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Dear Dr Wang, 1 

 2 

Thank you for handling our manuscript “BESS-STAIR: a framework to estimate daily, 30-meter, 3 

and all-weather crop evapotranspiration using multi-source satellite data for the U.S. Corn Belt” 4 

(hess-2019-376). We have tried our best to revise our manuscript in accordance with the comments 5 

and suggestions received from the two referees, and we added the necessary text and figures in the 6 

main text and appendix. We believe that all the comments have been addressed and thus our 7 

manuscript has been considerably improved. We are very grateful to you and the two referees, and 8 

we are hoping for the possibility to consider our manuscript as a potential contribution for HESS. 9 

 10 

The major improvements we have made are: 11 

● We have added two figures about PET results.  12 

● We have added one table about LAI equations. 13 

● We have added example GPP maps in Appendix. 14 

● We have added relevant ET equations in Appendix. 15 

● We have replaced “LE” by “ET” throughout text, figures and tables. 16 

 17 

Below are detailed responses: 18 

Response to reviewer #1: 19 

1. The study “BESS-STAIR: a framework to estimate daily, 30-meter, and all-weather crop 20 

evapotranspiration using multi-source satellite data for the U.S. Corn Belt” used the BESS model 21 
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with 30-m fused inputs from a automated data fusion algorithm (STAIR) to simulate fine resolution 22 

cropland ET across the U.S. Corn Belt from 2000 to 2017. The results showed good performance 23 

compared with field measurement, indicating that BESS-STAIR is applicable for field scale ET 24 

simulations in the U.S. Corn Belt, which is useful and meaningful for agricultural water 25 

management and precision agriculture applications. The manuscript was well written and 26 

followed a good logic. Lots of work was done by the authors to explore applicable and reliable 27 

methods for agricultural management. It is good for the farmers and decision makers to know 28 

agricultural water demands. Thus, I think this study could be considered for publication in this 29 

journal. 30 

Dear reviewer: we greatly appreciate your positive summary on our manuscript.  31 

 32 

2. Please use only one term (ET or LE) consistently throughout the manuscript. It would be easier 33 

for people to read this manuscript. 34 

We have accepted your suggestion and made changes throughout text, figures and tables.  35 

 36 

3. In the section  2.1, please list the most important equations in the BESS model for ET 37 

calculations. And please list the full name of the variables before using the abbreviations (e.g.  38 

aVIS, Vcmax, etc.) 39 

We appreciate your suggestion.  40 

The most important equations in the BESS model for ET calculations are now listed in Appendix 41 

1 in the revised version (L570).  42 
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Full names of LAI, αVIS and αNIR were listed in L90. Full name of Vcmax25 was shown in L120.  43 

 44 

4. Ln. 205, please show the equation for clear demonstration. 45 

We have followed your suggestion. We have added a Table 1 “Linear equations for LAI (y) as a 46 

function of VI (x) for corn, soybean, and the combination of corn and soybean”. 47 

VI Corn Soybean Combination 

WDRVI y = 6.288x + 4.631 y = 4.584x + 3.432 y = 5.745x + 4.288 

GWDRVI y = 8.964x + 5.875 y = 6.384x + 4.275 y = 8.110x + 5.395 

EVI y = 10.569x - 2.165 y = 8.116x - 1.936 y = 9.665x - 1.993 

LSWI y = 9.156x + 1.070 y = 7.553x + 0.888 y = 8.944x + 0.982 

 48 

5. Ln. 254, CI could not be found in Eq. 6 or 7. Please check the manuscript clearly to correct this 49 

kind of errors. 50 

Thanks for the suggestion. We have deleted this sentence. CI is not used. 51 

 52 

6. Fig. 6, is the irrigation measured in the field?  53 

Yes. The irrigation data at US-Ne1 and US-Ne2 are provided by FLUXNET2015 database. 54 

 55 

7. In Fig. 8 and 9, it would be good to point out flux tower sites. 56 

We have followed your suggestion by adding flux tower marks in all maps.  57 

 58 
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8. I think Fig. 7 could be put in the supplementary materials, since Fig. 6 already showed good 59 

performance of BESS-STAIR ET. 60 

We agree that key information have already been shown in Fig. 6 so we have removed this figure. 61 

 62 

9. Ln.346-347, the authors said “measured daily LE do not show strong and fast response to 63 

precipitation and/or irrigation”, however, in Fig. 10, averaged ET showed significant correlations 64 

with precipitation. How did the author interpret this? 65 

We appreciate this important point. In most areas in the U.S. Corn Belt, atmospheric water demand 66 

dominates ET over soil water supply. In fact, the original Fig. 10 was special because that area-67 

month has the highest correlation between ET and precipitation, thus that figure was not 68 

representative and misleading.  69 

We have replaced it by another figure:  70 
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 71 

Figure 10. Peak growing season (June, July and August) BESS-STAIR ET/PET at Bondville 72 

(39.95°N – 40.05°N, 88.25°W – 88.35°W) from 2001 throughout 2017, along with two scatter 73 

plots between peak growing season precipitation and ET/PET and peak growing season VPD and 74 

ET/PET over the 17 years. Precipitation and VPD data are from Daily Surface Weather Data 75 

(Daymet) at Illinois Bondville, where VPD is derived using maximum air temperature and water 76 

vapor pressure. Circles indicate flux towers in this region. 77 

Accordingly, we have rewritten the paragraph (L398): 78 

“BESS-STAIR is also able to produce long-term ET/PET estimation as an indicator of drought. 79 

Figure 10 shows an example time series of peak growing season ET/PET at Bondville from 2001 80 
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through 2017. Overall substantial interannual variability is shown, with regional average ET/PET 81 

values ranging from the 0.76 in an extremely dry year 2012 to 0.91 in an extremely wet year 2015. 82 

A positive linear relationship (r = 0.42, p < 0.1) is observed between BESS-STAIR ET/PET and 83 

precipitation, and a negative linear relationship (r = -0.58, p < 0.05) is observed between BESS-84 

STAIR ET/PET and VPD. The relative stronger relationship between ET/PET and VPD than that 85 

between ET/PET and precipitation indicates atmospheric water demand is likely to contribute 86 

more to drought than soil water supply in this area.” 87 

 88 

Response to reviewer #2: 89 

1. The way I see it, this study provides a novel ET algorithm because of (1) the explicit treatment 90 

and modeling of stomatal conductance and canopy conductance; (2) the detailed representation 91 

of leaf architecture and inclination distribution; and (3) the ingenuity in gap filling cloudy days in 92 

the Midwest. 93 

Dear reviewer: we greatly appreciate your positive comments on our study. 94 

 95 

2. I think it is disingenuous of the authors to call this a coupled water-carbon-energy model. To 96 

me, this implies that there will be some sort of simulation of photosynthesis, NEP, NPP, and/or 97 

yields. I see that stomatal conductance was calculated using the Farquhar and Ball-Berry models. 98 

In order to make these calculations, there needed to be an estimate of net photosynthesis. Why are 99 

these estimates and maps not included as results in the study? If there is some limitation to 100 

simulating the carbon cycle, the authors should explain what that is or actually simulate some 101 

carbon components. I’m guessing there is some limitation here and I think that rather than calling 102 
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BESS-STAIR a water-carbon-energy model, that the authors should focus on the excellent strides 103 

that they have made by explicitly simulating the dynamic stomatal response, leaf inclination, and 104 

gap filling using surface albedo. 105 

We are glad that you see the water-carbon-energy integrated model as an innovation in high 106 

resolution ET estimation. Although the model estimates ET, GPP and Rnet simultaneously, the 107 

objective of this study is to demonstrate the performance of ET for water resource management. 108 

As a result, we purposely avoid putting too many GPP estimation results in the manuscript which 109 

might distract readers. Besides, GPP data is unavailable for many validation sites used in this study, 110 

and processing GPP measurements would take too much extra space, which would make the 111 

current manuscript too long. Even though, in the original manuscript, we still demonstrated good 112 

GPP estimation performance at three sites in Figure A1. We also showed that BESS-STAIR 113 

GPP~ET relationship is consistent with flux tower GPP~ET relationship at three sites in Table 3. 114 

Furthermore, readers can refer to our previous paper about BESS global GPP and ET products 115 

(Jiang and Ryu 2016). In the revised version, we have added several GPP maps in Figure A4 per 116 

your request.  117 

Jiang, C., & Ryu, Y. (2016). Multi-scale evaluation of global gross primary productivity and 118 
evapotranspiration products derived from Breathing Earth System Simulator (BESS). 119 
Remote Sensing of Environment, 186, 528–547. https://doi.org/10.1016/j.rse.2016.08.030 120 

 121 

3. Line 21: “water-carbon-energy” coupled is a little disingenuous. To me this implies there will 122 

be a carbon budget or some carbon-related outputs from the model (e.g. Anet, NEP, NPP, yield). 123 

Please refer to the above response.  124 

 125 
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4. Line 22: ‘satellite’ spelled incorrectly. 126 

We have corrected it.  127 

 128 

5. Line 37: Add “evaporation” to leaf transpiration. 129 

We have added it.  130 

 131 

6. Line 37: “ET at cropland is usually considered as crop water needs” is confusing. Please 132 

rephrase. 133 

We have rephrased it: “ET at cropland is usually considered as crop water use”. 134 

 135 

7. Line 43: USDA, 1997 is an outdated reference. Please update, perhaps with some Midwest US 136 

specific references about precision irrigation. 137 

Thanks for the suggestion. We have replaced the reference by a recently published report by The 138 

