interactions by a set of simple equa-
tions which describe the states of flood, economy, technol-
ogy, politics, and society. Based on this original model of
Di Baldassarre et al. (2013), many similar flood risk models
have been proposed, validated, and applied (e.g., Viglione et
al., 2014; Ciullo et al., 2017; Barendrecht et al., 2019). Here
we briefly describe this model. Please refer to Di Baldassarre
et al. (2013) for a complete description of this model.

The governing equations of the flood risk model are shown
as follows:

F =

{
1− exp

(
−
W+ξHH
αHD

)
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0 if W + ξHH ≤H
(1)
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G
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dH
dt
=1(ϒ(t))R− κTH (6)

dM
dt
=1(ϒ(t))S−µSM. (7)

This model has four state variables, namelyG,D,H , andM .
G(t) (L2) is the size of the human settlement,D(t) (L) is the
distance of the center of the mass of the human settlement
from the river,H(t) (L) is the flood protection level (or levee
height), andM(t) (.) is the social awareness of the flood risk.
The time step was set to annual.

Equation (1) calculates the intensity of the flooding events
F(t) (.) from the high water level W(t) (L), the height of
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the levee H(t) (L), and the distance of the human settlement
from the river D(t) (L). Equation (2) calculates R(t) (L),
the amount by which the levees are raised in response to the
flood event. There are three required conditions under which
people decide to raise the levee. First, the flood event oc-
curs. Second, the damage of the flood (FG) should be larger
than the cost of raising the levee. Third, the cost of raising
levee should be lower than the wealth remaining after the
flooding. Equation (3) shows the magnitude of the psycho-
logical shock caused by the flood event S(t) (.). If the levee
is raised, the psychological shock is assumed to be mitigated.
Equation (4) explains the dynamics of G(t), the size of the
human settlement or the wealth of the community. Following
the notation of Di Baldassarre et al. (2013), 1(ϒ(t))= 1,
with the integral only when time, t , passes the time of the
flooding event (F > 0), otherwise 1(ϒ(t))= 0. The term
FG+γER

√
G (total cost of flood damage and construction of

levees) appears only if a flood occurs. Equation (5) shows the
dynamics of the distance of the center of the mass of the hu-
man settlement from the river D(t). When the social aware-
ness of the flood risk is high, people tend to live far from
the river. Equation (6) computes the dynamics of the flood
protection level H(t), and Eq. (7) shows the dynamics of the
social awareness of the flood risk M(t). The explanation of
the parameters can be found in Table 1.

2.2 Data assimilation

In this study, we used a sampling importance resampling par-
ticle filtering (SIRPF) algorithm as a method of data assimi-
lation. The SIRPF algorithm has been widely used in hydro-
logical data assimilation (e.g., Moradkhani et al., 2005; Qin
et al., 2009; Sawada et al., 2015). Compared with the other
data assimilation algorithms, such as the ensemble Kalman
filter, SIRPF is robust against model nonlinearity and asso-
ciated non-Gaussian error distribution. The disadvantage of
SIRPF is that the infeasible computational resources are re-
quired if the numerical model is computationally expensive,
which is not the case in the flood risk model.

The flood risk model can be formulated as a discrete state–
space dynamic system as follows:

x(t + 1)= f (x(t),θ ,u(t))+ q(t), (8)

where x(t) is the state variable (i.e., G, D, H , and M), θ is
the model parameters, u(t) is the external forcing (i.e., the
high water level), and q(t) is the noise process which rep-
resents the model error. In data assimilation, it is useful to
formulate an observation process as follows:

yf(t)= h(x(t))+ r(t), (9)

where yf (t) is the simulated observation, h is the observa-
tion operator which maps the model’s state variables into the
observable variables, and r(t) is the noise process which rep-
resents the observation error.

The SIRPF algorithm is a Monte Carlo approximation of
a Bayesian update of the state variables and parameters as
follows:

p
(
x(t),θ

∣∣yo (1 : t)
)

∝ p
(
yo(t) |x(t),θ

)
p(x(t),θ

∣∣yo(1 : t − 1)), (10)

where p(x(t),θ |yo (1 : t) ) is the posterior probability of
the state variables x(t) and parameters θ given all ob-
servations up to time t yo (1 : t). The prior knowledge,
p(x(t),θ |yo(1 : t − 1)) , based on the model integration, is
updated using the likelihood, which includes the new obser-
vation at time t p (yo(t) |x(t),θ ). In this study, we assumed
that our observation error follows a Gaussian distribution so
that the likelihood can be formulated as follows:

p
(
yo(t) |x(t),θ

)
≡ L

(
yo(t),x(t),θ

)
=

1
√

det(2πR)

exp
[
−

1
2

(
yo(t)− yf (t)

)T
R−1

(
yo(t)− yf (t)

)]
, (11)

where R is the covariance matrix of the observation error
process r(t). Prior knowledge of the state variables is ap-
proximated by the ensemble simulation as follows:

p
(
x(t)

∣∣yo(1 : t − 1)
)

≈
1
N

∑N

i=1
δ
[
x(t)− f

(
xi(t − 1),θ i,ui(t − 1)

)]
, (12)

whereN is the ensemble size, xi,θ i,ui are the realizations of
the ensemble member i, and δ(.) is the Dirac delta function.

