Articles | Volume 24, issue 3
https://doi.org/10.5194/hess-24-1251-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-1251-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
BESS-STAIR: a framework to estimate daily, 30 m, and all-weather crop evapotranspiration using multi-source satellite data for the US Corn Belt
College of Agricultural, Consumer and Environmental Sciences,
University of Illinois at Urbana Champaign, Urbana, Illinois, USA
Center for Advanced Bioenergy and Bioproducts Innovation, University
of Illinois at Urbana Champaign, Urbana, Illinois, USA
Kaiyu Guan
CORRESPONDING AUTHOR
College of Agricultural, Consumer and Environmental Sciences,
University of Illinois at Urbana Champaign, Urbana, Illinois, USA
Center for Advanced Bioenergy and Bioproducts Innovation, University
of Illinois at Urbana Champaign, Urbana, Illinois, USA
National Center of Supercomputing Applications, University of Illinois
at Urbana Champaign, Urbana, Illinois, USA
Ming Pan
Department of Civil and Environmental Engineering, Princeton
University, New Jersey, USA
Youngryel Ryu
Department of Landscape Architecture and Rural Systems Engineering,
Seoul National University, Seoul, Republic of Korea
Bin Peng
College of Agricultural, Consumer and Environmental Sciences,
University of Illinois at Urbana Champaign, Urbana, Illinois, USA
National Center of Supercomputing Applications, University of Illinois
at Urbana Champaign, Urbana, Illinois, USA
Sibo Wang
National Center of Supercomputing Applications, University of Illinois
at Urbana Champaign, Urbana, Illinois, USA
Related authors
Chongya Jiang, Kaiyu Guan, Genghong Wu, Bin Peng, and Sheng Wang
Earth Syst. Sci. Data, 13, 281–298, https://doi.org/10.5194/essd-13-281-2021, https://doi.org/10.5194/essd-13-281-2021, 2021
Short summary
Short summary
Photosynthesis, quantified by gross primary production (GPP), is a key Earth system process. To date, there is a lack of a high-spatiotemporal-resolution, real-time and observation-based GPP dataset. This work addresses this gap by developing a SatelLite Only Photosynthesis Estimation (SLOPE) model and generating a new GPP product, which is advanced in spatial and temporal resolutions, instantaneity, and quantitative uncertainty. The dataset will benefit a range of research and applications.
Bo Qu, Alexandre Roy, Joe R. Melton, Jennifer L. Baltzer, Youngryel Ryu, Matteo Detto, and Oliver Sonnentag
EGUsphere, https://doi.org/10.5194/egusphere-2023-1167, https://doi.org/10.5194/egusphere-2023-1167, 2023
Preprint archived
Short summary
Short summary
Accurately simulating photosynthesis and evapotranspiration challenges terrestrial biosphere models across North America’s boreal biome, in part due to uncertain representation of the maximum rate of photosynthetic carboxylation (Vcmax). This study used forest stand scale observations in an optimization framework to improve Vcmax values for representative vegetation types. Several stand characteristics well explained spatial Vcmax variability and were useful to improve boreal forest modelling.
Licheng Liu, Shaoming Xu, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, Matthew D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar, and Zhenong Jin
Geosci. Model Dev., 15, 2839–2858, https://doi.org/10.5194/gmd-15-2839-2022, https://doi.org/10.5194/gmd-15-2839-2022, 2022
Short summary
Short summary
By incorporating the domain knowledge into a machine learning model, KGML-ag overcomes the well-known limitations of process-based models due to insufficient representations and constraints, and unlocks the “black box” of machine learning models. Therefore, KGML-ag can outperform existing approaches on capturing the hot moment and complex dynamics of N2O flux. This study will be a critical reference for the new generation of modeling paradigm for biogeochemistry and other geoscience processes.
Dong-Gill Kim, Ben Bond-Lamberty, Youngryel Ryu, Bumsuk Seo, and Dario Papale
Biogeosciences, 19, 1435–1450, https://doi.org/10.5194/bg-19-1435-2022, https://doi.org/10.5194/bg-19-1435-2022, 2022
Short summary
Short summary
As carbon (C) and greenhouse gas (GHG) research has adopted appropriate technology and approach (AT&A), low-cost instruments, open-source software, and participatory research and their results were well accepted by scientific communities. In terms of cost, feasibility, and performance, the integration of low-cost and low-technology, participatory and networking-based research approaches can be AT&A for enhancing C and GHG research in developing countries.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Dong-Gill Kim, Ben Bond-Lamberty, Youngryel Ryu, Bumsuk Seo, and Dario Papale
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-85, https://doi.org/10.5194/bg-2021-85, 2021
Manuscript not accepted for further review
Short summary
Short summary
While greenhouse gas (GHG) research has adopted highly advanced technology some have adopted appropriate technology and approach (AT&A) such as low-cost instrument, open source software and participatory research and their results were well accepted by scientific communities. In terms of cost, feasibility and performance, integration of low-cost and low-technology, participatory and networking based research approaches can be AT&A for enhancing GHG research in developing countries.
Chongya Jiang, Kaiyu Guan, Genghong Wu, Bin Peng, and Sheng Wang
Earth Syst. Sci. Data, 13, 281–298, https://doi.org/10.5194/essd-13-281-2021, https://doi.org/10.5194/essd-13-281-2021, 2021
Short summary
Short summary
Photosynthesis, quantified by gross primary production (GPP), is a key Earth system process. To date, there is a lack of a high-spatiotemporal-resolution, real-time and observation-based GPP dataset. This work addresses this gap by developing a SatelLite Only Photosynthesis Estimation (SLOPE) model and generating a new GPP product, which is advanced in spatial and temporal resolutions, instantaneity, and quantitative uncertainty. The dataset will benefit a range of research and applications.
