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Abstract. With increasing crop water demands and drought
threats, mapping and monitoring of cropland evapotranspira-
tion (ET) at high spatial and temporal resolutions become in-
creasingly critical for water management and sustainability.
However, estimating ET from satellites for precise water re-
source management is still challenging due to the limitations
in both existing ET models and satellite input data. Specifi-
cally, the process of ET is complex and difficult to model, and
existing satellite remote-sensing data could not fulfill high
resolutions in both space and time. To address the above two
issues, this study presents a new high spatiotemporal reso-
lution ET mapping framework, i.e., BESS-STAIR, which in-
tegrates a satellite-driven water–carbon–energy coupled bio-
physical model, BESS (Breathing Earth System Simulator),
with a generic and fully automated fusion algorithm, STAIR
(SaTallite dAta IntegRation). In this framework, STAIR pro-
vides daily 30 m multispectral surface reflectance by fusing
Landsat and MODIS satellite data to derive a fine-resolution
leaf area index and visible/near-infrared albedo, all of which,
along with coarse-resolution meteorological and CO2 data,
are used to drive BESS to estimate gap-free 30 m resolution
daily ET. We applied BESS-STAIR from 2000 through 2017
in six areas across the US Corn Belt and validated BESS-
STAIR ET estimations using flux-tower measurements over
12 sites (85 site years). Results showed that BESS-STAIR
daily ET achieved an overall R2

= 0.75, with root mean

square error RMSE= 0.93 mm d−1 and relative error RE=
27.9 % when benchmarked with the flux measurements. In
addition, BESS-STAIR ET estimations captured the spatial
patterns, seasonal cycles, and interannual dynamics well in
different sub-regions. The high performance of the BESS-
STAIR framework primarily resulted from (1) the implemen-
tation of coupled constraints on water, carbon, and energy in
BESS, (2) high-quality daily 30 m data from the STAIR fu-
sion algorithm, and (3) BESS’s applicability under all-sky
conditions. BESS-STAIR is calibration-free and has great
potentials to be a reliable tool for water resource manage-
ment and precision agriculture applications for the US Corn
Belt and even worldwide given the global coverage of its in-
put data.

1 Introduction

Accurate field-level management of water resources urgently
demands reliable estimations of evapotranspiration (ET) at
high spatial and temporal resolutions. ET is the sum of water
loss from the soil surface through evaporation and that from
plant components through leaf transpiration and evaporation,
and ET at cropland is usually considered for crop water use
(Allen et al., 1998). ET consumes up to 90 % of total wa-
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ter inputs (precipitation plus irrigation) in agro-ecosystems
in the western and Midwestern United States (Irmak et al.,
2012). In the US Corn Belt, where more than 85 % of corn
and soybean is produced in the US (Grassini et al., 2015),
increasing vapor pressure deficit (VPD) and drought sensi-
tivity have been recognized as severe threats to future crop
security (Lobell et al., 2014; Ort and Long, 2014). The vul-
nerability to drought in this region is further exacerbated by
elevated rates of grass-to-crop conversion and expansion of
irrigated areas (Brown and Pervez, 2014; Wright and Wim-
berly, 2013). Furthermore, precision water resource manage-
ment requires the capacity to account for spatial heterogene-
ity and to guide real-time decision-making (GAO, 2019). Ac-
cordingly, reliable tools are urgently needed to estimate, map,
and monitor the total amount and spatial and temporal varia-
tions of cropland ET.

One critical requirement for the accurate estimations of ET
at high spatiotemporal resolutions is reliable and advanced
satellite-based models. This is challenging because the pro-
cess of ET is complex and difficult to model. ET results from
balance between atmospheric water demand and soil water
supply, and it is also regulated by plants through canopy de-
velopment and stomatal behaviors in order to optimize their
water, carbon, and energy use strategies (Katul et al., 2012;
Wang and Dickinson, 2012). A large number of satellite-
based ET estimation methods have been developed based
on different theories and techniques. In general, they can be
grouped into many categories: statistical or machine-learning
methods (Jung et al., 2010; Lu and Zhuang, 2010), water bal-
ance methods (Pan et al., 2012; Wan et al., 2015), energy
balance methods (Anderson et al., 1997; Su, 2002), triangu-
lar or trapezoid space methods (Jiang and Islam, 1999; Li
et al., 2009), Priestley–Taylor methods (Fisher et al., 2008;
Miralles et al., 2011), and Penman–Monteith methods (Mu
et al., 2011; Yebra et al., 2013). Kalma et al. (2008), Li et
al. (2009), and K. Zhang et al. (2016) have provided detailed
reviews of the pros and cons of different remote-sensing ap-
proaches.