The posterior probability of the state variables and param-
eters can be approximated as follows:

p
(
x(t)

∣∣yo (1 : t)
)
≈

∑N

i=1
w(i)δ

(
x(t)− xi(t)

)
, (13)

p
(
θ
∣∣yo (1 : t)

)
≈

∑N

i=1
w(i)δ

(
θ − θ i

)
, (14)

where w(i) is the normalized weight for the realization of
the ensemble member i and is calculated using the likelihood
(see also Eq. 11).

w(i)=
L(yo(t),xi(t),θ i)∑N
k=1L

(
yo(t),xk(t),θk

) . (15)

Note that Eqs. (13) and (14) update all state variables and pa-
rameters of the model although the weight is calculated us-
ing only observable variables. Therefore, it is not necessary
to observe all state variables in order to update all system
variables.

The implementation of SIRPF is as follows:

1. Updating the model state variables from time t − 1 to t
using the ensemble simulation (Eqs. 8 and 12).

2. Calculating the simulated observations for all ensem-
bles (Eq. 9).
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Table 1. Parameters of the flood risk model.

Description Values Ranges in data ω in
assimilation Eq. (17)

ξH Proportion of additional high water level due to levee heightening 0.5 – –

αH Parameter related to the slope of the floodplain and the resilience 0.01 – –
of the human settlement

ρE Maximum relative growth rate 0.02 – –

λE Critical distance from the river beyond which the settlement can no longer grow 5000 – –

γE Cost of levee raising 0.5 0.2–5.0 0.01

λP Distance at which people would accept living when they remember past floods 12 000 –
for which total consequences were perceived as a total destruction of the settlement

ϕP Rate at which new properties can be built 10 000 1000–50 000 100

εT Safety factor for levees rising 1.1 – –

κT Rate of decay of levees 0.001 0–0.0015 0.0000025

αS Proportion of shock after flooding if levees have risen 0.5 – –

µS Memory loss rate 0.05 0–0.4 0.0025

3. Calculating the likelihood for each ensemble member
(Eq. 11).

4. Obtaining the weights for all ensembles (Eq. 15).

5. Applying a resampling procedure according to the nor-
malized weights. The normalized weights of ensem-
ble i, w(i) can be recognized as the probability that
the ensemble i is selected after resampling. Resampled
state variables and parameters are defined as xiresamp and
θ iresamp, respectively.

6. Adding the perturbation to the ensembles of parameters
(Moradkhani et al., 2005), since there are no mecha-
nisms to increase the variance of parameters of ensem-
ble members, as follows:

θ i← θ iresamp+ ε
i, (16)

εi ∼N
(
0,max

(
ω, s×Varθ

))
, (17)

whereN(.) is the Gaussian distribution, Varθ is the vari-
ance of θ i , and ω is the fixed hyperparameter (see Ta-
ble 1 for its variable), which guarantees that the ensem-
bles of parameters do not converge into a single value.
s is an adaptively changed factor according to the effec-
tive ensemble size, Neff.

s = s0

(
1−

(
Neff

N

)2)
(18)

Neff =
1∑N

i=1w(i)
, (19)

where s0 = 0.05. The effective ensemble size is the
measure of the diversity of ensembles. If the effec-
tive ensemble size becomes small, ensembles should be
strongly perturbed in order to maintain the diversity of
ensembles. A similar strategy has been used in many
SIRPF systems (e.g., Moradkhani et al., 2005; Poterjoy
et al., 2019).

3 Experiment design

3.1 Observation system simulation experiment

In this study, we performed three observation system sim-
ulation experiments (OSSEs). In the OSSE, we generated
the synthetic truth of the state and flux variables by driv-
ing the flood risk model with the specified parameters and
input. Then, we generated synthetic observations by adding
the noise to this synthetic truth. Those synthetic observations
were assimilated into the model by SIRPF. The performance
of SIRPF was evaluated by comparing the estimated state
variables by SIRPF with the synthetic truth. Model parame-
ters used to generate the synthetic truth can be found in Ta-
ble 1. They are identical to Di Baldassarre et al. (2013). The
OSSE has been recognized as an important preliminary step
for verifying the newly developed data assimilation systems
(e.g., Moradkhani et al., 2005; Vrugt et al., 2013; Penny and
Miyoshi 2016; Sawada et al., 2018).

The high water level for the synthetic truth was generated
by the following:

W =min(v− 10,0) . (20)
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v follows the Gumbel distribution as follows:

p(v)=
exp

(
−
v−µ
β

)
β

exp(−exp(−(v−µ)β)), (21)

where µ= 9 and β = 2.5. Although our high water level is
not identical to that of Di Baldassarre et al. (2013), the esti-
mated trajectory of the state variables is similar to Di Baldas-
sarre et al. (2013).