U.S. Government Accountability Office.  139 

 140 

8. Line 44: You bring up the urgency of this need here. I ask you to follow up on this both in your 141 

computation and the discussion of the scalability of this model and also how it compares or 142 

outcompetes other similar models (e.g. STAR-FM). 143 

We appreciate this important suggestion. However, the purpose of this manuscript is to propose a 144 

new framework and to demonstrate its performance. We only would like to let the community 145 
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know that this framework differs from existing ones such as DisALEXI-STARFM with regards to 146 

methodology. We do not want to comment on or judge others’ framework without careful 147 

investigation, especially considering their data are not publicly available. Meanwhile, we are open 148 

to share our data and welcome a third-party to conduct potential comparison studies and 149 

comprehensively evaluate the difference between frameworks in terms of performance, 150 

computation, scalability, etc. 151 

 152 

9. Line 48: “competitions” is an odd work to use here. Please rephrase. 153 

We have changed it to “balance”. 154 

 155 

10. Line 113: Figure 1 is where I get confused about your use of coupled water-carbon-energy 156 

cycling to describe this model. If you have VCmax 25 and Ball-Berry parameters, what are you 157 

missing for Amax, and other carbon outputs? 158 

Thank you for your interests on the carbon part of our framework. Carbon output is not missed. 159 

Please refer to our response 2. 160 

 161 

11. Line 155: How is STAIR different from STAR-FM? (Semmens et al., 2015) 162 

When a single pixel suffers from gaps in two input snapshots of Landsat images, STARFM 163 

continues searching for the closest possible Landsat-MODIS image pair of a matching date, even 164 

if it is months away from the target prediction date. By comparison, STAIR utilizes the whole time 165 

series to conduct fusion.  166 
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STARFM requires users to manually select and specify clear reference images for the methods. It 167 

is possibly such semi-automatic feature leads to the fact that DisALEXI-STARFM has not been 168 

investigated at regional scale over long-term span. By comparison, STAIR is completely automatic 169 

and thus more scalable.  170 

Detailed difference can be found in (Luo et al., 2018).  171 

Luo, Y., Guan, K., & Peng, J. (2018). STAIR: A generic and fully-automated method to fuse 172 
multiple sources of optical satellite data to generate a high-resolution, daily and cloud-/gap-173 
free surface reflectance product. Remote Sensing of Environment, 214(March), 87–99. 174 
https://doi.org/10.1016/j.rse.2018.04.042 175 

 176 

12. Lines 197-199: This is the first time that corn and soy are mentioned as the specific crops 177 

studied. It would be better if these were specified earlier in the manuscript. 178 

We have followed your suggestion. We have added one sentence in the first paragraph of the 179 

manuscript: “In the U.S. Corn Belt where more than 85% of corn and soybean are produced in the 180 

U.S. (Grassini et al., 2015) …” 181 

 182 

13. Lines 235-235: Including the leaf inclination distribution is novel and interesting. It would be 183 

great to highlight this aspect of your work more in the abstract and also place it into context in 184 

the intro (I do not believe other satellite-based ET models characterize the canopy to this detail). 185 

Thank you for your positive comments. However, we set three fixed types of leaf inclination 186 

distribution "spherical", "planophile" and "plagiophile" for corn, soybean, and other biomes, and 187 

currently they are only used in the LAI estimation procedure. We think this contribution is not 188 

large enough to highlight.   189 
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 190 

14. Line 255: Is soil albedo also estimated prior to canopy closure? 191 

Yes, we used “spectral reflectance in April when no crop is planted across the study area to derive 192 

representative soil spectral reflectance” (L238) and estimated visible and near-infrared albedo 193 

using Eq. (6) and (7) (L257). 194 

 195 

15. Line 322: I agree with Reviewer 1. Please make the necessary conversions and stick with ET. 196 

Introducing LH at this point in the paper is a distraction. 197 

We have accepted your suggestion. 198 

 199 

16. Line 394: Please expand on the “high computational efficiency” of this model. 200 

This paragraph demonstrates interannual variations of BESS-STAIR ET, and computational 201 

efficiency is not key message we would like to convay here. Therefore, we have removed this 202 

statement to avoid distraction.  203 

 204 

17. Line 407: You mention PET here, but there are no PET maps. It would be interesting to 205 

compare PET to ET in a drought year (e.g. 2012). 206 

We appreciate and have followed your suggestion. In the revised manuscript, we have added two 207 

new figures about PET and corresponding paragraphs:  208 
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 209 

Figure 7. Seasonal time series of daily ET/PET derived from BESS-STAIR and flux tower for US-210 

Ne1, US-Ne2, and NS-Ne3 in 2012, along with measured daily mean soil water content (SWC).  211 

“Figure 7 shows the comparison between BESS-STAIR ET/PET and flux tower ET/PET at three 212 

sites (US-Ne1, US-Ne2, and NS-Ne3) at Mead, Nebraska. Overall, BESS-STAIR agrees well with 213 

flux tower in both magnitude and seasonal cycle. Although 2012 is a severe drought year, soil 214 

water content (SWC) at the rainfed site US-Ne3 still shows a relatively high level (> 0.2). As a 215 

result, ET/PET from both BESS-STAIR and flux tower are at the same level with the adjacent two 216 

irrigated sites (US-Ne2 and US-Ne3).” 217 

 218 
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 219 

Figure 10. Peak growing season (June, July and August) BESS-STAIR ET/PET at Bondville 220 

(39.95°N – 40.05°N, 88.25°W – 88.35°W) from 2001 throughout 2017, along with two scatter 221 

plots between peak growing season precipitation and ET/PET and peak growing season VPD and 222 

ET/PET over the 17 years. Precipitation and VPD data are from Daily Surface Weather Data 223 

(Daymet) at Illinois Bondville, where VPD is derived using maximum air temperature and water 224 

vapor pressure. Circles indicate flux towers in this region.  225 

“BESS-STAIR is also able to produce long-term ET/PET estimation as an indicator of drought. 226 

Figure 10 shows an example time series of peak growing season ET/PET at Bondville from 2001 227 

through 2017. Overall substantial interannual variability is shown, with regional average ET/PET 228 
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values ranging from 0.76 in an extremely dry year 2012 to 0.91 in an extremely wet year 2015. A 229 

positive linear relationship (r = 0.42, p < 0.1) is observed between BESS-STAIR ET/PET and 230 

precipitation, and a negative linear relationship (r = -0.58, p < 0.05) is observed between BESS-231 

STAIR ET/PET and VPD. The relative stronger relationship between ET/PET and VPD than that 232 

between ET/PET and precipitation indicates atmospheric water demand is likely to contribute 233 

more to drought than soil water supply in this area.”  234 

 235 

18. Line 443: You criticize other models for only focusing on the water cycle, but as it stands, this 236 

paper also only shares results related to the water cycle. I think you either should share some 237 

carbon cycle results or remove this type of language. 238 

We have shared some carbon cycle results in the manuscript. Please refer to our response 2.  239 

 240 

19. Lines 478-479: Traditionally, we do not introduce new figures in the discussion section. It 241 

would be better to move Figure 12 to the results section. 242 

While we greatly appreciate the reviewer’s suggestion, we feel that we have some different 243 

opinions on this point. We think that the Discussion section could have a figure, as long as the 244 

contents are to support interpreting findings, placing them in a bigger context, and relating them 245 

to other work, any measures. Here Figure 12 is to interpret WHY BESS-STAIR ET is advanced, 246 

whereas the whole results section is to show WHAT BESS-STAIR ET looks like. Therefore, we 247 

think putting it in the discussion section fits well for the overall discussion part. We are also aware 248 

that many papers in this journal and other top journals have new figures introduced in the 249 

discussion section, e.g.: 250 
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Guzinski, R., Nieto, H., Stisen, S., & Fensholt, R. (2015). Inter-comparison of energy balance 251 
and hydrological models for land surface energy flux estimation over a whole river 252 
catchment. Hydrology and Earth System Sciences, 19(4), 2017–2036. 253 
https://doi.org/10.5194/hess-19-2017-2015 254 

Gerken, T., Bromley, G. T., Ruddell, B. L., Williams, S., & Stoy, P. C. (2018). Convective 255 
suppression before and during the United States Northern Great Plains flash drought of 256 
2017. Hydrology and Earth System Sciences, 22(8), 4155–4163. 257 
https://doi.org/10.5194/hess-22-4155-2018 258 

Konings, A. G., & Gentine, P. (2017). Global variations in ecosystem-scale isohydricity. Global 259 
Change Biology, 23(2), 891–905. https://doi.org/10.1111/gcb.13389 260 

Huemmrich, K. F., Campbell, P., Landis, D., & Middleton, E. (2019). Developing a common 261 
globally applicable method for optical remote sensing of ecosystem light use efficiency. 262 
Remote Sensing of Environment, 230(July 2018), 111190. 263 
https://doi.org/10.1016/j.rse.2019.05.009 264 

 265 

20. Line 505: Can you investigate drought and soil moisture using the 2012 drought year in your 266 

dataset? 267 

We have accepted your suggestion. Please refer to our response 17.  268 

 269 

21. Line 531-534: Back to your urgency point in the introduction: are we from real-time ET 270 

estimates at 30-m being freely available for irrigation management? 271 

No, we haven’t achieved real-time ET estimations in this study. This is indeed our ultimate goal 272 

and still on the development. We are developing in-season classification of corn and soybean 273 

which is required by BESS as well as in-season STAIR fusion. 274 

 275 

Chongya Jiang and Kaiyu Guan, on behalf of all the authors.  276 
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Abstract. With increasing crop water demands and drought threats, mapping and monitoring of cropland evapotranspiration 15 

(ET) at high spatial and temporal resolutions becomes increasingly critical for water management and sustainability. 

However, estimating ET from satellite for precise water resources management is still challenging due to the limitations in 

both existing ET models and satellite input data. Specifically, the process of ET is complex and difficult to model, and 

existing satellite remote sensing data could not fulfill high resolutions in both space and time. To address the above two 

issues, this study presented a new high spatiotemporal resolution ET mapping framework, i.e., BESS-STAIR, which 20 

integrates a satellite-driven water-carbon-energy coupled biophysical model BESS (Breathing Earth System Simulator) with 

a generic and fully-automated fusion algorithm STAIR (SaTallite dAta IntegRation). In this framework, STAIR provides 

daily 30-meter multispectral surface reflectance by fusing Landsat and MODIS satellite data to derive fine-resolution leaf 

area index and visible/near-infrared albedo, all of which, along with coarse-resolution meteorological and CO2 data, are used 

to drive BESS to estimate gap-free 30-m resolution daily ET. We applied BESS-STAIR from 2000 through 2017 in six areas 25 

across the U.S. Corn Belt, and validated BESS-STAIR ET estimations using flux tower measurements over 12 sites (85 site-

years). Results showed that BESS-STAIR daily ET achieved an overall R2 = 0.75, with RMSE = 0.93 mm d-1 and relative 

error = 27.9% when benchmarked with the flux measurements. In addition, BESS-STAIR ET estimations well captured the 

spatial patterns, seasonal cycles, and interannual dynamics in different sub-regions. The high performance of the BESS-

STAIR framework is primarily resulted from: (1) the implementation of coupled constraints on water, carbon, and energy in 30 

BESS, (2) high-quality daily 30-m data from STAIR fusion algorithm, and (3) BESS’s applicability under all-sky conditions. 