Given the complexity of the ET process, we argue that a
reliable ET model should include both necessary biophysi-
cal processes and high-quality multi-source observations to
constrain ET estimations (Loew et al., 2016). While remote-
sensing-based approaches tend to focus on constraints from
various satellite data, land-surface models (LSMs) are profi-
cient at including processes that account for interactions be-
tween environment and plant structure and functions. Given
the gaps between remote sensing and LSMs, a distinct ET
model, the Breathing Earth System Simulator (BESS), was
developed (Jiang and Ryu, 2016; Ryu et al., 2011). Different
from the above-mentioned remote-sensing models, BESS is
a biophysical model, which adopts modules commonly im-
plemented in LSMs but uses various satellite remote-sensing
data as direct inputs. Specifically, BESS is a two-leaf water–
carbon–energy coupled model driven by environmental and
vegetation variables derived from multi-source satellite data.

As the energy cycle, carbon cycle, and water cycle are jointly
modeled and mutually constrained in BESS, it has produced
a series of high-quality global long-term (2000–2017) prod-
ucts, including the 5 km resolution global radiation (Rg),
photosynthetically active radiation (PAR) and diffuse PAR
products (Ryu et al., 2018), and 1 km resolution gross pri-
mary productivity (GPP) and ET products (Jiang and Ryu,
2016), which enables tracking of crop growth and yields too
(Huang et al., 2018). In particular, the 1 km resolution BESS
ET product is able to capture the total amount and spatial
and temporal variations in arid/semi-arid areas like Australia
(Whitley et al., 2016, 2017), California (Baldocchi et al.,
2019), and northwestern China (Wei et al., 2019). The fi-
delity of the coarse-resolution BESS ET product suggests its
potential at fine resolutions.

The other critical requirement for accurate estimations of
ET at high spatiotemporal resolutions is satellite input data
at high resolutions in both space and time. This is challeng-
ing because existing satellite missions cannot satisfy the two
conditions simultaneously. Data fusion techniques, which
take multi-sensor data to generate fusion data with high res-
olutions in both space and time, provide a possible and scal-
able solution. Several such algorithms have been developed
over the past decade (Gao et al., 2006; Houborg and Mccabe,
2018; Zhu et al., 2010), and they have been successful for
localized applications (Gao et al., 2017; Gómez et al., 2016;
Wu et al., 2015). Notably, energy balance and thermal-based
ET models such as ALEXI/DisALEXI and SEBS have been
combined with the fusion algorithms such as STARFM and
ESTARFM to generate daily 30 m ET estimations with fa-
vorable performance at several sites (Anderson et al., 2018;
Cammalleri et al., 2013; Li et al., 2017; Ma et al., 2018).

Here we propose and present a new ET estimation frame-
work that combines BESS with a novel fusion algorithm, Sa-
Tallite dAta IntegRation (STAIR) (Luo et al., 2018), for accu-
rate ET estimation at high resolution in both time and space.
BESS has demonstrated its high performance in estimating
ET at medium to coarse resolutions, but the major obstacle
of moving BESS’s ET estimation to finer resolutions is the
lack of key vegetation status variables at higher spatial reso-
lutions, including leaf area index (LAI) and visible and near-
infrared albedo (αVIS and αNIR). In BESS, this surface infor-
mation is critical for resolving spatial heterogeneity, while
environmental information such as radiation, temperature,
humidity, and CO2 concentration is relatively homogeneous.
To cope with the absence of high spatiotemporal resolution
vegetation data, we propose coupling STAIR with BESS.
STAIR is a generic and fully automated fusion algorithm to
generate a cloud-/gap-free surface reflectance product at high
spatiotemporal resolution (Luo et al., 2018). Instead of man-
ually selecting image pairs adopted by most other data fusion
algorithms, STAIR automatically takes full advantage of time
series of daily coarse-resolution images and fine-resolution
but less frequent images. Moreover, STAIR’s high efficiency
in computation allows scalability for large-scale productions,
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which enable this new framework to deliver daily 30 m ET at
regional and decadal scales.