Synthetic observations were generated by adding the
Gaussian white noise to the F , G, D, H , and M (see
Sect. 2.1) of the synthetic truth. The mean of the Gaussian
white noise was 0. The observation error, namely the stan-
dard deviation of the Gaussian white noise, was first set to
10 % of the synthetic true variables. Although this observa-
tion error is generally larger than that used in meteorology
and hydrology, we further increased the observation error and
tested the sensitivity of the observation error to the SIRPF
algorithm’s performance. We first assumed that all of the F ,
G, D, H , and M can be observed every 10 years or every 10
model integration steps. Then, we evaluated the sensitivity
of the observation network (i.e., the observable variables and
the observation intervals) to the SIRPF algorithm’s perfor-
mance. Although it is not straightforward to observe the so-
cial memory M , several previous studies obtained the proxy
of the social memory from interview data (Barendrecht et
al., 2019) and a number of Google searches (Gonzales and
Ajami, 2017).

We used the ensemble mean of root mean square errors
(mRMSEs) as an evaluation metric as follows:

RMSEi =

√
1
T

∑T

t=1

(
xi(t)− z(t)

)
, (22)

mRMSE=
1
N

∑N

i=1
RMSEi, (23)

where RMSEi is root mean square error for ith ensemble,
T is the computational period, xi(t) is the simulated state
variable of ensemble i at time t , and z(t) is the synthetic
truth at time t .

3.1.1 Experiment 1: perfect model with uncertain high
water levels

In the first OSSE, we assumed that there is no uncertainty
in the model parameters. We used the same parameter vari-
ables as the synthetic truth run, and we did not perform the
estimation of parameters. Our SIRPF updated only the state
variables. Although the model had no uncertainty, it was as-
sumed that the input data, i.e., the time series of the high
water level, were uncertain. Lognormal multiplicative noise
was added to the synthetic true high water level so that dif-
ferent ensemble members have different high water levels in
the data assimilation experiment. The two parameters of the
lognormal distribution, commonly called µ and σ , were set
to 0 and 0.15, respectively.

3.1.2 Experiment 2: unknown model parameters and
uncertain high water levels

In the second OSSE, we assumed that some of the synthetic
true parameter values were unknown. The unknown parame-
ters in experiment 2 were the cost of levee raising γE, the rate
at which new properties can be built ϕP, the rate of decay of
levees κT, and the memory loss rate µS (see Table 1). We se-
lected these unknown parameters one by one from four equa-
tions of economics, politics, technology, and society to dis-
cuss how each state variable’s observation affects the estima-
tion of parameters across these four equations (see Sect. 2.1).
We have no unknown parameters related to F (Eq. 1) since it
is unlikely that the parameters in Eq. (1) are much more in-
accurate than the other parameters. The parameters related
to the flood are mainly determined by the topography of
the flood plain so that the process described in Eq. (1) can
be replaced by more accurate hydrodynamic models in the
real-world case study. The initial parameter variables were
assumed to be distributed in the bounded uniform distribu-
tions whose ranges are found in Table 1. The uncertainty
of the simulation induced by the parameters’ uncertainty is
large enough to demonstrate the potential of data assimila-
tion to minimize the simulation’s uncertainty (see Sect. 4).
Our SIRPF sequentially assimilated observations and esti-
mated both state variables and parameters in experiment 2.
The high water level data were uncertain, as in experiment 1.

3.1.3 Experiment 3: unknown and time-variant model
parameters and uncertain high water levels

To further demonstrate the potential of sequential data assim-
ilation in socio-hydrology, we assumed that the description
of the model was biased in experiment 3. Here we assumed
that two of the model parameters were temporally varied by
the unknown dynamics. Specifically, the rate at which new
properties can be built, ϕP, and the memory loss rate, µS,
were temporally varied in experiment 3, as follows:

ϕP(t)

=


5000 (t < 250)

5000+ (t − 250)×
40000− 5000

500
(250≤ t < 750)

40000 (750≤ t).

(24)

µS(t)

=


0.01 (t < 250)
0.01+ (t − 250)× 0.10−0.01

500 (250≤ t < 750)
0.10 (750≤ t).

(25)

In the data assimilation experiment, we assumed that the dy-
namics of ϕP and µS were unknown, and we integrated the
flood risk model with time-invariant ϕP andµS. We evaluated
if SIRPF could track this time-variant parameter and reveal
the bias of the model’s description. The cost of levee raising
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γE and the rate of decay of levees κT were assumed to be
time-invariant unknown parameters, as they were in experi-
ment 2. The cost of levee raising γE affects the state variables
of the flood risk model mainly in the initial early years, and
the gradual change in the rate of decay of levees κT has few
impacts on the state variables. Therefore, we found that it is
difficult to track the temporal change in these two parame-
ters. The input forcing data, i.e., the high water level, were
uncertain, as described in experiment 1.

3.2 Real data experiment

In addition to the OSSEs, we performed the real-world exper-
iment in the city of Rome, Italy. Ciullo et al. (2017) collected
real-world data and calibrated their flood risk model. Using
the data collected by Ciullo et al. (2017), we performed the
data assimilation experiment. It should be noted that the flood
risk model of Ciullo et al. (2017) is different from our model
(i.e., Di Baldassarre et al., 2013), although they are concep-
tually similar.