BESS-STAIR is calibration-free and has great potentials to be a reliable tool for water resources management and precision 

agriculture applications for the U.S. Corn Belt, and even for worldwide given the global coverage of its input data. 
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1 Introduction  

Accurate field-level management of water resources urgently demands reliable estimations of evapotranspiration (ET) at 35 

high spatial and temporal resolutions. ET is the sum of water loss from soil surface through evaporation and that from plant 

components through leaf transpiration and evaporation, and ET at cropland is usually considered as crop water needs use 

(Allen et al., 1998). ET consumes up to 90% of total water inputs (precipitation plus irrigation) in agro-ecosystems in the 

Western and Midwestern United States (Irmak et al., 2012). In the U.S. Corn Belt where more than 85% of corn and soybean 

are produced in the U.S. (Grassini et al., 2015), increasing vapor pressure deficit (VPD) and drought sensitivity has been 40 

recognized as severe threats to future crop security (Lobell et al., 2014; Ort and Long, 2014). The vulnerability to drought in 

this region is further exacerbated by elevated rates of grass-to-crop conversion and expansion of irrigated areas (Brown and 

Pervez, 2014; Wright and Wimberly, 2013). Furthermore, precision water resources management requires capacity to 

account for spatial heterogeneity and to guide real-time decision-making (GAO, 2019) (USDA, 1997). Accordingly, reliable 

tools are urgently needed to estimate, map and monitor the total amount and spatial and temporal variations of cropland ET. 45 

 

One critical requirement for the accurate estimations of ET at high spatiotemporal resolutions is reliable and advanced 

satellite-based models. This is challenging because the process of ET is complex and difficult to model. ET results from 

competitions balance between atmospheric water demand and soil water supply, and it is also regulated by plants through 

canopy development and stomatal behaviors in order to optimize their water, carbon and energy use strategies (Katul et al., 50 

2012; Wang and Dickinson, 2012). A large number of satellite-based ET estimation methods have been developed based on 

different theories and techniques. In general, they can be grouped into many categories: statistical or machine learning 

methods (Jung et al., 2010; Lu and Zhuang, 2010), water balance methods (Pan et al., 2012; Wan et al., 2015), energy 

balance methods (Anderson et al., 1997; Su, 2002), triangular or trapezoid space methods (Jiang and Islam, 1999; Li et al., 

2009), Priestley–Taylor methods (Fisher et al., 2008; Miralles et al., 2011), and Penman–Monteith methods (Mu et al., 2011; 55 

Yebra et al., 2013). Kalma et al. (2008), Li et al. (2009) and Zhang et al. (2016) have provided detailed reviews on the pros 

and cons of different remote sensing approaches. 

 

Given the complexity of the ET process, we argue that a reliable ET model should include both necessary biophysical 

processes and high-quality multi-source observations to constrain ET estimations (Loew et al., 2016). While remote sensing-60 

based approaches tend to focus on constraints from various satellite data, land surface models (LSMs) are proficient to 

include processes that account for interactions between environment and plant structure and functions. Given the gaps 

between remote sensing and LSMs, a distinct ET model, the Breathing Earth System Simulator (BESS), was developed 

(Jiang and Ryu, 2016; Ryu et al., 2011). Different from the above-mentioned remote sensing models, BESS is a biophysical 

model, which adopts modules commonly-implemented in land surface models but uses various satellite remote sensing data 65 

as direct inputs. Specifically, BESS is a two-leaf water-carbon-energy coupled model driven by environmental and 

vegetation variables derived from multi-source satellite data. As the energy cycle, carbon cycle and water cycle are jointly 
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modeled and mutually constrained in BESS, it has produced a series of high-quality global long-term (2000-2017) products, 

including the 5-km resolution global radiation (Rg) and photosynthetically active radiation (PAR) and diffuse PAR products 

(Ryu et al., 2018), and 1-km resolution gross primary productivity (GPP) and ET products (Jiang and Ryu, 2016), which 70 

enables tracking crop growth and yields too (Huang et al., 2018). In particular, the 1-km resolution BESS ET product is able 

to capture the total amount and spatial and temporal variations in arid/semi-arid areas like Australia (Whitley et al., 2016, 

2017), California (Baldocchi et al., 2019) and Northwestern China (Wei et al., 2019). The fidelity of coarse-resolution BESS 

ET product suggests its potential at fine resolutions. 

 75 

The other critical requirement for accurate estimations of ET at high spatiotemporal resolutions is satellite input data at high 

resolutions in both space and time. This is challenging because existing satellite missions cannot satisfy the two conditions 

simultaneously. Data fusion techniques, which take multi-sensor data to generate fusion data with high resolutions in both 

space and time, provide a possible and scalable solution. Several such algorithms have been developed over the past decade 

(Gao et al., 2006; Houborg and Mccabe, 2018; Zhu et al., 2010), and they have been successful for localized applications 80 

(Gao et al., 2017; Gómez et al., 2016; Wu et al., 2015). Notably, energy balance and thermal-based ET models such as 

ALEXI/DisALEXI and SEBS have been combined with the fusion algorithm such as STARFM and ESTARFM to generate 

daily 30-m ET estimations with favourable performance at several sites (Anderson et al., 2018; Cammalleri et al., 2013; Li et 

al., 2017; Ma et al., 2018). 

 85 

Here we propose and present a new ET estimation framework that combines BESS with a novel fusion algorithm SaTallite 

dAta IntegRation (STAIR) (Luo et al., 2018), for accurate ET estimation at both high resolution in time and space. BESS has 

demonstrated its high performance in estimating ET at medium to coarse resolutions, but the major obstacle of moving 

BESS’s ET estimation to finer resolutions is the lack of key vegetation status variables at higher spatial resolutions, 

including leaf area index (LAI), and visible and near-infrared albedo (αVIS and αNIR). In BESS, these surface information are 90 

critical to resolving spatial heterogeneity, while environmental information such as radiation, temperature, humidity and CO2 

concentration are relatively homogeneous. To cope with the absence of high spatiotemporal resolution vegetation data, we 

propose to couple STAIR with BESS. STAIR is a genetic and fully-automated fusion algorithm to generate cloud-/gap-free 

surface reflectance product in high spatiotemporal resolution (Luo et al., 2018). Instead of manually selecting image pairs 

adopted by most other data fusion algorithms, STAIR automatically takes full advantage of time-series of daily coarse-95 

resolution images and fine-resolution but less frequent images. Moreover, STAIR’s high efficiency in computation allows 

scalability for large scale productions, which enable this new framework to deliver daily 30-m ET at regional and decadal 

scales. 

 

The objective of this study is to address a fundamental issue in agro-ecological science and applications: lack of high 100 

spatiotemporal gap-free ET data for decision-making. We implemented a new ET estimation framework BESS-STAIR and 
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tested it at six study areas across the U.S. Corn Belt from 2000 to 2017. This is the first attempt to couple a satellite-driven 

LSM with data fusion technique to provide daily 30m-resolution ET estimations at regional and decadal scales. While 

existing frameworks retrieve clear-sky ET from satellite-observed LST and fill ET gaps for cloudy-sky days, BESS-STAIR 

simulates all-sky ET and LST as a result of crop biophysical properties. This manner has more referential significance for 105 

crop modeling studies and has potential of breaking a new path to agro-ecological science and applications. We conducted 

comprehensive evaluation on the BESS-STAIR ET estimations with regards to the overall performance, spatial patterns, 

seasonal cycles and interannual dynamics, benchmarked on the ET observations from 12 eddy-covariance flux towers across 

the U.S. Corn Belt. The paper also discussed on the performance, advantages, limitations and potential improvements of the 

BESS-STAIR ET framework. 110 

 

2 Materials and methods  

 

Figure 1. The BESS-STAIR framework. The BESS ET estimation model and the STAIR data fusion algorithm are 

highlighted in green boxes. Blue boxes are satellite data, yellow boxes are ancillary data, and red boxes are key inputs to 115 

BESS. The output of BESS-STAIR is the 30-m resolution daily ET highlighted in white box. 

 

BESS-STAIR estimates cropland ET at 30-m resolution at daily interval (Figure 1). BESS is driven by environmental 

variables (radiation, temperature, humidity, and CO2 concentration), plant structural variables (LAI, αVIS and αNIR), and plant 

functional variables (peak maximum carboxylation rate at 25 °C (peak Vcmax25) and Ball-Barry coefficients, for C3 and C4 120 
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plants, respectively). Among these key inputs, LAI, αVIS and αNIR characterize crop canopy structure, which are usually very 

heterogeneous. In the global BESS ET product (Jiang and Ryu, 2016), these vegetation variables are derived from MODIS 

satellite data at 1-km resolution; while in BESS-STAIR, they are derived from 30-m resolution surface reflectance fused 

from high spatial resolution Landsat data and high temporal resolution MODIS data by STAIR. 