Rhys Whitley, Jason Beringer, Lindsay B. Hutley, Gabriel Abramowitz, Martin G. De Kauwe, Bradley Evans, Vanessa Haverd, Longhui Li, Caitlin Moore, Youngryel Ryu, Simon Scheiter, Stanislaus J. Schymanski, Benjamin Smith, Ying-Ping Wang, Mathew Williams, and Qiang Yu
Biogeosciences, 14, 4711–4732, https://doi.org/10.5194/bg-14-4711-2017, https://doi.org/10.5194/bg-14-4711-2017, 2017
Short summary
Short summary
This paper attempts to review some of the current challenges faced by the modelling community in simulating the behaviour of savanna ecosystems. We provide a particular focus on three dynamic processes (phenology, root-water access, and fire) that are characteristic of savannas, which we believe are not adequately represented in current-generation terrestrial biosphere models. We highlight reasons for these misrepresentations, possible solutions and a future direction for research in this area.
Related subject area
Subject: Biogeochemical processes | Techniques and Approaches: Remote Sensing and GIS
Accurate LAI retrieval method based on PROBA/CHRIS data
W. J. Fan, X. R. Xu, X. C. Liu, B. Y. Yan, and Y. K. Cui
Hydrol. Earth Syst. Sci., 14, 1499–1507, https://doi.org/10.5194/hess-14-1499-2010, https://doi.org/10.5194/hess-14-1499-2010, 2010
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration-Guidelines for computing crop water requirements-FAO
Irrigation and drainage paper 56, Italy, Rome, available at:
https://s3.amazonaws.com/academia.edu.documents/40878584/Allen_FAO1998.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1527634764&Signature=GkL44Ekv1zkaqSV04%2F4EwT99LEk%3D&response-content-disposition=inline%3Bfilename%3DAllen_FAO1998.pdf (last access: 11 March 2020), 1998.
Anderson, M., Gao, F., Knipper, K., Hain, C., Dulaney, W., Baldocchi, D.,
Eichelmann, E., Hemes, K., Yang, Y., Medellin-Azuara, J., and Kustas, W.:
Field-Scale Assessment of Land and Water Use Change over the California
Delta Using Remote Sensing, Remote Sens., 10, 889, https://doi.org/10.3390/rs10060889,
2018.
Anderson, M. C., Norman, J. M., Diak, G. R., and Mecikalski, J. R.: A
Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal
Infrared Remote Sensing, Remote Sens. Environ., 60, 195–216, 1997.
Babst, F., Mueller, R. W., and Hollmann, R.: Verification of NCEP reanalysis
shortwave radiation with mesoscale remote sensing data, IEEE Geosci. Remote
S., 5, 34–37, https://doi.org/10.1109/LGRS.2007.907537, 2008.
Bacour, C., Jacquemoud, S., Tourbier, Y., Dechambre, M., and Frangi, J.:
Design and analysis of numerical experiments to compare four canopy
reflectance models, Remote Sens. Environ., 79, 72–83, 2002.
Baldocchi, D. and Meyers, T.: On using eco-physiological,
micrometeorological and biogeochemical theory to evaluate carbon dioxide,
water vapor and trace gas fluxes over vegetation: A perspective, Agr. Forest
Meteorol., 90, 1–25, https://doi.org/10.1016/S0168-1923(97)00072-5, 1998.
Baldocchi, D., Dralle, D., Jiang, C., and Ryu, Y.: How Much Water is
Evaporated Across California?: A Multi-Year Assessment Using a Biophysical
Model Forced with Satellite Remote Sensing Data, Water Resour. Res., 55,
2722–2741, https://doi.org/10.1029/2018WR023884, 2019.
Ball, J. T.: An analysis of stomata conductance, Stanford University, Stanford, 1988.
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A Model Predicting Stomatal
Conductance and its Contribution to the Control of Photosynthesis under
Different Environmental Conditions, in Progress in Photosynthesis Research,
Springer Netherlands, Dordrecht, 221–224, 1987.
Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M.,
Berthelot, B., Niño, F., Weiss, M., Samain, O., Roujean, J. L., and
Leroy, M.: LAI, fAPAR and fCover CYCLOPES global products derived from
VEGETATION. Part 1: Principles of the algorithm, Remote Sens. Environ., 110,
275–286, https://doi.org/10.1016/j.rse.2007.02.018, 2007.
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS cloud-top property refinements for collection 6, J. Appl. Meteorol. Clim., 51, 1145–1163, https://doi.org/10.1175/JAMC-D-11-0203.1, 2012.
Bernacchi, C. J., Hollinger, S. E., and Meyers, T.: The conversion of the
corn/soybean ecosystem to no-till agriculture may result in a carbon sink,
Glob. Change Biol., 11, 1867–1872,
https://doi.org/10.1111/j.1365-2486.2005.01050.x, 2005.
Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M.,
Reichstein, M., Lawrence, D. M., and Swenson, S. C.: Improving canopy
processes in the Community Land Model version 4 (CLM4) using global flux
fields empirically inferred from FLUXNET data, J. Geophys. Res., 116,
G02014, https://doi.org/10.1029/2010JG001593, 2011.
Boryan, C., Yang, Z., Mueller, R., and Craig, M.: Monitoring US agriculture:
The US department of agriculture, national agricultural statistics service,
cropland data layer program, Geocarto Int., 26, 341–358,
https://doi.org/10.1080/10106049.2011.562309, 2011.
Brown, J. F. and Pervez, M. S.: Merging remote sensing data and national
agricultural statistics to model change in irrigated agriculture, Agr.
Syst., 127, 28–40, https://doi.org/10.1016/j.agsy.2014.01.004, 2014.
Cai, Y., Guan, K., Peng, J., Wang, S., Seifert, C., Wardlow, B., and Li, Z.:
A high-performance and in-season classification system of field-level crop
types using time-series Landsat data and a machine learning approach, Remote
Sens. Environ., 210, 35–47, https://doi.org/10.1016/j.rse.2018.02.045, 2018.