All the data were collected from Fig. 1 of Ciullo
et al. (2017) by WebPlotDigitizer (https://automeris.io/
WebPlotDigitizer/, last access: 18 September 2020). The ob-
served high water level of the Tiber river was used as in-
put forcing data (W ). The levee height (H ) and population
(G) were used as the observation data assimilated into the
flood risk model. In Ciullo et al. (2017), population values
within the Tiber’s floodplain were normalized by the theo-
retical maximum of the Tiber’s floodplain population, which
is estimated to the range between 106 and 2×106. Since our
flood risk model needs the population values (not normalized
values), we multiplied 1.5× 106 and the normalized values
shown in Fig. 1 of Ciullo et al. (2017) to obtain the popula-
tion size in the floodplain.

We added lognormal multiplicative noise to the observed
high water level as we did in the OSSEs. The observation
errors of levee height and population were set to 10 % and
25 % of the observed values, respectively. Since Ciullo et
al. (2017) showed a large uncertainty in the estimation of the
theoretical maximum population (see above), it is reasonable
to assume that the estimation of the population values also
has a relatively large uncertainty.

As in the second and third OSSEs, we have four unknown
parameters in this real-world experiment. We used the same
settings of the parameters as for the OSSEs, which are shown
in Table 1, except for ξH, the proportion of the additional
high water level due to levee heightening. In this real-world
experiment, we set ξH = 0 because the observed high water
level includes the effects of levee heightening. This treatment
is consistent with Ciullo et al. (2017; see their Table 2).

The initial conditions of H and M were set to 0. The ini-
tial conditions of D were obtained from the uniform distri-
bution between 1000 and 5000. The initial conditions of G
were obtained from the uniform distribution between 1500
and 50 000.

Figure 1. Time series of (a) the high water levelW(t), (b) the flood
protection level (or levee height)H(t), (c) the distance of the center
of the mass of the human settlement from the riverD(t), (d) the size
of the human settlement G(t), (e) the intensity of flooding events
F(t), and (f) the social awareness of the flood risk M(t) simulated
by 5000 ensembles, with uncertain high water levels and no data
assimilation, in experiment 1 (see Sect. 3.1.1). The time step is an-
nual. Gray, red, and black lines are the ensemble members, their
mean, and the synthetic truth, respectively.

4 Results

4.1 Observation system simulation experiment

4.1.1 Experiment 1: perfect model with uncertain high
water levels

Figure 1 shows the time series of the model variables calcu-
lated by 5000 ensembles with no data assimilation. Although
the ensemble mean of the state variables is close to the syn-
thetic truth, the ensembles have a large spread, especially for
G. The uncertainty in the input forcing brings the uncertainty
in the estimation of the historical socio-hydrological condi-
tion.

Figure 2 indicates that this uncertainty is mitigated by as-
similating the observations of F , G, D, H , and M into the
model every 10 years with 5000 ensembles. Table 2 shows
that the RMSE is reduced for all state variables by data as-
similation.

While we can observe all of F , G, D, H , and M in Fig. 2
and Table 2, Fig. 3 shows the performance of our SIRPF in
which only one of the variables can be observed. Our SIRPF
updates all state variables, although only one of them is as-
similated. Figure 3 reveals that we can accurately propagate
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Figure 2. Time series of (a) the high water levelW(t), (b) the flood
protection level (or levee height)H(t), (c) the distance of the center
of the mass of the human settlement from the riverD(t), (d) the size
of the human settlement G(t), (e) the intensity of flooding events
F(t), and (f) the social awareness of the flood risk M(t) simulated
by the data assimilation experiment in which the observations of F ,
G,D,H , andM are assimilated into the model every 10 years, with
5000 ensembles, in experiment 1 (see Sect. 3.1.1). The time step is
annual. Gray, red, and black lines are the ensemble members, their
mean, and the synthetic truth, respectively.

Table 2. RMSE of the no data assimilation (NoDA) experiment and
the data assimilation (DA) experiment in which all observations are
assimilated every 10 years, with 5000 ensembles, in experiment 1
(see Sect. 3.1).

NoDA DA

G 1.06× 106 1.64× 104

D 3.60× 102 3.92× 101

H 2.65 1.41
M 1.08× 10−1 8.32× 10−2

the observation information into the model state space. In
other words, our SIRPF can positively impact the estimation
of not only observed state variables but also unobserved state
variables. For instance, even if we can observe only G, the
simulation of G, D, H , and M is improved. This finding is
promising since all of the state variables cannot be observed
in the real-world applications. Figure 3 also shows that ob-
serving F is not effective compared with the other variables.
This is because F is a flux, and F can be observed only when
floods occur so that the number of effective observations is
small. In addition, observing F , D, and M negatively im-

Figure 3. The ratio of RMSEs of the no data assimilation (NoDA)
experiment to those of the data assimilation (DA) experiments in
which all of observations (F , G, D, H , and M) are assimilated
(all), and each one of them is assimilated in experiment 1 (see
Sect. 3.1.1). Blue, orange, gray, and yellow bars are the RMSEs
of the size of the human settlement G(t), the center of the mass of
the human settlement from the riverD(t), the flood protection level
(or levee height) H(t), and the social awareness of the flood risk
M(t).

pacts the estimation of H , and observing H does not signif-
icantly improve the simulation of D and M . Although the
dynamics of F , D, and M strongly affect the decision as to
whether the levees are raised or not, the amount by which the
levees are raised, R, is fully determined by the high water
level,W , once the community decides to raise the levees (see
Eq. 2). Therefore, the uncertainty of H is largely induced by
the uncertainty of the high water level,W , whose uncertainty
is not directly mitigated by our SIRPF. This is why observing
F , D, and M is not helpful in mitigating the uncertainty of
H .