 125 

2.1 The ET estimation model: BESS 

BESS is a sophisticated satellite-driven water-carbon-energy coupled biophysical model designed to continuously monitor 

and map water and carbon fluxes (Jiang and Ryu, 2016; Ryu et al., 2011). It is a simplified land surface model, including an 

atmosphere radiative transfer module (Kobayashi and Iwabuchi, 2008; Ryu et al., 2018), a two-leaf canopy radiative transfer 

module (De Pury and Farquhar, 1997), and an integrated carbon assimilation – stomatal conductance – energy balance 130 

module. Specifically, the Farquhar model for C3 and C4 plants (Collatz et al., 1992, 1991), the Ball-Berry model (Ball et al., 

1987), and the quadratic form of the Penman-Monteith equation (Paw U and Gao, 1988) are used for the simulation of 

carbon assimilation, stomatal conductance and energy balance, respectively. This carbon-water integrated module employs 

an iterative procedure to solve intercellular CO2 concentration, stomatal conductance and leaf temperature for sunlit and 

shade canopy. Instantaneous sunlit/shade GPP and sunlit/shade/soil ET and net radiation at Terra and Aqua overpass times 135 

are simultaneously estimated, followed by a temporal upscaling procedure to derive daily GPP and ET using semi-empirical 

cosine functions (Ryu et al., 2012). The Priestley-Taylor equation is used to compute daily potential ET (PET) based on 

estimated daily net radiation and meteorological datainputs. 

 

A unique feature of BESS is that BESS takes full advantages of atmospheric and land products derived from multi-source 140 

satellite data. By using MOD/MYD 04 aerosol products (Sayer et al., 2014), MOD/MYD 06 cloud products (Baum et al., 

2012), MOD/MYD 07 atmospheric profile products (Seemann et al., 2003), along with gap-free atmospheric data provided 

by MERRA-2 reanalysis products (Gelaro et al., 2017), BESS calculates direct/diffuse visible/near-infrared radiation 

components at 0.05° resolution. By coupling CO2 concentration derived from SCIAMACHY and GOSAT satellite data (Dils 

et al., 2014) with those from OCO-2 satellite data (Hammerling et al., 2012), as well as NOAA long-term field observations 145 

(www.esrl.noaa.gov/gmd/ccgg/trends/), BESS derives long-term continuous monthly CO2 concentration maps. Finally, in 

this study BESS uses air temperature and dew point temperature provided by ERA5 reanalysis products at 0.1° resolution 

(Hersbach and H., 2016). In addition to these environmental variables, BESS also highly relies on vegetation structural and 

functional variables. By using satellite-derived LAI, αVIS and αNIR, BESS quantifies the absorption of ultraviolet/visible/near 

infrared radiation by sunlit/shaded canopy through a canopy radiative transfer model. This model also upscales leaf level 150 

(Vcmax25) to sunlit/shade canopy, which is used in the Farquhar photosynthesis model. Vcmax25 is a parameter depending on the 

plant functional type (Bonan et al., 2011; Kattge et al., 2009), and its seasonal variation is empirically parameterized by LAI 

(Ryu et al., 2011). 
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2.2 The data fusion algorithm: STAIR 155 

STAIR is a generic and fully-automated method for fusing multi-spectral satellite data to generate high spatiotemporal 

resolution and cloud-/gap-free data (Luo et al., 2018). It fully leverages the complementary strengths in the high temporal 

resolution MCD43A4 nadir reflectance (daily but 500 m resolution) (Schaaf et al., 2002) and the high spatial resolution 

Landsat L2 nadir reflectance (30-m resolution but 16-day revisiting frequency) (Masek et al., 2006) time series data. STAIR 

first imputes the missing pixels using an adaptive-average correction procedure, and then employs a local interpolation 160 

model to capture finer spatial information provided by Landsat data, followed by a time-series refinement step that 

incorporates the temporal patterns provided by MODIS data. This strategy allows higher efficiency in missing-data 

interpolation as well as greater robustness against concurrently missed MODIS and Landsat observation, which is a common 

situation during continuous cloudy/snowy days. 

 165 

The algorithm starts from the imputation of the missing pixels (due to cloud cover or Landsat 7 Scan Line Corrector failure) 

in satellite images. For MODIS images, a Savitzky-Golay filter is first applied to reconstruct continuous time series. For 

Landsat images, a two-step approach is employed using both temporal and spatial information from clear-sky observations. 

First, a temporal interpolation through a linear regression is applied as the initial gap-filling, based on the whole time series 

of images throughout a year. Second, an adaptive-average correction procedure is applied to remove inharmonic spatial 170 

patterns between gap-filled and original data. The target image is partitioned into multiple segments, each of which contains 

one type of homogeneous pixels. The relative difference between a gap pixel and neighbourhood pixels of it within the same 

segment is calculated using clear-sky observations acquired in several dates close to the target image acquisition date. Based 

on the assumption that the relative difference remains roughly the same across different dates in a short time period (e.g., < 

2–3 weeks), such difference is used to correct the filled values of the gap pixel derived from temporal interpolation so that 175 

the spatial relationship between the gap-filled pixel and its neighbourhood pixels within the same segment is consistent with 

those in clear-sky observations. 

 

The STAIR fusion algorithm fully exploits the spatial and temporal information in the time series of gap-filled MODIS and 

Landsat images throughout the growing season (April - October). A nearest neighbour sampling is conducted for all the 180 

MODIS images to achieve the same image size, pixel resolution and projected coordinate system with Landsat images. 

Difference image is calculated for each pair of Landsat and resampled MODIS images, and a linear interpolation is applied 

to reconstruct the difference image for any given date when no Landsat image is available. Such difference image is used to 

correct the resampled MODIS image on that date and to generate a fused Landsat image. In this manner, the fused image 

captures the most informative spatial information provided by the high spatial resolution Landsat data and incorporates the 185 

temporal patterns provided by the high temporal resolution MODIS data without any user interference. The fusion algorithm 

is applied to the six Landsat bands: blue, green, red, near-infrared (nir), shortwave infrared 1 (swir1), and shortwave 

infrared-2 (swir2). 
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2.3 Derivation of BESS inputs from STAIR data 190 

At global scale, LAI, αVIS and αNIR can be obtained from MODIS and other satellite data, but for field-scale agricultural 

applications high spatial resolution data are needed to account for the spatial heterogeneity between fields or within a field. 

At this point, we employed two approaches to estimate 30-m resolution daily LAI from STAIR fused surface reflectance 

data: an empirical approach based on linear relationship with vegetation indices (VIs) and a mechanic approach based on 

inversion of a canopy radiative transfer model (RTM). 195 

 

First, we estimated LAI using the empirical approach, because of availability of field LAI measurements in the study area. 

We calculated four VIs calculated from STAIR-derived spectral reflectance: Wide Dynamic Range Vegetation Index 

(WDRVI), Green Wide Dynamic Range Vegetation Index (GWDRVI), Enhanced Vegetation Index (EVI), and Land Surface 

Water Index (LSWI) for corn and soybean, respectively (Eq. (1) – (3)). These four Vis VIs were chosen because they utilized 200 

information from different band combinations.  

𝑊𝐷𝑅𝑉𝐼 ൌ
0.1𝜌𝑁 െ𝜌𝑅
0.1𝜌𝑁 ൅𝜌𝑅

 (1) 

𝐺𝑊𝐷𝑅𝑉𝐼 ൌ
0.1𝜌𝑁 െ 𝜌𝐺
0.1𝜌𝑁 ൅ 𝜌𝐺

 (2) 

𝐸𝑉𝐼 ൌ 2.5
𝜌𝑁 െ 𝜌𝑅

𝜌𝑁 ൅ 6𝜌𝑅 െ 7.5𝜌𝐵 ൅ 1
 (3) 

𝐿𝑆𝑊𝐼 ൌ
𝜌𝑁 െ 𝜌𝑆𝑊1
𝜌𝑁 ൅ 𝜌𝑆𝑊2

 (4) 

where ρB, ρG, ρR, ρN, and ρSW1 refer to the surface reflectance at blue, green, red, near-infrared, the first shortwave-infrared 

band, respectively. Subsequently, we used field measured LAI data collected using destructive method at Mead, Nebraska 

from 2001 through 2007 to build VI-LAI relationships (Gitelson et al., 2007). For each of the four VIs we build a linear 

regression between time series of VI and LAI for corn, soybean, and the combination of corn and soybean, respectively 205 

(Table 1). At this point, the equation derived from the combination of corn and soybean was used for vegetation cover other 

than corn and soybean. Although this might cause bias for forest LAI estimation, it is not a concern in this study as we 

focused on crop ET only. We applied linear regressions to four VIs separately and averaged the four derived LAI as the final 

LAI estimation, with the expectation that such average would reduce uncertainty caused by individual VI-LAI relationship.  

 210 

Table 1. Linear equations for LAI (y) as a function of VI (x) for corn, soybean, and the combination of corn and soybean.  

VI Corn Soybean Combination 

WDRVI y = 6.288x + 4.631 y = 4.584x + 3.432 y = 5.745x + 4.288 

GWDRVI y = 8.964x + 5.875 y = 6.384x + 4.275 y = 8.110x + 5.395 
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EVI y = 10.569x - 2.165 y = 8.116x - 1.936 y = 9.665x - 1.993 

LSWI y = 9.156x + 1.070 y = 7.553x + 0.888 y = 8.944x + 0.982 
 

 

Second, we inversed PROSAIL RTM using a look-up table (LUT) method. PROSAIL is an efficient and widely-used model 

to simulate canopy reflectance given a set of sun-object-view geometry, canopy structure, leaf biochemical, and soil optical 215 

parameters (Jacquemoud et al., 2009). It is a combination of the PROSPECT leaf hyperspectral properties model 

(Jacquemoud et al., 1996; Jacquemoud and Baret, 1990) and the SAIL canopy bidirectional reflectance model (Verhoef, 

1984, 1985). PROSAIL is particularly suitable for grasslands and croplands (Darvishzadeh et al., 2008; Xu et al., 2019), and 

therefore used in this study. LUT is a robust and easy method to retrieve model parameters from observed canopy reflectance 

(Verrelst et al., 2018). It is based on the generation of simulated canopy reflectance database for a number of plausible 220 

combinations of model parameter value ranges, and the identification of parameter values in the database leading to the best 

agreement between simulated and observed canopy reflectance. LUT is particularly suitable for big data processing (Myneni 

et al., 2002), and therefore used in this study. 