The objective of this study is to address a fundamental
issue in agro-ecological science and applications: lack of
high spatiotemporal gap-free ET data for decision-making.
We implemented a new ET estimation framework, BESS-
STAIR, and tested it in six study areas across the US Corn
Belt from 2000 to 2017. This is the first attempt to cou-
ple a satellite-driven biophysical model with a data fusion
technique to provide daily 30 m resolution ET estimations at
regional and decadal scales. While existing frameworks re-
trieve clear-sky ET from satellite-observed land-surface tem-
perature (LST) and fill ET gaps for cloudy-sky days, BESS-
STAIR simulates all-sky ET and LST as a result of crop
biophysical properties. This way has more referential sig-
nificance for crop modeling studies and has the potential to
forge a new path in agro-ecological science and applications.
We conducted a comprehensive evaluation of the BESS-
STAIR ET estimations with regards to the overall perfor-
mance, spatial patterns, seasonal cycles, and interannual dy-
namics, benchmarked on the ET observations from 12 eddy-
covariance flux towers across the US Corn Belt. The paper
also discusses the performance, advantages, limitations, and
potential improvements of the BESS-STAIR ET framework.

2 Materials and methods

BESS-STAIR estimates cropland ET at 30 m resolution at a
daily interval (Fig. 1). BESS is driven by environmental vari-
ables (radiation, temperature, humidity, and CO2 concentra-
tion), plant structural variables (LAI, αVIS, and αNIR), and
plant functional variables (peak maximum carboxylation rate
at 25 ◦C (peak Vcmax25) and Ball–Barry coefficients, for C3
and C4 plants, respectively). Among these key inputs, LAI,
αVIS, and αNIR characterize crop canopy structure, which are
usually very heterogeneous. In the global BESS ET prod-
uct (Jiang and Ryu, 2016), these vegetation variables are de-
rived from MODIS satellite data at 1 km resolution, while in
BESS-STAIR they are derived from 30 m resolution surface
reflectance fused from high spatial resolution Landsat data
and high temporal resolution MODIS data by STAIR.

2.1 The ET estimation model: BESS

BESS is a sophisticated satellite-driven water–carbon–
energy coupled biophysical model designed to continu-
ously monitor and map water and carbon fluxes (Jiang
and Ryu, 2016; Ryu et al., 2011). It is a simplified land-
surface model, including an atmosphere radiative transfer
module (Kobayashi and Iwabuchi, 2008; Ryu et al., 2018),
a two-leaf canopy radiative transfer module (De Pury and
Farquhar, 1997), and an integrated carbon assimilation–
stomatal-conductance–energy balance module. Specifically,
the Farquhar model for C3 and C4 plants (Collatz et al.,

1991, 1992), the Ball–Berry model (Ball et al., 1987), and
the quadratic form of the Penman–Monteith equation (Paw
U and Gao, 1988) are used for the simulation of carbon
assimilation, stomatal conductance, and energy balance, re-
spectively. This carbon–water integrated module employs
an iterative procedure to solve intercellular CO2 concentra-
tion, stomatal conductance, and leaf temperature for a sun-
lit/shaded canopy. Instantaneous sunlit/shade GPP and sun-
lit/shade/soil ET and net radiation at Terra and Aqua overpass
times are simultaneously estimated, followed by a temporal
upscaling procedure to derive daily GPP and ET using semi-
empirical cosine functions (Ryu et al., 2012). The Priestley–
Taylor equation is used to compute daily potential ET (PET)
based on estimated daily net radiation and meteorological in-
puts.

A unique feature of BESS is that it takes full advan-
tage of atmospheric and land products derived from multi-
source satellite data. By using MOD/MYD 04 aerosol prod-
ucts (Sayer et al., 2014), MOD/MYD 06 cloud products
(Baum et al., 2012), MOD/MYD 07 atmospheric profile
products (Seemann et al., 2003), along with gap-free at-
mospheric data provided by MERRA-2 reanalysis prod-
ucts (Gelaro et al., 2017), BESS calculates direct/diffuse
visible/near-infrared radiation components at 0.05◦ resolu-
tion. By coupling CO2 concentration derived from SCIA-
MACHY and GOSAT satellite data (Dils et al., 2014) with
those from OCO-2 satellite data (Hammerling et al., 2012)
as well as NOAA long-term field observations (https://www.
esrl.noaa.gov/gmd/ccgg/trends/, last access: 11 March 2020),
BESS derives long-term continuous monthly CO2 concen-
tration maps. Finally, in this study BESS uses air tempera-
ture and dew point temperature provided by ERA5 reanal-
ysis products at 0.1◦ resolution (Hersbach, 2016). In addi-
tion to these environmental variables, BESS also highly re-
lies on vegetation structural and functional variables. By us-
ing a satellite-derived LAI, αVIS, and αNIR, BESS quantifies
the absorption of ultraviolet/visible/near-infrared radiation
by sunlit/shaded canopy through a canopy radiative transfer
model. This model also upscales leaf level (Vcmax25) to sun-
lit/shaded canopy, which is used in the Farquhar photosyn-
thesis model. Vcmax25 is a parameter depending on the plant
functional type (Bonan et al., 2011; Kattge et al., 2009), and
its seasonal variation is empirically parameterized by the LAI
(Ryu et al., 2011).