Cammalleri, C., Anderson, M. C., Gao, F., Hain, C. R., and Kustas, W. P.: A
data fusion approach for mapping daily evapotranspiration at field scale,
Water Resour. Res., 49, 4672–4686, https://doi.org/10.1002/wrcr.20349, 2013.
Claverie, M., Vermote, E. F., Franch, B., and Masek, J. G.: Evaluation of the
Landsat-5 TM and Landsat-7 ETM+ surface reflectance products, Remote Sens.
Environ., 169, 390–403, https://doi.org/10.1016/j.rse.2015.08.030, 2015.
Collatz, G., Ribas-Carbo, M., and Berry, J.: Coupled Photosynthesis-Stomatal
Conductance Model for Leaves of C 4 Plants, Aust. J. Plant Physiol., 19, 519–538, https://doi.org/10.1071/PP9920519, 1992.
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and
environmental regulation of stomatal conductance, photosynthesis and
transpiration: a model that includes a laminar boundary layer, Agr. Forest
Meteorol., 54, 107–136, https://doi.org/10.1016/0168-1923(91)90002-8, 1991.
Darvishzadeh, R., Skidmore, A., Schlerf, M., and Atzberger, C.: Inversion of
a radiative transfer model for estimating vegetation LAI and chlorophyll in
a heterogeneous grassland, Remote Sens. Environ., 112, 2592–2604,
https://doi.org/10.1016/j.rse.2007.12.003, 2008.
De Pury, D. G. G. and Farquhar, G. D.: Simple scaling of photosynthesis from
leaves to canopies without the errors of big-leaf models, Plant, Cell
Environ., 20, 537–557, https://doi.org/10.1111/j.1365-3040.1997.00094.x, 1997.
Dils, B., Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Parker, R.,
Guerlet, S., Aben, I., Blumenstock, T., Burrows, J. P., Butz, A., Deutscher,
N. M., Frankenberg, C., Hase, F., Hasekamp, O. P., Heymann, J., De Mazière,
M., Notholt, J., Sussmann, R., Warneke, T., Griffith, D., Sherlock, V., and
Wunch, D.: The Greenhouse Gas Climate Change Initiative (GHG-CCI):
comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT
CO2 and CH4 retrieval algorithm products with measurements
from the TCCON, Atmos. Meas. Tech., 7, 1723–1744,
https://doi.org/10.5194/amt-7-1723-2014, 2014.
Duan, S. B., Li, Z. L., Wu, H., Tang, B. H., Ma, L., Zhao, E., and Li, C.:
Inversion of the PROSAIL model to estimate leaf area index of maize, potato,
and sunflower fields from unmanned aerial vehicle hyperspectral data, Int.
J. Appl. Earth Obs., 26, 12–20, https://doi.org/10.1016/j.jag.2013.05.007,
2014.
Feret, J. B., François, C., Asner, G. P., Gitelson, A. A., Martin, R. E.,
Bidel, L. P. R., Ustin, S. L., le Maire, G., and Jacquemoud, S.: PROSPECT-4
and 5: Advances in the leaf optical properties model separating
photosynthetic pigments, Remote Sens. Environ., 112, 3030–3043,
https://doi.org/10.1016/j.rse.2008.02.012, 2008.
Fisher, J. B., Tu, K. P., and Baldocchi, D. D.: Global estimates of the
land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data,
validated at 16 FLUXNET sites, Remote Sens. Environ., 112, 901–919,
https://doi.org/10.1016/j.rse.2007.06.025, 2008.
Fu, D., Chen, B., Zhang, H., Wang, J., Black, T. A., Amiro, B. D., Bohrer,
G., Bolstad, P., Coulter, R., Rahman, A. F., Dunn, A., McCaughey, J. H.,
Meyers, T., and Verma, S.: Estimating landscape net ecosystem exchange at
high spatial–temporal resolution based on Landsat data, an improved
upscaling model framework, and eddy covariance flux measurements, Remote
Sens. Environ., 141, 90–104, https://doi.org/10.1016/j.rse.2013.10.029, 2014.
GAO: Irrigated Agriculture: Technologies, Practices, and Implications for
Water Scarcity, available at:
https://www.gao.gov/mobile/products/GAO-20-128SP (last access: 11 March 2020), 2019.
Gao, F., Masek, J., Schwaller, M., and Hall, F.: On the blending of the
landsat and MODIS surface reflectance: Predicting daily landsat surface
reflectance, IEEE Trans. Geosci. Remote, 44, 2207–2218,
https://doi.org/10.1109/TGRS.2006.872081, 2006.
Gao, F., Anderson, M. C., Zhang, X., Yang, Z., Alfieri, J. G., Kustas, W.
P., Mueller, R., Johnson, D. M., and Prueger, J. H.: Toward mapping crop
progress at field scales through fusion of Landsat and MODIS imagery, Remote
Sens. Environ., 188, 9–25, https://doi.org/10.1016/j.rse.2016.11.004, 2017.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gitelson, A. A., Wardlow, B. D., Keydan, G. P., and Leavitt, B.: An
evaluation of MODIS 250-m data for green LAI estimation in crops, Geophys.
Res. Lett., 34, L20403, https://doi.org/10.1029/2007GL031620, 2007.
Gómez, C., White, J. C., and Wulder, M. A.: Optical remotely sensed time
series data for land cover classification: A review, ISPRS J. Photogramm., 116, 55–72, https://doi.org/10.1016/j.isprsjprs.2016.03.008, 2016.
Goodman, S. J., Gurka, J., De Maria, M., Schmit, T. J., Mostek, A.,
Jedlovec, G., Siewert, C., Feltz, W., Gerth, J., Brummer, R., Miller, S.,
Reed, B., and Reynolds, R. R.: The goes-R proving ground: Accelerating user
readiness for the next-generation geostationary environmental satellite
system, B. Am. Meteorol. Soc., 93, 1029–1040,
https://doi.org/10.1175/BAMS-D-11-00175.1, 2012.