 

We established a database by running PROSAIL with sampled parameter values listed in Table 12. For computation 225 

efficiency, we only sampled varied values for four parameters while others were fixed. These four free parameters, including 

LAI (10 values), fraction of vegetation cover (6 values), soil brightness (5 values) and chlorophyll content (4 values), were 

chosen because they have been identified as the most sensitive parameters in canopy radiative transfer models (Bacour et al., 

2002; Mousivand et al., 2014). Leaf inclination distribution function is also sensitive but we set fixed types "spherical", 

"planophile" and "plagiophile" for corn, soybean, and other biomes, respectively (Nguy-Robertson et al., 2012; Pisek et al., 230 

2013). The fixed values of other parameters were set according to literature (Baret et al., 2007; Feret et al., 2008; 

Jacquemoud et al., 2009). Solar zenith angle at satellite overpass time can be calculated so we did not set it as a free 

parameter. Instead, we built a set of databases with solar zenith angle values (°) of 20, 25, 30, 35, 40, 45 and 50, respectively, 

representing the range during growing season in the study area. In PROSAIL, specific absorption coefficients and refractive 

index of leaf material are pre-measured hyperspectral data from 400 to 2500 nm with 1 nm interval (Feret et al., 2008), we 235 

averaged them over wavelengths to match Landsat 7 bands and assumed differences of spectral ranges between Landsat 5, 

Landsat 7 and Landsat 8 have marginal influence on LAI retrieval. We did not use default soil spectrum in PROSAIL, but 

spatiotemporally averaged all cropland pixels spectral reflectance in April when no crop is planted across the study area to 

derive representative soil spectral reflectance. 

 240 

Table 12. Parameter values needed to establish the canopy reflectance database by PROSAIL. 

Parameters Values 
LAI (m2 m-2) 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8 
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Fraction of vegetation cover (m2 m-2) 0, 0.2, 0.4, 0.6, 0.8, 1 

Soil brightness (a.u.) 0.01, 0.4, 0.8, 1.2, 1.6 

Chlorophyll content (ug cm-2) 0, 20, 40, 60 

Leaf inclination distribution function 
spherical for corn, 

planophile for soybean, 
plagiophile for others 

Structure coefficient (a.u.) 1.75 

Carotenoid content (ug cm-2) 0 

Equivalent Water Thickness (cm) 0.015 

Leaf Mass per area (g cm-2) 0.0075 

Brown pigment content (a.u.) 0 

Hot spot parameter (a.u.) 0.1 

View zenith angle (°) 0 

Azimuth angle (°) 0 
 

To retrieve LAI, we compared STAIR-derived surface reflectance (RSTAIR) with records in the canopy reflectance database 

simulated by PROSAIL (RPROSAIL) pixel by pixel. We used root mean square error (RMSE) as the cost function which was 

defined as: 245 

𝑅𝑀𝑆𝐸 ൌ ට
ଵ

௟
∑ ሾ𝑅ௌ்஺ூோሺλሻ െ 𝑅௉ோைௌ஺ூ௅ሺλሻሿଶ௟
஛ୀଵ , (5) 

where λ = 1,2, … l indicates band number and l = 6 for STAIR. Ideally, the simulated reflectance in the database yielding the 

smallest RMSE can be considered as the best simulation, and the corresponding LAI value can be considered as the solution 

for the satellite pixel. However, in reality the solution might not be unique, because different parameter combinations could 

derive similar reflectance simulations and errors in both satellite and model could further amplify this problem (Verrelst et 

al., 2018). For this reason, we chose top 10% small RMSE simulations in the database and considered the average of 250 

corresponding LAI values as the final solution. The threshold 10% was decided by evaluating LUT-retrieved LAI against 

field-measured LAI at three Mead sites, and it was within a reasonable range from top 50 records to top 20% records 

suggested by previous studies (Duan et al., 2014; Weiss et al., 2000). 

 

 255 

We further employed semi-empirical equations to calculate αVIS and αNIR (Liang, 2001) from STAIR-derived spectral 

reflectance in six Landsat bands:  

𝛼௏ூௌ ൌ 0.443𝜌஻ ൅ 0.317𝜌ீ ൅ 0.240𝜌ோ (6) 

𝛼ேூோ ൌ 0.693𝜌ே ൅ 0.212𝜌ௌௐଵ ൅ 0.116𝜌ௌௐଶ െ 0.003 (7) 

where ρSW2 is the surface reflectance at the second shortwave-infrared band. CI was set 0.75 for herbaceous and 0.70 for 

woody plants according to the global mean value of different plant functional types (He et al., 2012). For C3 crops/grasses, 

forests, and C4 crops/grasses, peak Vcmax25 values were set 180, 60 and 45, respectively (Kattge et al., 2009; Zhang et al., 260 
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2014). Ball-Berry slope and intercept are another two important parameters used in the stomatal conductance model, and 

their values were set 13.3 and 0.02 for C3 crops/grasses, 9.5 and 0.005 for forests, and 5.8 and 0.04 for C4 crops, 

respectively (Miner et al., 2017). Distributions of C3 and C4 crops were obtained from Crop Data Layer (CDL) data (Boryan 

et al., 2011).  

 265 

2.4 Evaluation of BESS-STAIR ET 

The BESS-STAIR ET estimations were evaluated against flux tower ET measurements in the U.S. Corn Belt. The U.S. Corn 

Belt (Figure 2) generally refers to  a region in the Midwestern United States that has dominated corn and soybean production 

in the United States (Green et al., 2018), which currently produces about 45% and 30% of the global corn and soybean, 

respectively (USDA, 2014). The region is characterized by relatively flat land, deep fertile soils, and a high soil organic 270 

matter (Green et al., 2018). Most part of the U.S. Corn Belt has favorable growing conditions of temperature and rainfall. A 

majority of the croplands in the U.S. Corn Belt are rainfed, with a small portion in the west part relying on irrigation. 

 

Figure 2. Study areas. Red dots indicate 12 flux tower sites scattered in six areas across the U.S. Corn Belt. The background 

map indicates the percent each state contribute to the total national corn and soybean plantation area (USDA, 2018). 275 

 

A total of 12 cropland sites scattered in six areas across the U.S. Corn Belt are registered in the AmeriFlux or FLUXNET 

network with publicly-available ET data (Figure 2 and Table 23). These sites include both corn only and corn/soybean 

rotation sites and both rainfed and irrigated sites, covering typical cropping patterns in the U.S Corn Belt. All of them were 

used in this study to ensure the representativeness of the validation for the precision agriculture applications in this region. 280 

For six sites: US-Bo1 (Meyers and Hollinger, 2004), US-Bo2 (Bernacchi et al., 2005), US-Br1 (Prueger et al., 2003), US-

Br3 (Prueger et al., 2003), US-Ro2 (Turner et al., 2016) and US-SFP (Wilson and Meyers, 2007), level 2 half-hourly data 
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were downloaded from the AmeriFlux website (http://ameriflux.lbl.gov/). For three sites: US-IB1 (Matamala et al., 2008), 

US-Ro1 (Griffis et al., 2010) and US-Ro3 (Griffis et al., 2010), standardized gap-filled level 4 daily mean data were 

downloaded from the Carbon Dioxide Information Analysis Center data archive website (https://mirrors.asun.co/climate-285 

mirror/cdiac.ornl.gov/pub/ameriflux/). For the other three sites (Suyker et al., 2004): US-Ne1, US-Ne2 and US-Ne3, 

standardized high-quality gap-filled daily mean data were downloaded from the FLUXNET2015 website 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). 

 

Table 23. Information of 12 flux tower sites used for validation. 290 

 

ID Site Location Latitude Longitude Plant Irrigation Years Source 

1 US-Bo1 Bondville, IL 40.0062 -88.2904 corn/soybean N 2000-2008 AmeriFlux L2 

2 US-Bo2 Bondville, IL 40.0090 -88.2900 corn/soybean N 2004-2006 AmeriFlux L2 

3 US-Br1 Brooks Field, IA 41.9749 -93.6906 corn/soybean N 2005-2011 AmeriFlux L2 

4 US-Br3 Brooks Field, IA 41.9747 -93.6936 corn/soybean N 2005-2011 AmeriFlux L2 

5 US-IB1 Fermilab, IL 41.8593 -88.2227 corn/soybean N 2005-2007 AmeriFlux L4 

6 US-Ne1 Mead, NE 41.1651 -96.4766 corn Y 2001-2012 FLUXNET2015 

7 US-Ne2 Mead, NE 41.1649 -96.4701 corn/soybean Y 2001-2012 FLUXNET2015 

8 US-Ne3 Mead, NE 41.1797 -96.4397 corn/soybean N 2001-2012 FLUXNET2015 

9 US-Ro1 Rosemount, MN 44.7143 -93.0898 corn/soybean N 2004-2006 AmeriFlux L4 

10 US-Ro2 Rosemount, MN 44.7288 -93.0888 corn/soybean/clover N 2008-2016 AmeriFlux L2 

11 US-Ro3 Rosemount, MN 44.7217 -93.0893 corn/soybean N 2004-2006 AmeriFlux L4 

12 US-SFP Sioux Falls, SD 43.2408 -96.9020 corn N 2007-2009 AmeriFlux L2 

 

By comparing with eddy covariance ET, we evaluated three ET estimations: BESS-STAIR with VIs-based LAI, BESS-

STAIR with RTM-based LAI, and BESS-STAIR with MODIS LAI. MODIS LAI refers to MCD15A3H 500m resolution 4-

day composite LAI product downloaded from https://lpdaac.usgs.gov/tools/data-pool/. Since eddy covariance technique used 295 

by flux towers provides water flux observations in term of latent heat (LE) rather than ET, evaluations were conducted by 

comparing BESS-STAIR daily LE estimates with flux tower measurements. At this point, water flux can be simply 

converted from energy unit (LE, MJ m-2 d-1) to water unit (ET mm d-1) by dividing latent heat of vaporization which is a 

function of daily temperature (Henderson-Sellers, 1984). Flux tower measurements usually have an irregular and dynamic 

footprint at scales from 100-m to 1-km (Fu et al., 2014), but for simplicity, only 30-m resolution BESS-STAIR pixels 300 

containing the flux tower were used for the direct comparison. With regard to flux towers, measurements data were directly 

used without energy closure adjustment. For AmeriFlux level 2 data, half-hourly data were averaged to daily LE ET only if 

no gaps exist during the day to avoid sampling bias caused by missing data. For AmeriFlux level 4 data and FLUXNET2015 

data, gap-filled daily LE ET were used directly. 

