Articles | Volume 24, issue 6
https://doi.org/10.5194/hess-24-3251-2020
https://doi.org/10.5194/hess-24-3251-2020
Research article
 | 
23 Jun 2020
Research article |  | 23 Jun 2020

Assessment of extreme flows and uncertainty under climate change: disentangling the uncertainty contribution of representative concentration pathways, global climate models and internal climate variability

Chao Gao, Martijn J. Booij, and Yue-Ping Xu

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by editor) (03 May 2020) by Xing Yuan
AR by Chao Gao on behalf of the Authors (04 May 2020)  Author's response    Manuscript
ED: Publish as is (08 May 2020) by Xing Yuan
AR by Chao Gao on behalf of the Authors (10 May 2020)  Author's response    Manuscript
Download
Short summary
This paper studies the impact of climate change on high and low flows and quantifies the contribution of uncertainty sources from representative concentration pathways (RCPs), global climate models (GCMs) and internal climate variability in extreme flows. Internal climate variability was reflected in a stochastic rainfall model. The results show the importance of internal climate variability and GCM uncertainty in high flows and GCM and RCP uncertainty in low flows especially for the far future.