Grassini, P., Specht, J. E., Tollenaar, M., Ciampitti, I., and Cassman, K.
G.: High-yield maize-soybean cropping systems in the US Corn Belt, Second
Edition, Elsevier Inc., 2015.
Green, T. R., Kipka, H., David, O., and McMaster, G. S.: Where is the USA Corn Belt, and how is it changing?, Sci. Total Environ., 618, 1613–1618, https://doi.org/10.1016/j.scitotenv.2017.09.325, 2018.
Griffis, T. J., Baker, J. M., Sargent, S. D., Erickson, M., Corcoran, J.,
Chen, M., and Billmark, K.: Influence of C4 vegetation on 13CO2
discrimination and isoforcing in the upper Midwest, United States, Global
Biogeochem. Cy., 24, GB4006, https://doi.org/10.1029/2009GB003768, 2010.
Guzinski, R., Nieto, H., Jensen, R., and Mendiguren, G.: Remotely sensed land-surface energy fluxes at sub-field scale in heterogeneous agricultural landscape and coniferous plantation, Biogeosciences, 11, 5021–5046, https://doi.org/10.5194/bg-11-5021-2014, 2014.
Hammerling, D. M., Michalak, A. M., and Kawa, S. R.: Mapping of CO2 at high
spatiotemporal resolution using satellite observations: Global distributions
from OCO-2, J. Geophys. Res., 117, D06306, https://doi.org/10.1029/2011JD017015,
2012.
Hersbach, H.: The ERA5 Atmospheric Reanalysis., Am. Geophys. Union,
Fall Gen. Assem. 2016, Abstr. id. NG33D-01, available at:
http://adsabs.harvard.edu/abs/2016AGUFMNG33D..01H (last access: 18 July 2019),
2016.
Houborg, R. and Mccabe, M. F.: A Cubesat enabled Spatio-Temporal Enhancement
Method (CESTEM) utilizing Planet, Landsat and MODIS data, Remote Sens.
Environ., 209, 211–226, https://doi.org/10.1016/j.rse.2018.02.067, 2018.
Huang, Y., Ryu, Y., Jiang, C., Kimm, H., Kim, S., Kang, M., and Shim, K.:
BESS-Rice: A remote sensing derived and biophysical process-based rice
productivity simulation model, Agr. Forest Meteorol., 256–257,
253–269, https://doi.org/10.1016/j.agrformet.2018.03.014, 2018.
Hulley, G., Hook, S., Fisher, J., and Lee, C.: ECOSTRESS, A NASA
Earth-Ventures Instrument for studying links between the water cycle and
plant health over the diurnal cycle, in International Geoscience and Remote
Sensing Symposium (IGARSS), 2017-July, 5494–5496, IEEE., 2017.
Irmak, A., Ratcliffe, I., Ranade, P., Hubbard, K. G., Singh, R. K., Kamble, B., and Kjaersgaard, J.: ESTIMATION OF LAND SURFACE EVAPOTRANSPIRATION WITH A SATELLITE
REMOTE SENSING PRO, Gt. Plains Res. Spring, 21, 73–88,
2011.
Irmak, S., Kabenge, I., Skaggs, K. E., and Mutiibwa, D.: Trend and magnitude
of changes in climate variables and reference evapotranspiration over 116-yr
period in the Platte River Basin, central Nebraska-USA, J. Hydrol.,
420–421, 228–244, https://doi.org/10.1016/j.jhydrol.2011.12.006, 2012.
Jacquemoud, S. and Baret, F.: PROSPECT: A model of leaf optical properties
spectra, Remote Sens. Environ., 34, 75–91,
https://doi.org/10.1016/0034-4257(90)90100-Z, 1990.
Jacquemoud, S., Ustin, S. L., Verdebout, J., Schmuck, G., Andreoli, G., and
Hosgood, B.: Estimating leaf biochemistry using the PROSPECT leaf optical
properties model, Remote Sens. Environ., 56, 194–202,
https://doi.org/10.1016/0034-4257(95)00238-3, 1996.
Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J.,
Asner, G. P., François, C., and Ustin, S. L.: PROSPECT + SAIL models: A
review of use for vegetation characterization, Remote Sens. Environ.,
113, S56–S66, https://doi.org/10.1016/j.rse.2008.01.026, 2009.
Jiang, C. and Ryu, Y.: Multi-scale evaluation of global gross primary
productivity and evapotranspiration products derived from Breathing Earth
System Simulator (BESS), Remote Sens. Environ., 186, 528–547,
https://doi.org/10.1016/j.rse.2016.08.030, 2016.
Jiang, L. and Islam, S.: A methodology for estimation of surface
evapotranspiration over large areas using remote sensing observations,
Geophys. Res. Lett., 26, 2773–2776, https://doi.org/10.1029/1999GL006049, 1999.
Ju, W., Chen, J. M., Black, T. A., Barr, A. G., Liu, J., and Chen, B.:
Modelling multi-year coupled carbon and water fluxes in a boreal aspen
forest, Agr. Forest Meteorol., 140, 136–151,
https://doi.org/10.1016/j.agrformet.2006.08.008, 2006.
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., and Zhang, K.: Recent decline
in the global land evapotranspiration trend due to limited moisture supply,
Nature, 467, 951–954, https://doi.org/10.1038/nature09396, 2010.
Kalma, J. D., McVicar, T. R., and McCabe, M. F.: Estimating land surface
evaporation: A review of methods using remotely sensed surface temperature
data, Surv. Geophys., 29, 421–469, https://doi.org/10.1007/s10712-008-9037-z,
2008.