 305 



12 
 

3 Results  

3.1 Performance of STAIR LAI 

LAI is the key input of BESS. The accuracy of high-resolution LAI estimations determine the validity of high-resolution ET 

estimations. We evaluated VIs-based LAI and RTM-based LAI estimations derived from 30-m resolution STAIR fused 

surface reflectance data against field measurements. We also compared them with 500-m resolution MODIS LAI. Overall, 310 

STAIR-derived LAI agree well with measured LAI, with R2 > 0.85, RMSE < 0.8 and mean bias error (MBE) ≈ 0 (Figure 3). 

The RTM-based method which is calibration free yields same performance with VIs-based method which requires 

substantial field measurements to build empirical relationships. Misclassification of CDL data between corn and soybean is 

an important uncertainty source since both methods rely on crop types. During 2001 – 2007, 4 out of 21 site years (19%) 

over the three Mead sites were misclassified. By using the correct classification (not shown), the accuracy of LAI 315 

estimations reach R2 = 0.90 and RMSE = 0.62 for VIs-based method and R2 = 0.89 and RMSE = 0.68 for RTM-based 

method. By comparison, coarse-resolution MODIS LAI has relatively large errors, especially a negative bias (R2 = 0.55, 

RMSE = 1.68 and MBE = -0.97).  

 

 320 

Figure 3. Scatter plots between LAI measurements and LAI estimations. LAI measurements are destructively collected at 

three Mead sites. (a) – (b) STAIR-derived daily 30m-resolution LAI using VIs-based method and RTM-based method, 

respectively. (c) 500m-resolution MODIS LAI. 

 

3.2 Performance of BESS-STAIR ET 325 

BESS-STAIR daily LE ET estimations are in a highly aligned agreement with ground truth from the 12 flux-tower 

measurements (Figure 4). Across all of the 12 sites, BESS-STAIR LE ET with RTM-based LAI achieves an overall 

coefficient of determination (R2) of 0.75, root-mean-square error (RMSE) of 2.29 MJ m-2 d-1, relative error (E(|Xestimation-

Xmeasurement|)/E(Xmeasurement), RE) of 27.9%, and no overall bias. Figure 5 further exhibits its performance over all of the 12 

flux tower sites. R2 values range from 0.68 to 0.94 for corn, and 0.65 to 0.81 for soybean, highlighting the robustness of 330 
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BESS-STAIR ET in the U.S. Corn Belt. BESS-STAIR LE ET with VIs-based LAI has similar performance (R2 = 0.75, 

RMSE = 2.24 MJ m-2 d-1, and RE = 27.4%). Considering relatively small difference between BESS-STAIR using RTM-

based LAI and that using VIs-based LAI, only the former one which is calibration-free is demonstrated in the following parts 

of this paper. By comparison, BESS LE ET with MODIS LAI shows larger errors (R2 = 0.65, RMSE = 2.50 MJ m-2 d-1, and 

RE = 30.2%) comparing to BESS-STAIR.  335 

 

 

Figure 4. Density scatter plots between LE ET measurements and LE ET estimations. LE ET measurements are from eddy 

covariance data collected at 12 flux towers. (a) and (b) BESS-STAIR LEBESS-STAIR ET with VIs-based LAI and RTM-340 

based LAI, respectively. (c) 500m-BESS LE ET with MODIS LAI. 
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Figure 5. Site-by-site R2 between flux tower measured and BESS-STAIR estimated daily LE ET for corn and soybean, 

respectively. Crop type is from CDL data. 345 

 

Figure 6 shows the comparison between BESS-STAIR daily LEdaily ET estimations and flux tower measurements over site 

years with least data gaps in measurements. Across all of the 12 sites, BESS-STAIR well captures the seasonal 

characteristics of LEET observation from flux towers, as they exhibit generally consistent variations over the growing 

season. During the peak growing season (June, July and August), the radiation displays a dominant impact on measured 350 

daily LEdaily ET, and it is reasonably estimated by BESS-STAIR LEBESS-STAIR ET as well. In most cases, measured 

daily LEdaily ET do not show strong and fast response to precipitation and/or irrigation, possibly due to the plentiful water 

storage in soil. Two exceptions are US-IB1 (2006) and US-Ne3 (2012).  In case of US-IB1, no precipitation is available in 

August and little in July. As a result, daily LEdaily ET measurements drop slightly quicker in August than other cases. Such 

anomaly is also depicted by BESS-STAIR LEBESS-STAIR ET. In case of US-Ne3, the severe drought in 2012 summer 355 

causes much slightly lower LEET values than the two adjacent irrigation sites (US-Ne1 and US-Ne2). BESS-STAIR 

LEBESS-STAIR ET also captures this considerable reduction, although a slight bias is observed in July. Figure 7 further 

demonstrates that the seasonal cumulative ET at three Mead sites calculated for both the flux tower measurements and 

BESS-STAIR estimations overall agree well throughout the peak growing season (June – September). 
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Figure 6. Seasonal time series of flux tower measured and BESS-STAIR estimated daily LEdaily ET for 12 selected site 

years. Daily radiation and precipitation/irrigation are overlaid except for US-Br3. 

 

 365 

Figure 7. Seasonal time series of daily ET/PET derived from BESS-STAIR and flux tower for US-Ne1, US-Ne2, and NS-

Ne3 in 2012, along with measured daily mean soil water content (SWC).  

 

Figure 7 shows the comparison between BESS-STAIR ET/PET and flux tower ET/PET at three sites (US-Ne1, US-Ne2, and 

NS-Ne3) at Mead, Nebraska. Overall, BESS-STAIR agrees well with flux tower in both magnitude and seasonal cycle. 370 

Although 2012 is a severe drought year, soil water content (SWC) at the rainfed site US-Ne3 still shows a relatively high 

level (> 0.2). As a result, ET/PET from both BESS-STAIR and flux tower are at the same level with the adjacent two 

irrigated sites (US-Ne2 and US-Ne3).  
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Figure 7. Multi-year mean cumulative ET for flux tower measurements and BESS-STAIR estimations at three Mead sites 375 

from 2001 through 2012. 

 

3.3 Spatiotemporal variations of BESS-STAIR ET 

 



19 
 

380 

 

Figure 8. Daily LEDaily ET (MJ m-2 d-1) derived from (a) BESS-STAIR and (b) BESS-MODIS at Mead (41.1°N – 41.2°N, 

96.4°W – 96.5°W) on August 1, 2012. Circles indicate flux towers in this region. 

 

BESS-STAIR daily ET demonstrates prominent spatial variations within the 0.1° × 0.1° area near the Mead site in Nebraska 385 

(Figure 8). Because of the impact of drought, central pivot irrigated fields characterized by round-shaped plots generally 

display higher values than surrounding croplands, and croplands have much higher values than grasslands. Variabilities of 

ET between different crop fields and within individual crop fields are also observable. Such variabilities might be attributed 

to different irrigation strategies, varieties and/or other management. By comparison, though 500m-resoultuion BESS-

MODIS ET is able to capture the general spatial pattern, it has many mixed pixels and is unable to demonstrate gradients 390 

across field boundaries.  
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Figure 9. Monthly mean BESS-STAIR ET at Brooks Field (41.9°N – 42.0°N, 96.65°W – 96.75°W) during the growing 395 

season of 2000, along with a CDL land cover map. The last subplot shows the average time series of corn, soybean and 

grass. Circles indicate flux towers in this region. 

 

Reasonable seasonal cycles for different land cover types are revealed by BESS-STAIR monthly ET averaged from gap-free 

daily estimations. An example time series of monthly ET maps at Brooks Field during the growing season of 2000 is shown 400 

in Figure 9. BESS-STAIR ET clearly captures the temporal dynamics throughout the growing season. All vegetation show 

low values (e.g., < 2 mm d-1) in April, May, September and October, but high values in June, July and August (JJA), with 

their peaks in July. Different seasonal cycles for corn, soybean and grass are also captured. Grass has the highest ET among 
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the three vegetation types from April through June. Corn has higher ET than soybean in June and July, and decreases quickly 

since August. Soybean has the lowest ET from April through June, but has the highest ET in August. 405 
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Figure 10. Peak growing season (June, July and August)Monthly mean BESS-STAIR ET/PET in July at Rosemount 

Bondville (4439.6595°N – 4440.7505°N, 9388.0525°W – 9388.1535°W) from 2004 2001 throughout 2017, along with a two 410 

scatter plots between regional-averaged monthly meanpeak growing season precipitation and ET/PET and peak growing 

season VPD and ET/PET in July over the 14 17 years. Monthly precipitation maps are from PRISM 

(http://www.prism.oregonstate.edu/historical/)Precipitation and VPD data are from Daily Surface Weather Data (Daymet) at 

Illinois Bondville (https://modis.ornl.gov/cgi-bin/sites/site/?id=us_illinois_bondville&product=Daymet), where VPD is 

derived using maximum air temperature. and water vapor pressure. Circles indicate flux towers in this region. 415 

 

BESS-STAIR is also able to produce long-term ET/PET estimation as an indicator of droughts due to its high computational 

efficiency. Figure 10 shows an example time series of peak growing season ET/PET at Bondville from 2001 through 

2017.monthly ET in July at Rosemount from 2004 throughout 2017. Overall substantial The interannual variability is shown, 

with regional average ET/PET values ranging from the 0.76 in an extremely dry year 2012 to 0.91 in an extremely wet year 420 
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2015. observable, although much smaller than seasonal variability (Figure 10). In this case, time-series of A positive linear 

relationship (r = 0.42, p < 0.1) is observed between BESS-STAIR ET/PET and precipitation, and a negative linear 

relationship (r = -0.58, p < 0.05) is observed between BESS-STAIR ET/PET and VPD. The relative stronger relationship 

between ET/PET and VPD than that between ET/PET and precipitation indicates atmospheric water demand is likely to 

contribute more to drought than soil water supply in this area. is in line with that of precipitation, as indicated by a 425 

significant linear correlation r = 0.73 (p < 0.005). It is also noted that ET is relatively steady given the high interannual 

variation in precipitation, and BESS-STAIR enables the investigation of such response at field scales. 