While we can observe every 10 years in Fig. 2 and Ta-
ble 2, Fig. 4 shows the sensitivity of the observation intervals
to the performance of our SIRPF. Our SIRPF algorithm im-
proves the estimation of the state variables when we can ob-
tain an observation once in 50 or 100 years (see also Fig. S1
in the Supplement for the time series of the model’s vari-
ables), which is promising since we cannot expect frequent
observations in the real-world applications.

We have set the observation error to 10 % of the synthetic
truth thus far. The improvement of the simulation skill can
be found with larger observation errors (Fig. S2). Although
the SIRPF algorithm’s performance gradually declines as the
observation error increases, our SIRPF algorithm can signif-
icantly improve the simulation skill with a 25 % observation
error.

Although we have demonstrated the potential of our
SIRPF algorithm with 5000 ensembles thus far, the improve-
ment of the simulation skill can be found in much smaller
ensemble sizes. The performance of our SIRPF algorithm
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Table 3. RMSE of the no data assimilation (NoDA) experiment and
the data assimilation (DA) experiment in which all observations are
assimilated every 10 years, with 5000 ensembles, in experiment 2
(see Sect. 3.2).

NoDA DA

G 2.97× 106 1.64× 104

D 1.86× 103 1.01× 102

H 99.35 91.63
M 2.24× 10−1 8.99× 10−2

γE 22.08 4.27× 10−1

ϕP 1.72× 104 3.81× 103

κT 4.12× 10−4 2.36× 10−4

µS 1.55× 10−1 2.43× 10−2

with 20 ensembles is similar to that with 5000 ensembles
(Fig. S3).

4.1.2 Experiment 2: unknown model parameters and
uncertain high water levels

Figure 5 reveals that the flood risk model completely loses its
ability to estimate the human–flood interactions if there are
uncertainties in model parameters and high water levels, as
described in Sect. 3. In contrast to experiment 1, the ensem-
ble mean cannot accurately reproduce the synthetic truth.

Figure 6 indicates that our SIRPF algorithm can accurately
estimate the model state variables by assimilating the obser-
vations of F , G, D, H , and M into the model every 10 years
with 5000 ensembles. Figure 7 indicates that four unknown
parameters can also be accurately estimated. We find that it
is relatively difficult to estimate the rate of a levee’s decay,
κT, compared with the other parameters. This is because κT
strongly affects the dynamics of H , and the uncertainty in H
is largely determined by the uncertainty in high water levels,
which is not directly mitigated by our SIRPF system. Table 3
shows that RMSE is reduced for both state variables and pa-
rameters by data assimilation.

We analyzed the impacts of the individual observation
types on the simulation skill as we did in experiment 1. Fig-
ure 8a shows that the effects of the individual observation
types are similar to what we found in experiment 1, as fol-
lows: (1) improving the ability to simulate unobservable state
variables is possible with our SIRPF algorithm, (2) observing
F is not effective compared with the other observations, and
(3) observing H does not significantly improve the simula-
tion of D and M . Figure 8b reveals that the parameters can
be efficiently estimated by assimilating the observation of the
state variables which are tightly related to the targeted param-
eters. For instance, observing D can greatly improve the rate
at which new properties can be built; see ϕP, in Eq. (5), which
governs the dynamics of D. However, assimilating a single
observation type can contribute to accurately estimating all
four parameters in many cases, which is a promising result

Figure 4. The ratio of the RMSEs of the no data assimilation
(NoDA) experiment to those of the data assimilation (DA) exper-
iments in which all of observations (F , G, D, H , and M) are as-
similated every 10, 20, 50, and 100 years in experiment 1 (see
Sect. 3.1.1). Blue, orange, gray, and yellow bars are RMSEs of the
size of the human settlement G(t), the center of the mass of the hu-
man settlement from the river D(t), the flood protection level (or
levee height) H(t), and the social awareness of the flood risk M(t).

Figure 5. Time series of (a) the high water levelW(t), (b) the flood
protection level (or levee height)H(t), (c) the distance of the center
of the mass of the human settlement from the riverD(t), (d) the size
of the human settlement G(t), (e) the intensity of flooding events
F(t), and (f) the social awareness of the flood risk M(t) simulated
by 5000 ensembles, with uncertain high water levels and no data
assimilation, in experiment 2 (see Sect. 3.1.2). The time step is an-
nual. Gray, red, and black lines are the ensemble members, their
mean, and the synthetic truth, respectively.
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Figure 6. Time series of (a) the high water levelW(t), (b) the flood
protection level (or levee height)H(t), (c) the distance of the center
of the mass of the human settlement from the riverD(t), (d) the size
of the human settlement G(t), (e) the intensity of flooding events
F(t), and (f) the social awareness of the flood risk M(t) simulated
by the data assimilation experiment in which the observations of F ,
G,D,H , andM are assimilated into the model every 10 years, with
5000 ensembles, in experiment 2 (see Sect. 3.1.2). The time step is
annual. Gray, red, and black lines are the ensemble members, their
mean, and the synthetic truth, respectively.

considering the sparsity of observations in the real-world ap-
plications.