Kattge, J., Knorr, W., Raddatz, T., and Wirth, C.: Quantifying photosynthetic
capacity and its relationship to leaf nitrogen content for global-scale
terrestrial biosphere models, Glob. Change Biol., 15, 976–991,
https://doi.org/10.1111/j.1365-2486.2008.01744.x, 2009.
Katul, G. G., Oren, R., Manzoni, S., Higgins, C., and Parlange, M. B.:
Evapotranspiration: a process driving mass transport and energy exchnge in
the soil-plant-atmosphere-climate system, Rev. Geophys., 50,
RG000366, https://doi.org/10.1029/2011RG000366, 2012.
Kobayashi, H. and Iwabuchi, H.: A coupled 1-D atmosphere and 3-D canopy
radiative transfer model for canopy reflectance, light environment, and
photosynthesis simulation in a heterogeneous landscape, Remote Sens.
Environ., 112, 173–185, https://doi.org/10.1016/j.rse.2007.04.010, 2008.
Kowalczyk, E. A., Wang, Y. P., Law, R. M., Davies, H. L., McGregor, J. L.,
and Abramowitz, G.: The CSIRO Atmosphere Biosphere Land Exchange (CABLE)
model for use in climate models and as an offline model, CSIRO Mar. Atmos.
Res. Pap., 13, https://doi.org/10.4225/08/58615c6a9a51d, 2006.
Leuning, R., Kelliher, F. M., DePury, D. G. G., and Schulze, E.-D.: Leaf
nitrogen, photosynthesis, conductance and transpiration: scaling from leaves
to canopies, Plant. Cell Environ., 18, 1183–1200,
https://doi.org/10.1111/j.1365-3040.1995.tb00628.x, 1995.
Li, Y., Huang, C., Hou, J., Gu, J., Zhu, G., and Li, X.: Mapping daily
evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images
over irrigated agricultural areas in the Heihe River Basin, Northwest China,
Agr. Forest Meteorol., 244–245, 82–97,
https://doi.org/10.1016/j.agrformet.2017.05.023, 2017.
Li, Z. L., Tang, R., Wan, Z., Bi, Y., Zhou, C., Tang, B., Yan, G., and Zhang,
X.: A review of current methodologies for regional Evapotranspiration
estimation from remotely sensed data, Sensors, 9, 3801–3853,
https://doi.org/10.3390/s90503801, 2009.
Liang, S.: Narrowband to broadband conversions of land surface albedo I
Algorithms, Remote Sens. Environ., 76, 213–238,
https://doi.org/10.1016/S0034-4257(00)00205-4, 2001.
Liu, Y., Wang, Z., Sun, Q., Erb, A. M., Li, Z., Schaaf, C. B., Zhang, X.,
Román, M. O., Scott, R. L., Zhang, Q., Novick, K. A., Syndonia
Bret-Harte, M., Petroy, S., and SanClements, M.: Evaluation of the VIIRS
BRDF, Albedo and NBAR products suite and an assessment of continuity with
the long term MODIS record, Remote Sens. Environ., 201, 256–274,
https://doi.org/10.1016/j.rse.2017.09.020, 2017.
Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B.,
Rejesus, R. M., and Hammer, G. L.: Greater Sensitivity to Drought Accompanies
Maize Yield Increase in the U.S. Midwest, Science, 344,
516–519, https://doi.org/10.1126/science.1251423, 2014.
Loew, A., Peng, J., and Borsche, M.: High-resolution land surface fluxes from satellite and reanalysis data (HOLAPS v1.0): evaluation and uncertainty assessment, Geosci. Model Dev., 9, 2499–2532, https://doi.org/10.5194/gmd-9-2499-2016, 2016.
Lu, X. and Zhuang, Q.: Evaluating evapotranspiration and water-use
efficiency of terrestrial ecosystems in the conterminous United States using
MODIS and AmeriFlux data, Remote Sens. Environ., 114, 1924–1939,
https://doi.org/10.1016/j.rse.2010.04.001, 2010.
Luo, Y., Guan, K., and Peng, J.: STAIR: A generic and fully-automated method
to fuse multiple sources of optical satellite data to generate a
high-resolution, daily and cloud-/gap-free surface reflectance product,
Remote Sens. Environ., 214, 87–99, https://doi.org/10.1016/j.rse.2018.04.042,
2018.
Ma, Y., Liu, S., Song, L., Xu, Z., Liu, Y., Xu, T., and Zhu, Z.: Estimation
of daily evapotranspiration and irrigation water efficiency at a
Landsat-like scale for an arid irrigation area using multi-source remote
sensing data, Remote Sens. Environ., 216, 715–734,
https://doi.org/10.1016/j.rse.2018.07.019, 2018.
Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G.,
Huemmrich, K. F., Gao, F., Kutler, J., and Lim, T.: A Landsat Surface
Reflectance Dataset, IEEE Geosci. Remote S., 3, 68–72,
https://doi.org/10.1109/LGRS.2005.857030, 2006.
Matamala, R., Jastrow, J. D., Miller, R. M. and Garten, C. T.: Temporal
changes in C and N stocks of restored prairie: Implications for C
sequestration strategies, Ecol. Appl., 18, 1470–1488,
https://doi.org/10.1890/07-1609.1, 2008.
McCabe, M. F. and Wood, E. F.: Scale influences on the remote estimation of
evapotranspiration using multiple satellite sensors, Remote Sens. Environ.,
105, 271–285, https://doi.org/10.1016/j.rse.2006.07.006, 2006.
McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner, W., Lucieer, A., Houborg, R., Verhoest, N. E. C., Franz, T. E., Shi, J., Gao, H., and Wood, E. F.: The future of Earth observation in hydrology, Hydrol. Earth Syst. Sci., 21, 3879–3914, https://doi.org/10.5194/hess-21-3879-2017, 2017.
Meyers, T. P. and Hollinger, S. E.: An assessment of storage terms in the
surface energy balance of maize and soybean, Agr. Forest Meteorol.,
125, 105–115, https://doi.org/10.1016/j.agrformet.2004.03.001, 2004.
