Articles | Volume 24, issue 3
https://doi.org/10.5194/hess-24-1251-2020
https://doi.org/10.5194/hess-24-1251-2020
Research article
 | 
20 Mar 2020
Research article |  | 20 Mar 2020

BESS-STAIR: a framework to estimate daily, 30 m, and all-weather crop evapotranspiration using multi-source satellite data for the US Corn Belt

Chongya Jiang, Kaiyu Guan, Ming Pan, Youngryel Ryu, Bin Peng, and Sibo Wang

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to revisions (further review by editor and referees) (06 Dec 2019) by Lixin Wang
AR by chongya jiang on behalf of the Authors (06 Dec 2019)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (05 Jan 2020) by Lixin Wang
RR by Anonymous Referee #1 (14 Feb 2020)
ED: Publish as is (14 Feb 2020) by Lixin Wang
Download
Short summary
Quantifying crop water use at each field every day is challenging because of the complexity of the evapotranspiration (ET) process and the unavailability of data at high spatiotemporal resolutions. We fuse multi-satellite data and employ a sophisticated model to estimate ET at 30 m resolution and a daily interval. With validation against 86 site years of ground truth in the US Corn Belt, we are confident that our ET estimation is accurate and a reliable tool for water resource management.