 

4 Discussions  

4.1 Performance of BESS-STAIR ET 430 

In this study, we have presented BESS-STAIR, a new framework for estimating croplands ET at field and daily scale, and 

we have demonstrated its high performance in the U.S. Corn Belt. The process-based biophysical model BESS, driven by 

30-m resolution vegetation-related variables derived from STAIR fused surface spectral reflectance data (Figure 3) and 

medium resolution environmental inputs derived from MODIS and other satellite data (Figure 1), is able to produce gap-free 

ET and PET estimations on field-scale and at daily interval across space and time (Figure 4-7). Over the 12 sites across the 435 

U.S. Corn Belt (Figure 2), BESS-STAIR explains 75% variations in flux tower measured daily LEdaily ET (Figure 4), with 

an overall RMSE of 2.29 MJ m-2 d-1 (equivalent to 0.93 mm d-1 or 26 W m-2), a 27.9% relative error, and stable performance 

across sties (Figure 5), as well as consistent seasonal dynamics with respect to flux tower measurements (Figure 6-7). 

 

The error statistics of BESS-STAIR are commensurate with previous high resolution croplands ET mapping studies. Typical 440 

RMSE values include 25 W m-2 by TSEB-DTD (Guzinski et al., 2014), 35 W m-2 by METRIC (Irmak et al., 2011), 62 W m-2 

by SEBS (McCabe and Wood, 2006), 0.60 mm d-1 by SSEBop (Senay et al., 2016), and 1.04 mm d-1 by SEBAL (Singh et 

al., 2008). Nevertheless, it is worth mentioning that those studies used original Landsat data and therefore suffered from 

considerably large data gaps. In contrast, BESS-STAIR uses daily Landsat-MODIS fusion data free from any gaps, which 

leads to temporally continuous ET estimation at the field level, thus can meet the requirements of precision agriculture. In 445 

addition, it is worth mentioning that BESS-STAIR is calibration-free and therefore is scalable. It also indicates that the 

accuracy of BESS-STAIR ET is likely to further improve by using locally optimized driving force or parameter values. 

 

BESS-STAIR is also comparable to other croplands ET mapping studies utilizing data fusion techniques. For example, 

DisALEXI-STARFM daily ET estimates were validated against the flux tower measurements over the three Mead sites 450 

(Yang et al., 2018). They reported error statistics around 1.2 mm d-1 RMSE and 29% relative error. BESS-STAIR’s 

performance at these three same sites shows an average of 0.89 mm d-1 RMSE and 25.3% relative error (Figure 11). At 

monthly scale, the average RMSE and relative errors are only 0.48 mm d-1 and 14.3% (Figure A1). In addition, BESS-STAIR 

Formatted: English (United States)



25 
 

has a potential to apply to any croplands around the world back to 1984 when both high spatial resolution data (e.g., 

Landsat/TM) and high temporal resolution data (e.g., NOAA/AVHRR) were available. 455 

 

 

Figure 11. Scatter plots between LEET measurements and LEET estimations at three sites US-Ne1, US-Ne2 and US-Ne3. 

 

 460 

4.2 Scientific advantages of BESS-STAIR ET 

The efficacy of BESS-STAIR lies in several aspects. First, BESS is a water-carbon-energy coupled biophysical model. 

BESS employs atmospheric and canopy radiative transfer modules, carbon assimilation module, stomatal conductance 

module, and energy balance module (Jiang and Ryu, 2016; Ryu et al., 2011). BESS integrates the simulation of carbon cycle, 

water cycle and energy cycle in the same framework. Such carbon-water-energy coupling strategy realistically and 465 

coherently simulates plant physiology and their response to the environment, specifically the  carbon uptake and water loss 

by plants have been simulated synchronously through environmental constraints on stomatal conductance, with further 

constraints by available energy (Baldocchi and Meyers, 1998; Leuning et al., 1995). Many land surface models have already 

adopted such strategy and have successfully  simulated the evolution of terrestrial ecosystems (Ju et al., 2006; Sellers, 1997; 

Tian et al., 2010). However, this is not the case in commonly-used remote sensing models. Empirical methods, water balance 470 

methods, and Priestley–Taylor methods only focus on the water cycle. Energy balance methods, triangular space methods, 

and Penman–Monteith methods couple water cycle and energy cycle and consider ET in the context of energy partitioning. 

BESS, unlike these remote sensing models, constrains ET with regards to both energy requirement and carbon requirement, 

thanks to explicit modeling of radiative transfer and stomatal behavior processes. For above reasons, BESS-STAIR ET does 

not only achieve high accuracy (Figure A1 – A3), but also accurately capture responses to GPP, radiation, temperature, and 475 

humidity at daily scale (Table 34). Thus, BESS-STAIR has the potential to advance the understanding of crop responses to 

climate change through bridging remote sensing data and land surface models, which was first suggested by Sellers et al. 

(1997) more than 20 years ago. 
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Table 34. BESS-STAIR captures the correct response of daily LEdaily ET to GPP, radiation (Rg), temperature (Ta) and 480 

humidity (VPD) as compared to flux tower measurements over the three Mead sites from 2001 through 2012. The linear 

equation slopes and correlation coefficients between LEET and other factors are similar in flux tower measurements and 

BESS-STAIR estimations, for both the whole growing season (April – October) or only peak growing season (June, July and 

August). For “flux tower” columns, Rg, Ta and VPD are from site measurements, while for “BESS-STAIR” columns, they 

are from satellite-derived coarse resolution inputs. 485 

Time period Relationship 
Flux tower BESS-STAIR 

Equation Correlation Equation Correlation 

Growing  
season 

(April –  
October) 

LEET (MJ m-2 d-1) ~ GPP (gC m-2 d-1) y = 0.44x + 3.19 r = 0.86 (p < 0.01) y = 0.65x + 2.60 r = 0.90 (p < 0.01) 

LEET (MJ m-2 d-1) ~ Rg (MJ m-2 d-1) y = 0.33x - 0.07 r = 0.56 (p < 0.01) y = 0.29x + 0.28 r = 0.51 (p < 0.01) 

LEET (MJ m-2 d-1) ~ Ta (°C) y = 0.44x - 1.60 r = 0.67 (p < 0.01) y = 0.43x - 1.64 r = 0.54 (p < 0.01) 

LEET (MJ m-2 d-1) ~ VPD (hPa) y = 0.32x + 4.10 r = 0.31 (p < 0.01) y = 0.44x - 2.50 r = 0.68 (p < 0.01) 

JJA 
(June,  
July,  

August) 

LEET (MJ m-2 d-1) ~ GPP (gC m-2 d-1) y = 0.35x + 4.85 r = 0.76 (p < 0.01) y = 0.39x + 6.36 r = 0.63 (p < 0.01) 

LEET (MJ m-2 d-1) ~ Rg (MJ m-2 d-1) y = 0.36x + 1.79 r = 0.58 (p < 0.01) y = 0.36x + 3.40 r = 0.77 (p < 0.01) 

LEET (MJ m-2 d-1) ~ Ta (°C) y = 0.52x - 2.20 r = 0.46 (p < 0.01) y = 0.15x + 9.40 r = 0.28 (p < 0.01) 

LEET (MJ m-2 d-1) ~ VPD (hPa) y = 0.28x + 7.61 r = 0.32 (p < 0.001) y = 0.28x + 4.37 r = 0.30 (p < 0.001) 

 

The second strength is that BESS-STAIR is designed most sensitive to the variables which can be well-quantified from 

remote sensing data. BESS ET is most sensitive to solar radiation, followed by LAI (Ryu et al., 2011), as BESS ET is mainly 

constrained by net radiation and GPP. In most cases, solar radiation is the predominant component of net radiation, while 

LAI determines the capacity of radiation absorption and subsequently determines GPP. BESS explicitly computes radiation 490 

components in high accuracy by driving an atmosphere radiative transfer model FLiES using MODIS cloud, aerosol and 

atmospheric profile products. Globally, BESS-estimated solar radiation has its R2 about 0.85 and 0.95 for MODIS snapshots 

and 4-day averages, respectively (Ryu et al., 2018). On the other hand, BESS-STAIR calculates high spatiotemporal 

resolution LAI and albedo from fused surface reflectance data. Since Landsat and MODIS surface reflectance products are 

publicly-available and highly-reliable (Claverie et al., 2015; Masek et al., 2006), spatial heterogeneity and temporal 495 

dynamics of crop growing conditions are well captured (Figure 8). This study only uses reflectance data fused from Landsat 

and MODIS, but STAIR can be easily extended to further incorporate other types of data, such as Sentinel-2 (10 m 

resolution) and Planet Lab CubeSats (3 m resolution) (McCabe et al., 2017). By incorporating more high resolution 

observations, the relevance of reconstructed high resolution image series can be further improved.  

 500 

The third strength is that BESS-STAIR is able to perform under all-weather conditions. BESS-STAIR fills data gaps in 

surface reflectance, which has a smooth day-to-day variation even with changes in sky conditions (Liu et al., 2017). Based 

on filtered surface reflectance, LAI and albedo time series are well-reconstructed, and subsequently BESS-STAIR could 
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directly work under all-weather condition. In this manner, BESS-STAIR has no need to fill cloudy-sky ET using clear-sky 

ET estimations, which is error prone because the empirically-filled ET estimations usually lack sophisticated process-level 505 

model constraints and thus can have large uncertainties. Figure 12 shows that the estimation errors of BESS-STAIR ET do 

not change significantly under different sky conditions, with low to high “sky clearness index” referring more cloudy to 

more clear sky conditions. 