Miner, G. L., Bauerle, W. L., and Baldocchi, D. D.: Estimating the
sensitivity of stomatal conductance to photosynthesis: a review, Plant Cell
Environ., 40, 1214–1238, https://doi.org/10.1111/pce.12871, 2017.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Mousivand, A., Menenti, M., Gorte, B., and Verhoef, W.: Global sensitivity
analysis of the spectral radiance of a soil-vegetation system, Remote Sens.
Environ., 145, 131–144, https://doi.org/10.1016/j.rse.2014.01.023, 2014.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global
terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115,
1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J.,
Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl,
M., Morisette, J. T., Votava, P., Nemani, R. R., and Running, S. W.: Global
products of vegetation leaf area and fraction absorbed PAR from year one of
MODIS data, Remote Sens. Environ., 83, 214–231,
https://doi.org/10.1016/S0034-4257(02)00074-3, 2002.
Nguy-Robertson, A., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., and
Rundquist, D.: Green leaf area index estimation in maize and soybean:
Combining vegetation indices to achieve maximal sensitivity, Agron. J.,
104, 1336–1347, https://doi.org/10.2134/agronj2012.0065, 2012.
Ort, D. R. and Long, S. P.: Limits on Yields in the Corn Belt, Science, 344, 484–485, https://doi.org/10.1126/science.1253884, 2014.
Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M. C., Hain,
C., and Basara, J. B.: Flash Droughts: a Review and Assessment of the
Challenges Imposed By Rapid Onset Droughts in the United States, B. Am.
Meteorol. Soc., 99, , 911–919, https://doi.org/10.1175/BAMS-D-17-0149.1, 2017.
Pan, M., Sahoo, A. K., Troy, T. J., Vinukollu, R. K., Sheffield, J., and
Wood, A. E. F.: Multisource estimation of long-term terrestrial water budget
for major global river basins, J. Climate, 25, 3191–3206,
https://doi.org/10.1175/JCLI-D-11-00300.1, 2012.
Paw U, K. T. and Gao, W.: Applications of solutions to non-linear energy
budget equations, Agr. Forest Meteorol., 43, 121–145,
https://doi.org/10.1016/0168-1923(88)90087-1, 1988.
Pisek, J., Sonnentag, O., Richardson, A. D., and Mõttus, M.: Is the
spherical leaf inclination angle distribution a valid assumption for
temperate and boreal broadleaf tree species?, Agr. Forest Meteorol., 169,
186–194, https://doi.org/10.1016/j.agrformet.2012.10.011, 2013.
Prueger, J., Kustas, W., Hipps, L., Hatfield, J., Cahill, A., Williams, C., Albertson, J., Eichinger, W., Cooper, D., and Brunsell, N.: Spatial variability of turbulent ffuxes across a
corn/soybean production region in central Iowa', in: AMS 17th Conference on
Hydrology, Long Beach, CA, USA, 2003.
Ryu, Y., Baldocchi, D., Kobayashi, H., Van Ingen, C., Li, J., Black, T. A.,
Beringer, J., Van Gorsel, E., Knohl, A., Law, B., and Roupsard, O.:
Integration of MODIS land and atmosphere products with a coupled-process
model to estimate gross primary productivity and evapotranspiration from 1
km to global scales, Global Biogeochem. Cy., 25, GB4017,
https://doi.org/10.1029/2011GB004053, 2011.
Ryu, Y., Baldocchi, D. D., Black, T. A., Detto, M., Law, B. E., Leuning, R.,
Miyata, A., Reichstein, M., Vargas, R., Ammann, C., Beringer, J., Flanagan,
L. B., Gu, L., Hutley, L. B., Kim, J., McCaughey, H., Moors, E. J., Rambal,
S., and Vesala, T.: On the temporal upscaling of evapotranspiration from
instantaneous remote sensing measurements to 8-day mean daily-sums, Agr. Forest Meteorol., 152, 212–222, https://doi.org/10.1016/j.agrformet.2011.09.010, 2012.
Ryu, Y., Jiang, C., Kobayashi, H., and Detto, M.: MODIS-derived global land
products of shortwave radiation and diffuse and total photosynthetically
active radiation at 5 km resolution from 2000, Remote Sens. Environ.,
204, 812–825, https://doi.org/10.1016/j.rse.2017.09.021, 2018.
Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., and
Jeong, M. J.: MODIS Collection 6 aerosol products: Comparison between Aqua's
e-Deep Blue, Dark Target, and “merged” data sets, and usage
recommendations, J. Geophys. Res.-Atmos., 119, 13965–13989,
https://doi.org/10.1002/2014JD022453, 2014.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., D'Entremont, R. P., Hu, B., Liang, S., Privette, J. L., and Roy, D.: First operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ., 83, 135–148, https://doi.org/10.1016/S0034-4257(02)00091-3, 2002.
Schmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J.,
and Lebair, W. J.: A closer look at the ABI on the goes-r series, B. Am.
Meteorol. Soc., 98, 681–698, https://doi.org/10.1175/BAMS-D-15-00230.1, 2017.
Seemann, S. W., Li, J., Gumley, L. E., Strabala, K. I., and Menzel, W. P.:
Operational retrieval of atmospheric temperature, moisture, and ozone from
MODIS infrared radiances, in: Third International Asia-Pacific Environmental
Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and
Space, edited by: Menzel, W. P., Zhang, W.-J., Le Marshall, J., and Tokuno, M., 168–176, International Society for Optics and Photonics, 2003.
Sellers, P. J.: Modeling the Exchanges of Energy, Water, and Carbon Between
Continents and the Atmosphere, Science, 275, 502–509,
https://doi.org/10.1126/science.275.5299.502, 1997.
Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G.,
Berry, J. A., Collatz, G. J., Denning, A. S., Mooney, H. A., Nobre, C. A.,
Sato, N., Field, C. B., and Henderson-Sellers, A.: Modeling the exchanges of
energy, water, and carbon between continents and the atmosphere, Science, 275, 502–509, https://doi.org/10.1126/science.275.5299.502, 1997.
Senay, G. B., Friedrichs, M., Singh, R. K., and Velpuri, N. M.: Evaluating
Landsat 8 evapotranspiration for water use mapping in the Colorado River
Basin, Remote Sens. Environ., 185, 171–185, https://doi.org/10.1016/j.rse.2015.12.043,
2016.
Serbin, S. P., Singh, A., Desai, A. R., Dubois, S. G., Jablonski, A. D.,
Kingdon, C. C., Kruger, E. L., and Townsend, P. A.: Remotely estimating
photosynthetic capacity, and its response to temperature, in vegetation
canopies using imaging spectroscopy, Remote Sens. Environ., 167, 78–87,
https://doi.org/10.1016/j.rse.2015.05.024, 2015.
Singh, R. K., Irmak, A., Irmak, S., and Martin, D. L.: Application of SEBAL
Model for Mapping Evapotranspiration and Estimating Surface Energy Fluxes in
South-Central Nebraska, J. Irrig. Drain. E., 134, 273–285,
https://doi.org/10.1061/(ASCE)0733-9437(2008)134:3(273), 2008.
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, https://doi.org/10.5194/hess-6-85-2002, 2002.
Suyker, A. E., Verma, S. B., Burba, G. G., Arkebauer, T. J., Walters, D. T.,
and Hubbard, K. G.: Growing season carbon dioxide exchange in irrigated and
rainfed maize, Agr. Forest Meteorol., 124, 1–13,
https://doi.org/10.1016/j.agrformet.2004.01.011, 2004.
Tian, H., Chen, G., Liu, M., Zhang, C., Sun, G., Lu, C., Xu, X., Ren, W.,
Pan, S., and Chappelka, A.: Model estimates of net primary productivity,
evapotranspiration, and water use efficiency in the terrestrial ecosystems
of the southern United States during 1895–2007, Forest Ecol. Manage., 259,
1311–1327, https://doi.org/10.1016/j.foreco.2009.10.009, 2010.
Turner, P. A., Baker, J. M., Griffis, T. J., and Venterea, R. T.: Impact of
Kura Clover Living Mulch on Nitrous Oxide Emissions in a Corn–Soybean
System, J. Environ. Qual., 45, 1782, https://doi.org/10.2134/jeq2016.01.0036, 2016.
USDA: 2012 census of agriculture, USDA National Agricultural Statistics
Service Washington, DC, available at:
https://www.agcensus.usda.gov/Publications/2012/ (last access: 11 March 2020), 2014.
USDA: Acreage, available at:
http://usda.mannlib.cornell.edu/usda/current/Acre/Acre-06-29-2018.pdf (last access: 11 March 2020), 2018.
Van Bodegom, P. M., Douma, J. C., and Verheijen, L. M.: A fully traits-based
approach to modeling global vegetation distribution., P. Natl. Acad. Sci.
USA, 111, 13733–13738, https://doi.org/10.1073/pnas.1304551110, 2014.
Verhoef, W.: Light scattering by leaf layers with application to canopy
reflectance modeling: The SAIL model, Remote Sens. Environ., 16, 125–141,
https://doi.org/10.1016/0034-4257(84)90057-9, 1984.
Verhoef, W.: Earth observation modeling based on layer scattering matrices,
Remote Sens. Environ., 17, 165–178, https://doi.org/10.1016/0034-4257(85)90072-0,
1985.
Verrelst, J., Malenovský, Z., van der Tol, C., Camps-Valls, G.,
Gastellu-Etchegorry, J. P., Lewis, P., North, P., and Moreno, J.: Quantifying
Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on
Retrieval Methods, Surv. Geophys., 40, 589–629, https://doi.org/10.1007/s10712-018-9478-y,
2018.
Walker, A. P., Quaife, T., van Bodegom, P. M., De Kauwe, M. G., Keenan, T.
F., Joiner, J., Lomas, M. R., MacBean, N., Xu, C., Yang, X., and Woodward, F.
I.: The impact of alternative trait-scaling hypotheses for the maximum
photosynthetic carboxylation rate (Vcmax) on global gross primary
production, New Phytol., 215, 1370–1386, https://doi.org/10.1111/nph.14623, 2017.
Wan, Z., Zhang, K., Xue, X., Hong, Z., Hong, Y., and Gourley, J. J.: Water
balance-based actual evapotranspiration reconstruction from ground and
satellite observations over the conterminous United States, Water Resour.
Res., 51, 6485–6499, https://doi.org/10.1002/2015WR017311, 2015.
Wang, H., Prentice, I. C., Davis, T. W., Keenan, T. F., Wright, I. J., and
Peng, C.: Photosynthetic responses to altitude: an explanation based on
optimality principles, New Phytol., 213, 976–982, https://doi.org/10.1111/nph.14332,
2017.
Wang, K. and Dickinson, R. E.: A review of global terrestrial
evapotranspiration: observation, modelling, climatology, and climatic
variability, Rev. Geophys., 50, RG2005,
https://doi.org/10.1029/2011RG000373, 2012.
Wei, J., Chen, Y., Gu, Q., Jiang, C., Ma, M., Song, L., and Tang, X.:
Potential of the remotely-derived products in monitoring ecosystem water use
efficiency across grasslands in Northern China, Int. J. Remote Sens., 40,
6203–6223, https://doi.org/10.1080/01431161.2019.1587208, 2019.
Weiss, M., Baret, F., Myneni, R., Pragnère, A., and Knyazikhin, Y.:
Investigation of a model inversion technique to estimate canopy biophysical
variables from spectral and directional reflectance data, Agronomie, 20,
3–22, https://doi.org/10.1051/agro:2000105, 2000.