2.2 The data fusion algorithm: STAIR

STAIR is a generic and fully automated method for fusing
multi-spectral satellite data to generate high spatiotemporal
resolution and cloud-/gap-free data (Luo et al., 2018). It fully
leverages the complementary strengths in the high tempo-
ral resolution MCD43A4 nadir reflectance (daily but 500 m
resolution) (Schaaf et al., 2002) and the high spatial resolu-
tion Landsat L2 nadir reflectance (30 m resolution but 16 d
revisiting frequency) (Masek et al., 2006) time-series data.
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Figure 1. The BESS-STAIR framework. The BESS ET estimation model and the STAIR data fusion algorithm are highlighted in green
boxes. Blue boxes are satellite data, yellow boxes are ancillary data, and red boxes are key inputs to BESS. The output of BESS-STAIR is
the 30 m resolution daily ET highlighted in a white box.

STAIR first imputes the missing pixels using an adaptive-
average correction procedure and then employs a local inter-
polation model to capture finer spatial information provided
by Landsat data, followed by a time-series refinement step
that incorporates the temporal patterns provided by MODIS
data. This strategy allows higher efficiency in missing-data
interpolation as well as greater robustness against concur-
rently missed MODIS and Landsat observation, which is a
common situation during continuous cloudy/snowy days.

The algorithm starts from the imputation of the missing
pixels (due to cloud cover or Landsat 7 Scan Line Corrector
failure) in satellite images. For MODIS images, a Savitzky–
Golay filter is first applied to reconstruct continuous time se-
ries. For Landsat images, a two-step approach is employed
using both temporal and spatial information from clear-sky
observations. First, a temporal interpolation through a linear
regression is applied as the initial gap-filling, based on the
whole time series of images throughout a year. Second, an
adaptive-average correction procedure is applied to remove
inharmonic spatial patterns between gap-filled and original
data. The target image is partitioned into multiple segments,
each of which contains one type of homogeneous pixel. The
relative difference between a gap pixel and neighborhood
pixels of it within the same segment is calculated using clear-
sky observations acquired at several dates close to the target
image acquisition date. Based on the assumption that the rel-
ative difference remains roughly the same across different
dates in a short time period (e.g., < 2–3 weeks), such a dif-
ference is used to correct the filled values of the gap pixel

derived from temporal interpolation so that the spatial rela-
tionship between the gap-filled pixel and its neighborhood
pixels within the same segment is consistent with those in
clear-sky observations.

The STAIR fusion algorithm fully exploits the spatial and
temporal information in the time series of gap-filled MODIS
and Landsat images throughout the growing season (April–
October). A nearest-neighbor sampling is conducted for all
the MODIS images to achieve the same image size, pixel
resolution, and projected coordinate system with Landsat im-
ages. A difference image is calculated for each pair of Land-
sat and resampled MODIS images, and a linear interpolation
is applied to reconstruct the difference image for any given
date when no Landsat image is available. Such a difference
image is used to correct the resampled MODIS image on that
date and to generate a fused Landsat image. In this man-
ner, the fused image captures the most informative spatial
information provided by the high spatial resolution Landsat
data and incorporates the temporal patterns provided by the
high temporal resolution MODIS data without any user in-
terference. The fusion algorithm is applied to the six Land-
sat bands: blue, green, red, near-infrared (nir), shortwave in-
frared 1 (swir1), and shortwave infrared-2 (swir2).

