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Dear Referee #1,

We highly appreciate your review and useful suggestions for our manuscript. We pro-
vide our answers to your queries below.

Kind regards, all authors

Queries by anonymous referee #1 RC1 & answers by authors are as follows:

Comment #1: Since the internal climate variability in this paper is represented by the
simulations of SDRM-MCREM, whether the contribution of internal climate variability
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to the total uncertainty is directly relevant with the performances of SDRM-MCREM?
For example, in Figure 10, the contribution of internal climate variability in annual max-
imum 1-day flow for larger return periods is obviously larger than smaller return pe-
riods, whether this indicates the poor performance of SDRM-MCREM in simulating
extremes? Please explain.

Authors’ response: Thanks for your question. There are two commonly-used ap-
proaches for the quantification of the internal variability of the climate system: the first
one is using multiple members of GCMs to reflect internal climate variability (Brace-
girdle et al., 2014); the second one is taking the randomness of weather generators
or stochastic rainfall models as the internal climate variability (Lafaysse et al., 2014;
Fatichi et al., 2016). In this way, it is unavoidable that the contribution of internal climate
variability is dependent on the performances of the adopted methods. This means that
the contribution of internal climate variability to the total uncertainty is not only directly
dependent on the performance of SDRM-MCREM in this study, but also dependent on
the performance of other methods if other methods were adopted. In this study, to avoid
the impacts of a poor performance of a stochastic rainfall model on its randomness and
affecting the representation of internal climate variability, we have made great efforts
to apply the well-performing stochastic rainfall model SDRM-MCREM, which showed
good results for simulation of both rainfall time-series characteristics and rainfall event
characteristics. The advantages of SDRM-MCREM compared to other weather gener-
ators and stochastic rainfall models are described in Gao et al. (2020a). In addition,
the inferior performance of weather generators and stochastic rainfall models in simu-
lating extremes and inherent large uncertainties is a common problem. Compared to
other weather generators, the SDRM-MCREM performs relatively better in reproduc-
ing rainfall extremes (Gao et al. 2020a). To draw conclusions about the contributions
of different uncertainty sources in a more accurate and reliable way in this study, we
summarized the findings of this study for an average return period and also compared
these results with previous studies (see Page 22-23, Line 431-438).
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Comment #2: Another main usage of stochastic rainfall model is to downscale climate
model outputs by adjusting parameters of stochastic rainfall models for climate change
impact studies. The future GCMs rainfall data in this study are directly simulated by
SDRM-MCREM using the bias corrected GCM future data rather than through down-
scaling by SDRM-MCREM. Can the authors explain why you conducted like this?

Authors’ response: There are two reasons why we conducted the study in this way.
Firstly, the bias-corrected future GCM rainfall data already contain sufficient information
to reflect the impacts of climate change on rainfall characteristics. Gao et al. (2020b)
investigated the changes of rainfall event characteristics using bias-corrected histor-
ical and future GCM data, and found that not only the distributions of rainfall dura-
tion and rainfall depth would change, but also the temporal patterns of rainfall events
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would change in the future. Secondly, obtaining realizations of future rainfall time series
through simulating the bias-corrected future GCM data using SDRM-MCREM in order
to consider future internal climate variability is more straightforward and easier. As far
as we know, using weather generators or stochastic rainfall models to downscale GCM
future simulations currently is mainly through perturbing the parameters of weather
generators, like the transition probabilities of rainfall occurrence and parameters of the
distribution of rainfall amount, using monthly averaged additive or multiplicative change
factors of GCM projections (Chen et al., 2012; Li and Babovic, 2018). However, it
cannot be guaranteed that these kinds of downscaling methods can fully incorporate
changes of rainfall characteristics (e.g. temporal patterns of rainfall events) although
it has been commonly used in previous studies. In addition, it is complicated to carry
out the whole downscaling process. Based on the above, it is considered more con-
venient and useful to directly simulate the bias-corrected GCM rainfall series using
SDRM-MCREM in this study.
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Comment #3: Obviously, there also exists uncertainty in the process of hydrological
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modelling. Why did your study only consider the uncertainty of RCPs, GCMs and
internal climate variability and neglects the uncertainty of hydrological parameters that
seems can be easily incorporated. Please explain.