 

 510 

Figure 12. BESS-STAIR estimated daily LEdaily ET has similar performance with varying sky clearness index (the ratio of 

incoming radiation on surface to that on top-of-atmosphere). The lower and upper boundaries of boxes refer to the first and 

third quartile of error statistics. The bars inside boxes refer to median values. The whiskers indicate 1.5 times of distance 

between the first and third quartiles. 

 515 

4.3 Limitations and future improvements of BESS-STAIR ET 

In this study, several inputs used by BESS have some limitations in terms of generality and accessibility. First, three plant 

functional parameters, peak Vcmax25, Ball-Barry slope and intercept are obtained from literatures, assuming constant given C3 

or C4 plant type. Other land surface models tend to use the similar strategy by assigning fixed values to a given plant 

functional type (PFT)  (Bonan et al., 2011; Kattge et al., 2009; Miner et al., 2017). The drawback of this strategy is the 520 

overlook of within-PFT variations and the feedback mechanisms between vegetation and its environment (Van Bodegom et 

al., 2014). These limitations might be mitigated by incorporating innovative leaf trait estimation techniques emerged in 

recent years, such as imaging spectroscopy (Serbin et al., 2015), sun-induced fluorescence (Zhang et al., 2018), and plant 

optimization theory (Walker et al., 2017; Wang et al., 2017). Second, BESS-STAIR in this study uses CDL data which is 

only available in United States. Fortunately, BESS does not require specific crop types but only C3/C4 distributions, and the 525 

separation of the major C4 crop maize from other crops is practical using time-series satellite data (Cai et al., 2018; Zhong et 
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al., 2016). It is noted that misclassification of C4 and C4 crops are likely to cause large bias in GPP, but relatively small bias 

in ET (Fig. A1 – A3). 

 

Though BESS-STAIR is able to capture water stress impact on ET in the U.S. Corn Belt where atmospheric demands play a 530 

major role, its applicability to regions where soil supply dominates needs further investigation. Some studies suggest that 

optical signal as an indicator of drought performs at a longer time scale than thermal signal does (Otkin et al., 2017). 

Drought first decreases soil moisture content due to enhanced ET induced by high atmospheric demand, then decreases ET 

due to low soil moisture content, and finally causes damage to plants which changes surface reflectance. Accordingly, LAI 

may not serve as a relevant early warning of droughts. Furthermore, severe soil moisture stress may cause physiological 535 

deterioration in addition to structural damage that has been reflected in LAI. To address this issues for dry regions, we 

acknowledge that LST observations may provide essential adding values. At this point, the capacity of BESS-STAIR in 

estimating LST leads to a possibility of optimizing BESS-STAIR using satellite-derived LST. Recent advances of innovative 

thermal observation platforms such as ECOSTRESS (Hulley et al., 2017), GOES-R (Schmit et al., 2017), and Sentinel-3 

(Zheng et al., 2019) have provide great opportunity to integrate satellite-derived LST with the BESS-STAIR.  540 

 

The BESS model itself in essence estimates instantaneous ET. The ratio of snapshot potential solar radiation to daily 

potential solar radiation is adopted as a scaling factor for the temporal upscaling of ET (Ryu et al., 2012). In this study, 

BESS runs two times per day, utilizing radiation components derived from Terra/MODIS (around 11:00 AM) and 

Aqua/MODIS (around 1:00 PM) data, respectively. The two instantaneous ET estimates are separately upscaled to daily 545 

estimates and averaged. In spite of robustness of the upscaling algorithm (Ryu et al., 2012), bias cannot be avoided if the sky 

conditions at two overpass times are not representative for that day, which is natural and common in the presence of moving 

cloud. Since BESS is a time-independent model and can perform at any time during daytime, adding more snapshots to 

account for the diurnal variations of radiation can solve this problem. Unfortunately, fine-resolution polar-orbiting satellite 

usually have similar overpass times (10:00 AM – 11:00 AM and 1:00 PM – 2:00 PM), so even adding more satellites is 550 

likely to bring redundant information only. Reanalysis radiation data covering diurnal cycle have limited accuracy and 

coarse resolution (Babst et al., 2008; Zhang et al., 2016b), so they may be unable to provide much added values as well. 

Next-generation geostationary satellites, acquiring data with both high spatial and high temporal resolutions such as GOES-

R and GaoFen-4 (Goodman et al., 2012; Xu et al., 2017), are expected to enable BESS-STAIR ET in hourly or sub-hourly 

interval and subsequently generate more realistic daily ET estimates. 555 

 

5 Conclusions  

In this study we presented BESS-STAIR, a new framework to estimate high spatiotemporal resolution ET that can be used 

for field-level precision water resources management. BESS-STAIR couples a satellite-driven water-energy-carbon coupled 

biophysical model BESS with a generic and fully-automated fusion algorithm STAIR to generate gap-free 30-m resolution 560 
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daily ET estimations. Comprehensive evaluation of BESS-STAIR ET estimations revealed: 1) reliable performance over 12 

flux tower sites across the U.S. Corn Belt, and 2) reasonable spatial patterns, seasonal cycles and interannual dynamics. The 

proposed BESS-STAIR framework has demonstrated its ability to provide significant advancements with regard to daily 

field-level estimations of ET at regional and decadal scales. We expect BESS-STAIR to become a solid tool for precision 

water resources management and other precision agriculture applications for the U.S. Corn Belt as well as other agricultural 565 

areas around the world, thanks to the global coverage of input data. 
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Appendix  

 

Appendix 1. Key equations for energy balance in BESS. Subsript i represents sunlit or shaded canopy. 
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Canopy conductance Gc,i for sunlit/shade canopy is calculated as (Ball, 1988): 595 

𝐺𝑐,𝑖 ൌ 𝑚
𝑅𝐻
𝐶𝑎

𝐴𝑐,𝑖 ൅ 𝑏 (A1) 

where m and b are Ball-Berry coefficients, RH is relative humidityf, Ca is ambient CO2 concentration, Ac,j is carbon 

assimilation by sunlit/shaded canopy.  

Canopy net radiation Rn for sunlit/shade canopy is calculated as (Kowalczyk et al., 2006): 

𝑅௡,௜ ൌ 𝑄ௌ,௜ ൅ 𝑄௅,௜ െ 𝑐௣𝐺௥൫𝑇௙,௜ െ 𝑇௔൯ (A2) 

where Qs,i and QL,i are net shortwave and longwave radiation for sunlit/shaded canopy, Tf,i is leaf temperature for 

sunlit/shaded canopy, Ta is air temperature, cp is specific heat, Gr is canopy conductance for radiation: 600 

𝐺௥ ൌ 4𝜎𝜖௙𝑇௔ଷ/𝑐௣ (A3) 

At this point, Ac,j is calculated by the Farquhar photosynthesis model for C3 (Collatz et al., 1991) and C4 (Collatz et al., 1992) 

crops, Qs,i and QL,i are calculated by radiative transfer models for shortwave (Ryu et al., 2011) and longwave (Kowalczyk et 

al., 2006), respectively. Tf,i is solved through an iterative procedure (Jiang and Ryu, 2016). Subsequently, latent heat flux ƛEi 

for sunlit/shaded canopy is calculated by the quadratic form of the Penman-Monteith equation : 

𝑎𝜆𝐸௜
ଶ ൅ 𝑏𝜆𝐸௜ ൅ 𝑐 ൌ 0 (A4) 

where ƛ is latent heat of vaporization, and  605 

𝑎 ൌ
1
2
dଶ𝑒௦ሺ𝑇௔ሻ

d𝑇௔ଶ
𝑟௔ଶ

𝜌𝐶௣𝛾൫𝑟௔ ൅ 𝑟௖,௜൯
 (A5) 

𝑏 ൌ െ1 െ
d𝑒௦ሺ𝑇௔ሻ

d𝑇௔

𝑟௔
𝛾൫𝑟௔ ൅ 𝑟௖,௜൯

െ
dଶ𝑒௦ሺ𝑇௔ሻ

d𝑇௔ଶ
𝑅௡,௜𝑟௔ଶ

𝜌𝐶௣𝛾൫𝑟௔ ൅ 𝑟௖,௜൯
 (A6) 

𝑐 ൌ
𝜌𝐶௣

𝛾൫𝑟௔ ൅ 𝑟௖,௜൯
𝐷 ൅

d𝑒௦ሺ𝑇௔ሻ

d𝑇௔

𝑟௔
𝛾൫𝑟௔ ൅ 𝑟௖,௜൯

𝑅௡ ൅ 𝑎𝑅௡,௜
ଶ  (A7) 

where es(Ta) is saturated vapour pressure, ra is aerodynamic resistance, ρ is air density, γ is psychrometric constant, D is 

vapour pressure defecit, rc,i is canopy resistance, the reciprocal of Gc,i. 

Soil evaporation is calculated as (Fisher et al., 2008): 

𝜆𝐸𝑖 ൌ

d𝑒𝑠ሺ𝑇𝑎ሻ
d𝑇𝑎

d𝑒𝑠ሺ𝑇𝑎ሻ
d𝑇𝑎

൅ 𝛾
൫𝑅𝑛,𝑠𝑜𝑖𝑙 െ 𝐺൯𝑅𝐻𝐷/1000 (A8) 

where Rn,soil is net radiation for soil, and G is ground heat storage calculated as 0.3 × Rn,soil.  

 610 
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Figure A1. Time series of monthly mean LEET from flux tower measurements and BESS-STAIR estimations. 

 

 
Figure A2. Time series of monthly mean GPP from flux tower measurements and BESS-STAIR estimations. Significant 615 

underestimations in 2003 and 2011 for Ne1, in 2005 for Ne2, and in 2005 for Ne3 are due to misclassification of corn as 

soybean in CDL. Significant overestimations in 2006 for Ne2 are due to misclassification of soybean as corn in CDL. 

 



32 
 

 
Figure A3. Time series of monthly mean Rn from flux tower measurements and BESS-STAIR estimations. 620 

 

 

Figure A4. Examples of daily GPP (GC m-2 d-1) derived from BESS-STAIR at Rosemount (44.65°N – 44.75°N, 93.05°W – 

93.15°W) in 2017. Circles indicate flux towers in this region. 
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