2.3 Derivation of BESS inputs from STAIR data

At a global scale, LAI, αVIS, and αNIR can be obtained from
MODIS and other satellite data, but for field-scale agricul-
tural applications high spatial resolution data are needed to
account for the spatial heterogeneity between fields or within
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a field. At this point, we employed two approaches to esti-
mate 30 m resolution daily LAI from STAIR fused surface
reflectance data: an empirical approach based on a linear re-
lationship with vegetation indices (VIs) and a mechanistic
approach based on inversion of a canopy radiative transfer
model (RTM).

First, we estimated LAI using the empirical approach, be-
cause of availability of field LAI measurements in the study
area. We calculated four VIs calculated from STAIR-derived
spectral reflectance: Wide Dynamic Range Vegetation Index
(WDRVI), Green Wide Dynamic Range Vegetation Index
(GWDRVI), Enhanced Vegetation Index (EVI), and Land
Surface Water Index (LSWI) for corn and soybean, respec-
tively (Eqs. 1–3). These four VIs were chosen because they
utilized information from different band combinations.

WDRVI=
0.1ρN− ρR

0.1ρN+ ρR
, (1)

GWDRVI=
0.1ρN− ρG

0.1ρN+ ρG
, (2)

EVI= 2.5
ρN− ρR

ρN+ 6ρR− 7.5ρB+ 1
, (3)

LSWI=
ρN− ρSW1

ρN+ ρSW2
, (4)

where ρB, ρG, ρR, ρN, and ρSW1 refer to the surface re-
flectance at blue, green, red, near-infrared, and the first
shortwave-infrared band, respectively. Subsequently, we
used field-measured LAI data collected using the destructive
method at Mead, Nebraska, from 2001 through 2007 to build
VI–LAI relationships (Gitelson et al., 2007). For each of the
four VIs we build a linear regression between time series of
VI and LAI for corn, soybean, and the combination of corn
and soybean, respectively (Table 1). At this point, the equa-
tion derived from the combination of corn and soybean was
used for vegetation cover other than corn and soybean. Al-
though this might cause bias for forest LAI estimation, it is
not a concern in this study as we focused on crop ET only. We
applied linear regressions to four VIs separately and averaged
the four derived LAIs as the final LAI estimation, with the
expectation that such an average would reduce uncertainty
caused by an individual VI–LAI relationship.

Second, we inversed the PROSAIL RTM using a look-up
table (LUT) method. PROSAIL is an efficient and widely
used model to simulate canopy reflectance given a set of sun-
object-view geometry, canopy structure, leaf biochemical,
and soil optical parameters (Jacquemoud et al., 2009). It is
a combination of the PROSPECT leaf hyperspectral proper-
ties model (Jacquemoud et al., 1996; Jacquemoud and Baret,
1990) and the SAIL canopy bidirectional reflectance model
(Verhoef, 1984, 1985). PROSAIL is particularly suitable for
grasslands and croplands (Darvishzadeh et al., 2008; Xu et
al., 2019) and is therefore used in this study. LUT is a ro-
bust and easy method to retrieve model parameters from ob-
served canopy reflectance (Verrelst et al., 2018). It is based

on the generation of a simulated canopy reflectance database
for a number of plausible combinations of model parame-
ter value ranges and the identification of parameter values
in the database leading to the best agreement between sim-
ulated and observed canopy reflectance. LUT is particularly
suitable for big data processing (Myneni et al., 2002) and is
therefore used in this study.

We established a database by running PROSAIL with sam-
pled parameter values listed in Table 2. For computation ef-
ficiency, we only sampled varied values for four parameters,
while others were fixed. These four free parameters, includ-
ing LAI (10 values), fraction of vegetation cover (6 values),
soil brightness (5 values), and chlorophyll content (4 values),
were chosen because they have been identified as the most
sensitive parameters in canopy radiative transfer models (Ba-
cour et al., 2002; Mousivand et al., 2014). Leaf inclination
distribution function is also sensitive, but we set fixed types
“spherical”, “planophile”, and “plagiophile” for corn, soy-
bean, and other biomes, respectively (Nguy-Robertson et al.,
2012; Pisek et al., 2013). The fixed values of other parame-
ters were set according to the literature (Baret et al., 2007;
Feret et al., 2008; Jacquemoud et al., 2009). Solar zenith an-
gle at satellite overpass time can be calculated, so we did not
set it as a free parameter. Instead, we built a set of databases
with solar zenith angle values (◦) of 20, 25, 30, 35, 40, 45,
and 50, respectively, representing the range during the grow-
ing season in the study area. In PROSAIL, specific absorp-
tion coefficients and the refractive index of leaf material are
pre-measured hyperspectral data from 400 to 2500 nm with
a 1 nm interval (Feret et al., 2008); we averaged them over
wavelengths to match Landsat 7 bands and assumed differ-
ences of spectral ranges between Landsat 5, Landsat 7, and
Landsat 8 have a marginal influence on LAI retrieval. We did
not use the default soil spectrum in PROSAIL, but spatiotem-
porally averaged all cropland pixels’ spectral reflectance in
April when no crop is planted across the study area to derive
representative soil spectral reflectance.