Authors’ response: Thanks for your question. In the process of hydrological modelling,
uncertainty in hydrological model structures is also present besides uncertainty in hy-
drological parameters. There are two reasons why we did not take the uncertainty
in hydrological modelling into consideration in this study. Firstly, many previous stud-
ies indicated that uncertainty originating from climate projections is generally larger
than uncertainty in the hydrological simulation process (Teng et al., 2012;Karlsson et
al., 2016), and uncertainty from hydrological model structures and parameters sets is
less important for peak flows (Vetter et al., 2016;De Niel et al., 2019) (See Page 2,
Line 56-63). Repeating their work seems not very necessary. In addition, the main
purposes of this study are (1) to use the newly-developed well-performing stochastic
rainfall model SDRM-MCREM to generate multiple realizations of GCM data and re-
flect internal climate variability; (2) to investigate how climate projection uncertainties,
including RCP uncertainty, GCM uncertainty and internal climate variability, propagate
into streamflow projections and estimate their contributions to streamflow projection
uncertainty. This has also been described in the introduction section (see Page 3, Line
87-95). Because of this, we did not take the uncertainty of hydrological modelling into
account in this study. For future research work, to obtain a comprehensive insight into
projected changes of high flows and low flows and the contributions of different uncer-
tainty sources, it is aimed to consider all sources of uncertainty arising from scenarios,
climate models, internal climate variability, downscaling methods, hydrological models
and hydrological parameters (See Page 23, Line 446-448).
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Comment #4: L36. “responses of” <-> ”responses to”.

Authors’ response: Thank you. We will replace “responses of” with “responses to”.

Comment #5: L39. “the coupled system” – the atmosphere-ocean coupled system?
Please make it clear.

Authors’ response: Thank you. “the coupled system” does refer to “the coupled
atmosphere-ocean system”. We will revise it.

Comment #6: L48. “The relative importance” refers to what? Please make it clear.

Authors’ response:Thank you. Here “The relative importance” refers to the relative
importance of different uncertainty sources. Therefore, the original content will be
modified to “The relative importance of different uncertainty sources”.

Comment #7: L124. “In this study, we used the distribution mapping (DM) method
to correct GCM-simulated climate variable” – at this point in the text, some further
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explanation about why choosing the DM method is needed in the context.

Authors’ response: Thank you. We will further explain why we chose the DM method
to bias correct the simulations of GCMs in this study. The contents which will be added
are “Considering that the distribution mapping (DM) method usually shows a compre-
hensive skill in bias correcting the mean, standard deviation and various frequency-
based indices and even correcting unobserved extreme values compared with other
existing bias correction approaches like power transformation (PT), local intensity scal-
ing (LOCI), linear scaling (LS), delta change (DC) and quantile mapping (QM) (Fang et
al., 2015;Teutschbein and Seibert, 2012;Ji et al., 2020), the DM method was selected
to correct GCM-simulated climate variables based on observations in this study.”
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tions for hydrological climate-change impact studies: Review and evaluation of differ-
ent methods, J. Hydrol., 456-457, 12-29, https://doi.org/10.1016/j.jhydrol.2012.05.052,
2012.

Ji, X., Li, Y., Luo, X., He, D., Guo, R., Wang, J., Bai, Y., Yue, C., and
Liu, C.: Evaluation of bias correction methods for APHRODITE data to improve
hydrologic simulation in a large Himalayan basin, Atmospheric Research, 242,
https://doi.org/10.1016/j.atmosres.2020.104964, 2020.

Comment #8: L129. Please check the correctness of Eq. (2).

Authors’ response: Thank you for your comment. There is indeed a small error in Eq.
(2). The variable “xsim,his” at the right hand side of the equation will be modified to
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“xsim,fut”.

Comment #9: L189. “is” <-> “was”. The tense of this paper in the method part is a bit
confusing. Please check the whole paper and ensure proper use of the tense.

Authors’ response: Thank you. We will correct this. In addition, we have checked the
tense throughout the whole manuscript and will make the corresponding corrections,
especially in the description of the used methods, including the sections of methods
and results.

Comment #10: L338. In this paper, when investigating the changes of high flows
and low flows, the 5-, 10- and 20-year return periods are adopted. Why not use the
larger return periods such 50-year and 100-year return periods that are more useful
information for assessment of extreme hydrological events?

Authors’ response: To avoid introducing additional uncertainty through fitting observed
and simulated 30-year high and low flows series with a probability distribution, the
empirical cumulative distribution was directly used to calculate the values of high flows
and low flows at different return periods in this study. Therefore, the largest return
period calculated in this study is nearly 30 years, which obviously is smaller than 50
years and 100 years. This is why the high flows and low flows at 50-year and 100-year
return periods are not reported in this study.

Comment #11: L421. “account for approximately 54-60% on average”–Does this mean
the proportion of the total uncertainty? Please make it clear.

Authors’ response: Thank you. This is exactly the proportion of the total uncertainty.
Therefore, we will modify the original content to “account for approximately 54-60% of
the total uncertainty on average”.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-
25, 2020.
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