The good performance of our SIRPF algorithm can be
found with the longer observation intervals, as we found in
experiment 1. Figure 9 indicates that our SIRPF algorithm
can improve the estimation of the state variables and parame-
ters when we can obtain observations once in 50 or 100 years
(see also Figs. S4 and S5 for the time series of the model’s
variables).

As we found in experiment 1, the SIRPF algorithm’s
performance declines with increased observation errors
(Fig. S6). However, it is promising that our SIRPF algorithm
can improve the simulation skill with larger observation er-
rors of up to 25 % of the synthetic truth, considering that the
observations in the socio-hydrological domain are often in-
accurate.

In contrast to experiment 1, a larger ensemble size is re-
quired to stably estimate both state variables and parameters
(Fig. S7). The increased degree of freedom and the nonlinear
relationship between parameters and observations increase
the necessary ensemble size.

Table 4. RMSE of the no data assimilation (NoDA) experiment and
the data assimilation (DA) experiment in which all observations are
assimilated every 10 years, with 5000 ensembles, in experiment 3
(see Sect. 3.3).

NoDA DA

G 2.91× 106 6.20× 103

D 2.20× 103 2.02× 102

H 9.21 91.65
M 2.48× 10−1 1.05× 10−1

γE 2.08 25.20× 10−1

ϕP 1.98× 104 7.68× 103

κT 4.12× 10−4 2.54× 10−4

µS 1.60× 10−1 3.03× 10−2

4.1.3 Experiment 3: unknown and time-variant model
parameters and uncertain high water levels

In addition to experiment 2, two of the unknown parameters
(ϕP and µS) temporally vary in the synthetic truth of experi-
ment 3. We found that a larger spread of ϕP is required to sta-
bly track the time-variant synthetic true ϕP, so we increased
s0 in Eq. (18) from 0.05 to 0.5 only for ϕP in experiment 3.
Figure 10 and Table 4 indicate that, despite the error in the
model’s description, our SIRPF can greatly improve the sim-
ulation of the flood risk model. Please note that the synthetic
truth shown in Fig. 10 is different from that of the previous
experiments, especially for D and M . Figure 11b and d in-
dicate that we can accurately estimate the time-variant pa-
rameters (ϕP and µS) and other time-invariant parameters
(Fig. 11a and c). This result is promising since we cannot
expect the perfect description of a socio-hydrological model
in the real-world applications. We also performed the sen-
sitivity test on observation types, observation intervals, and
ensemble sizes, which resulted in the same conclusions as in
experiment 2 (not shown).

4.2 Real data experiment

Figure 12 shows the time series of the model variables cal-
culated by 5000 ensembles with no data assimilation. The
5000-ensemble simulation reveals the two bifurcated social
systems. One builds a high levee and maintains a course of
stable economic growth. The other one has no levee, and its
economy is damaged by severe floods many times (the en-
semble mean shown in Fig. 12b implies that there are many
ensemble members with a zero levee height).

In reality, the city of Rome constructed the levee in re-
sponse to the severe flood that occurred on 28 December
1870. After the construction of this levee, no major flood
losses occurred, allowing steady and undisturbed growth.
Figure 13 indicates that our SIRPF algorithm successfully
constrains the trajectory of the ensemble simulation to the
real world (i.e., high levee and stable economic growth) by
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Figure 7. Time series of (a) the cost of levee raising γE, (b) the rate at which new properties can be built ϕP, (c) the rate of decay of levees
κT, and (d) the memory loss rate µS estimated by the data assimilation of all observations (F ,G,D, H , andM), with 5000 ensembles every
10 years, in experiment 2 (see Sect. 3.1.2). The time step is annual. Gray, red, and black lines are the ensemble members, their mean, and the
synthetic truth, respectively.

Figure 8. The ratio of the RMSEs of the no data assimilation
(NoDA) experiment to those of the data assimilation (DA) exper-
iments in which all of observations (F ,G,D,H , andM) are assim-
ilated (all), and each one of them is assimilated in experiment 2 (see
Sect. 3.1.2). (a) Blue, orange, gray, and yellow bars are RMSEs of
the size of the human settlement G(t), the center of the mass of the
human settlement from the river D(t), the flood protection level (or
levee height) H(t), and the social awareness of the flood risk M(t).
(b) Blue, orange, gray, and yellow bars are RMSEs of the cost of
levee raising γE, the rate at which new properties can be built ϕP,
the rate of decay of levees κT, and the memory loss rate µS.