Whitley, R., Beringer, J., Hutley, L. B., Abramowitz, G., De Kauwe, M. G., Duursma, R., Evans, B., Haverd, V., Li, L., Ryu, Y., Smith, B., Wang, Y.-P., Williams, M., and Yu, Q.: A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas, Biogeosciences, 13, 3245–3265, https://doi.org/10.5194/bg-13-3245-2016, 2016.
Whitley, R., Beringer, J., Hutley, L. B., Abramowitz, G., De Kauwe, M. G., Evans, B., Haverd, V., Li, L., Moore, C., Ryu, Y., Scheiter, S., Schymanski, S. J., Smith, B., Wang, Y.-P., Williams, M., and Yu, Q.: Challenges and opportunities in land surface modelling of savanna ecosystems, Biogeosciences, 14, 4711–4732, https://doi.org/10.5194/bg-14-4711-2017, 2017.
Wilson, T. B. and Meyers, T. P.: Determining vegetation indices from solar
and photosynthetically active radiation fluxes, Agr. Forest Meteorol.,
144, 160–179, https://doi.org/10.1016/j.agrformet.2007.04.001, 2007.
Wright, C. K. and Wimberly, M. C.: Recent land use change in the Western
Corn Belt threatens grasslands and wetlands, P. Natl. Acad. Sci. USA,
110, 4134–4139, https://doi.org/10.1073/pnas.1215404110, 2013.
Wu, P., Shen, H., Zhang, L., and Göttsche, F. M.: Integrated fusion of
multi-scale polar-orbiting and geostationary satellite observations for the
mapping of high spatial and temporal resolution land surface temperature,
Remote Sens. Environ., 156, 169–181, https://doi.org/10.1016/j.rse.2014.09.013, 2015.
Xu, J., Liang, Y., Liu, J., and Huang, Z.: Multi-frame super-resolution of
gaofen-4 remote sensing images, Sensors, 17, 2142, https://doi.org/10.3390/s17092142, 2017.
Xu, M., Liu, R., Chen, J. M., Liu, Y., Shang, R., Ju, W., Wu, C., and Huang,
W.: Retrieving leaf chlorophyll content using a matrix-based vegetation
index combination approach, Remote Sens. Environ., 224, 60–73,
https://doi.org/10.1016/j.rse.2019.01.039, 2019.
Yang, Y., Anderson, M. C., Gao, F., Wardlow, B., Hain, C. R., Otkin, J. A.,
Alfieri, J., Yang, Y., Sun, L., and Dulaney, W.: Field-scale mapping of
evaporative stress indicators of crop yield: An application over Mead, NE,
USA, Remote Sens. Environ., 210, 387–402, https://doi.org/10.1016/j.rse.2018.02.020,
2018.
Yebra, M., Van Dijk, A., Leuning, R., Huete, A., and Guerschman, J. P.:
Evaluation of optical remote sensing to estimate actual evapotranspiration
and canopy conductance, Remote Sens. Environ., 129, 250–261,
https://doi.org/10.1016/j.rse.2012.11.004, 2013.
Zhang, K., Kimball, J. S., and Running, S. W.: A review of remote sensing
based actual evapotranspiration estimation, Wiley Interdiscip. Rev. Water,
3, 834–853, https://doi.org/10.1002/wat2.1168, 2016.
Zhang, X., Liang, S., Wang, G., Yao, Y., Jiang, B., and Cheng, J.: Evaluation
of the reanalysis surface incident shortwave radiation products from NCEP,
ECMWF, GSFC, and JMA using satellite and surface observations, Remote Sens.,
8, 225, https://doi.org/10.3390/rs8030225, 2016.
Zhang, Y., Guanter, L., Berry, J. a, Joiner, J., van der Tol, C., Huete, A.,
Gitelson, A., Voigt, M., and Köhler, P.: Estimation of vegetation
photosynthetic capacity from space-based measurements of chlorophyll
fluorescence for terrestrial biosphere models, Glob. Change Biol., 20,
3727–3742, https://doi.org/10.1111/gcb.12664, 2014.
Zhang, Y., Guanter, L., Joiner, J., Song, L., and Guan, K.:
Spatially-explicit monitoring of crop photosynthetic capacity through the
use of space-based chlorophyll fluorescence data, Remote Sens. Environ.,
210, 362–374, https://doi.org/10.1016/j.rse.2018.03.031, 2018.
Zheng, Y., Ren, H., Guo, J., Ghent, D., Tansey, K., Hu, X., Nie, J., and
Chen, S.: Land Surface Temperature Retrieval from Sentinel-3A Sea and Land
Surface Temperature Radiometer, Using a Split-Window Algorithm, Remote
Sens., 11, 650, https://doi.org/10.3390/rs11060650, 2019.
Zhong, L., Hu, L., Yu, L., Gong, P., and Biging, G. S.: Automated mapping of
soybean and corn using phenology, ISPRS J. Photogramm., 119,
151–164, https://doi.org/10.1016/j.isprsjprs.2016.05.014, 2016.
Zhu, X., Chen, J., Gao, F., Chen, X., and Masek, J. G.: An enhanced spatial
and temporal adaptive reflectance fusion model for complex heterogeneous
regions, Remote Sens. Environ., 114, 2610–2623,
https://doi.org/10.1016/j.rse.2010.05.032, 2010.
Short summary
Quantifying crop water use at each field every day is challenging because of the complexity of the evapotranspiration (ET) process and the unavailability of data at high spatiotemporal resolutions. We fuse multi-satellite data and employ a sophisticated model to estimate ET at 30 m resolution and a daily interval. With validation against 86 site years of ground truth in the US Corn Belt, we are confident that our ET estimation is accurate and a reliable tool for water resource management.
Quantifying crop water use at each field every day is challenging because of the complexity of...