Figure 9. The ratio of the RMSEs of the no data assimilation
(NoDA) experiment to those of the data assimilation (DA) exper-
iments in which all of observations (F , G, D, H , and M) are as-
similated every 10, 20, 50, and 100 years in experiment 2 (see
Sect. 3.1.2). (a) Blue, orange, gray, and yellow bars are RMSEs of
the size of the human settlement G(t), the center of the mass of the
human settlement from the river D(t), the flood protection level (or
levee height) H(t), and the social awareness of the flood risk M(t).
(b) Blue, orange, gray, and yellow bars are RMSEs of the cost of
levee raising γE, the rate at which new properties can be built ϕP,
the rate of decay of levees κT, and the memory loss rate µS.
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Figure 10. Time series of (a) the high water levelW(t), (b) the flood
protection level (or levee height)H(t), (c) the distance of the center
of the mass of the human settlement from the riverD(t), (d) the size
of the human settlement G(t), (e) the intensity of flooding events
F(t), and (f) the social awareness of the flood risk M(t) simulated
by the data assimilation experiment in which the observations of F ,
G,D,H , andM are assimilated into the model every 10 years, with
5000 ensembles, in experiment 3 (see Sect. 3.1.3). The time step is
annual. Gray, red, and black lines are the ensemble members, their
mean, and the synthetic truth, respectively.

assimilating the real data of H and G. Figure S8 shows
the SIRPF-estimated unknown parameters. Our SIRPF al-
gorithm suggests a lower γE than the initial ensemble mean
to promote the levee construction with lower costs. Lower
κT is also obtained because the assimilated real data show
no decay of the levee from 1874 to 2009. Compared with
the OSSE experiment 2, the large uncertainty in estimated
parameters remains at the final time step due to the lim-
ited number of assimilated observations. In contrast to the
OSSEs, our observation network has an uneven temporal dis-
tribution. Figure 13 clearly indicates that our SIRPF algo-
rithm is robust with respect to these intermittent observations
whose intervals temporally change.

We analyzed the impacts of the individual observation
types (i.e., H and G) on the simulation skill as we did in
the OSSEs. Figure 14 indicates that our SIRPF algorithm re-
alistically simulates the socio-hydrological dynamics in the
city of Rome and provides similar estimated state variables,
as shown in Fig. 13, by assimilating population data only. As
we found in the OSSEs, observations of the size of the human
settlement G are informative for effectively constraining the
flood risk model. The dynamics of the parameter estimation

are similar to the case in which the data of both G and H are
assimilated (Fig. S9).

On the other hand, assimilating only levee height data
cannot provide similar results to those shown above. Fig-
ure 15 shows the time series of the model variables from
the data assimilation experiment in which we assimilated
the observation data of H only. Observations of the levee
height cannot effectively constrain D, G, and M when com-
pared with the observations of G. This finding is consistent
with the OSSEs. The uncertainty in estimated parameters be-
comes larger when we omit assimilating observations of G
(Fig. S10). Although the impact of levee height data is lim-
ited compared with population data, it is promising that we
can estimate the socio-hydrological dynamics, to some ex-
tent, only from the levee height data, whose distribution is
temporally sparse.

5 Discussion and Conclusions

In this study, we developed the sequential data assimilation
system for the widely adopted socio-hydrological model, i.e.,
the flood risk model by Di Baldassarre et al. (2013). We
demonstrated that our SIRPF algorithm for the flood risk
model is useful for reconstructing the historical human–flood
interactions, which can be called socio-hydrological reanal-
ysis, by integrating sparsely distributed observations and im-
perfect numerical simulations. In atmospheric science, atmo-
spheric reanalysis has been intensively analyzed to under-
stand complex feedback in the atmosphere, which cannot be
done by analyzing observation data only due to their spar-
sity. Socio-hydrological reanalysis can work as a reliable and
spatiotemporally homogeneous data set and may be helpful
for deepening the understanding of human and water interac-
tions. In addition, socio-hydrological reanalysis can be used
as initial condition for predicting the future changes in socio-
hydrological processes as atmospheric scientists predict the
future weather and/or climate using atmospheric reanalysis.
Since it is impossible to directly observe all state variables
and parameters as initial conditions, socio-hydrological re-
analysis is crucially important for accurate prediction. Socio-
hydrological data assimilation has a high potential to im-
prove the understanding of the complex feedback between
social and flood systems and predict their future. Our ideal-
ized OSSE and real data experiments reveal several impor-
tant findings.

First, the sequential data assimilation can mitigate the neg-
ative impact of the uncertainty in the input forcing on the
simulation of socio-hydrological state variables. We found
that the small perturbation of high water levels greatly af-
fects the long-term trajectory of the socio-hydrological state
variables, as Viglione et al. (2014) also found. It is nec-
essary to sequentially constrain the state variables and pa-
rameters by sequential data assimilation if the input forc-
ing is uncertain, although previous studies on the model–

https://doi.org/10.5194/hess-24-4777-2020 Hydrol. Earth Syst. Sci., 24, 4777–4791, 2020



4788 Y. Sawada and R. Hanazaki: Socio-hydrological data assimilation

Figure 11. Time series of (a) the cost of levee raising γE, (b) the rate at which new properties can be built ϕP, (c) the rate of decay of levees
κT, and (d) the memory loss rate µS estimated by the data assimilation of all observations (F ,G,D, H , andM), with 5000 ensembles every
10 years in experiment 3 (see Sect. 3.1.3). The time step is annual. Gray, red, and black lines are the ensemble members, their mean, and the
synthetic truth, respectively.

Figure 12. Time series of (a) the high water levelW(t), (b) the flood
protection level (or levee height)H(t), (c) the distance of the center
of the mass of the human settlement from the riverD(t), (d) the size
of the human settlement G(t), (e) the intensity of flooding events
F(t), and (f) the social awareness of the flood risk M(t) simulated
by 5000 ensembles, with uncertain high water levels and no data
assimilation in the real-world experiment in the city of Rome. The
time step is annual. Gray and red lines are the ensemble members
and their mean, respectively.

Figure 13. Time series of (a) the high water level W(t), (b) the
flood protection level (or levee height) H(t), (c) the distance of the
center of the mass of the human settlement from the river D(t),
(d) the size of the human settlementG(t), (e) the intensity of flood-
ing events F(t), and (f) the social awareness of the flood risk M(t)
simulated by the data assimilation experiment in which the real-
world observations of G and H (green dots) are assimilated into
the model, with 5000 ensembles in the real-world experiment in the
city of Rome. The time step is annual. Gray and red lines are the
ensemble members and their mean, respectively.
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Figure 14. Same as Fig. 13 but only real data of G are assimilated.

Figure 15. Same as Fig. 13 but only real data of H are assimilated.

data integration in socio-hydrology mainly focused on pa-
rameter calibration and assumed no uncertainty in the in-
put forcing (e.g., Barendrecht et al., 2019; Roobavannan et
al., 2017; Ciullo et al., 2017; van Emmerik et al., 2014;
Gonzales and Ajami, 2017). To deeply understand the socio-
hydrological processes, long-term historical analysis should
be performed. Although there are many studies on the accu-

rate reconstruction of the historical weather conditions (e.g.,
Toride et al., 2017), it may be necessary to tackle the un-
certainty in hydrometeorological data sets used for the input
forcing of the socio-hydrological models.

Second, our SIRPF algorithm can efficiently improve the
simulation of the socio-hydrological state variables, using
the sparsely distributed data. All model variables should not
necessarily be observed to constrain the model’s state vari-
ables and parameters. In some cases, observations of a single
state variable are enough to reconstruct the accurate socio-
hydrological state. In addition, observation intervals can be
longer than 10 years. Since it is difficult to obtain large vol-
umes of data in socio-hydrology, this finding is promising.
We also give some insight about the informative observation
types in the flood risk model. With uncertain high water lev-
els, observations of the intensity of flooding events F and the
height of levees H are not informative (i.e., the assimilation
of these observations cannot greatly improve the simulation
skill), although the empirical data, which can be related to F
andH , may be easily found. On the other hand, observations
of the size of the human settlement G are informative for
constraining the flood risk model. Model parameters can be
efficiently estimated by assimilating the state variables which
are tightly related to the targeted parameters, which is consis-
tent with the findings of the idealized experiment by Baren-
drecht et al. (2019).

Third, our SIRPF algorithm is robust to the imperfection of
the socio-hydrological model. The unknown parameters can
be efficiently estimated by the sequential data assimilation.
While previous studies evaluated the trajectory in the whole
study period to calibrate the socio-hydrological models by
iteratively performing the long-term model integration (e.g.,
Barendrecht et al., 2019; Roobavannan et al., 2017; Ciullo
et al., 2017; van Emmerik et al., 2014; Gonzales and Ajami
2017), we sequentially optimized the parameters based on
the relatively short-term time series, thus allowing parame-
ters to temporally vary in the study period. The advantage of
this strategy is that we can deal with time-variant parameters,
as previously demonstrated in the applications of hydrologi-
cal models (e.g., Pathiraja et al., 2018). In the model devel-
opment, parameters are formulated as time-invariant values
so that the existence of time-variant parameters indicates the
imperfect description of dynamic models. Sequential data as-
similation can mitigate the negative impact of this imperfect
model description. Vrugt et al. (2013) pointed out that the
parameter optimization by the sequential filters is unstable
if parameter sensitivity temporally changes (e.g., parameters
affects the model’s dynamics differently in the different sea-
sons), which may be a potential limitation of our strategy,
compared with Bayesian inference based on the long-term
trajectory as given by Barendrecht et al. (2019).

A major limitation of this study is that we assume the
modeled state variables can directly be observed, although
it is difficult to directly observe state variables of the socio-
hydrological models. For example, it is impossible to di-
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rectly observe the social awareness of flood risk in the flood
risk model, and several previous studies obtained the proxy
of the social memory from interview data (Barendrecht et
al., 2019) and a number of Google searches (Gonzales and
Ajami, 2017). When these indirect observations are assimi-
lated into a model, the (nonlinear) observation operator (see
Eq. 9), the assignment of the observation error, and assimila-
tion methods should be carefully designed as previously dis-
cussed in the context of numerical weather prediction (e.g.,
Sawada et al., 2019; Okamoto et al., 2019; Minamide and
Zhang, 2017). Future work will focus on the methodological
development in order to efficiently assimilate observations in
the social domain with a complicated structure of observa-
tion operators and errors.
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