To retrieve LAI, we compared STAIR-derived surface re-
flectance (RSTAIR) with records in the canopy reflectance
database simulated by PROSAIL (RPROSAIL) pixel by pixel.
We used root mean square error (RMSE) as the cost function
which was defined as

RMSE=

√
1
l

∑l

λ=1
[RSTAIR (λ)−RPROSAIL (λ)]2, (5)

where λ= 1,2, . . . l indicates band number and l = 6 for
STAIR. Ideally, the simulated reflectance in the database
yielding the smallest RMSE can be considered the best sim-
ulation, and the corresponding LAI value can be considered
the solution for the satellite pixel. However, in reality the so-
lution might not be unique, because different parameter com-
binations could derive similar reflectance simulations, and
errors in both satellite and model could further amplify this
problem (Verrelst et al., 2018). For this reason, we chose the
top 10 % small RMSE simulations in the database and con-
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Table 1. Linear equations for LAI (y) as a function of VI (x) for corn, soybean, and the combination of corn and soybean.

VI Corn Soybean Combination

WDRVI y = 6.288x+ 4.631 y = 4.584x+ 3.432 y = 5.745x+ 4.288
GWDRVI y = 8.964x+ 5.875 y = 6.384x+ 4.275 y = 8.110x+ 5.395
EVI y = 10.569x− 2.165 y = 8.116x− 1.936 y = 9.665x− 1.993
LSWI y = 9.156x+ 1.070 y = 7.553x+ 0.888 y = 8.944x+ 0.982

Table 2. Parameter values needed to establish the canopy re-
flectance database by PROSAIL.

Parameters Values

LAI (m2 m−2) 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8
Fraction of vegetation cover (m2 m−2) 0, 0.2, 0.4, 0.6, 0.8, 1
Soil brightness (arbitrary unit) 0.01, 0.4, 0.8, 1.2, 1.6
Chlorophyll content (µg cm−2) 0, 20, 40, 60
Leaf inclination distribution function spherical for corn,

planophile for soybean,
plagiophile for others

Structure coefficient (arbitrary unit) 1.75
Carotenoid content (µg cm−2) 0
Equivalent water thickness (cm) 0.015
Leaf mass per area (g cm−2) 0.0075
Brown pigment content (arbitrary unit) 0
Hotspot parameter (arbitrary unit) 0.1
View zenith angle (◦) 0
Azimuth angle (◦) 0

sidered the average of the corresponding LAI values to be the
final solution. The threshold of 10 % was decided by evalu-
ating LUT-retrieved LAI against field-measured LAI at three
Mead sites, and it was within a reasonable range from the top
50 records to the top 20 % of records suggested by previous
studies (Duan et al., 2014; Weiss et al., 2000).

We further employed semi-empirical equations to calcu-
late αVIS and αNIR (Liang, 2001) from STAIR-derived spec-
tral reflectance in six Landsat bands:

αVIS = 0.443ρB+ 0.317ρG+ 0.240ρR, (6)
αNIR = 0.693ρN+ 0.212ρSW1+ 0.116ρSW2− 0.003, (7)

where ρSW2 is the surface reflectance at the second
shortwave-infrared band. For C3 crops/grasses, forests, and
C4 crops/grasses, peak Vcmax25 values were set at 180, 60,
and 45, respectively (Kattge et al., 2009; Zhang et al., 2014).
Ball–Berry slope and intercept are another two important pa-
rameters used in the stomatal conductance model, and their
values were set to 13.3 and 0.02 for C3 crops/grasses, 9.5 and
0.005 for forests, and 5.8 and 0.04 for C4 crops, respectively
(Miner et al., 2017). Distributions of C3 and C4 crops were
obtained from Crop Data Layer (CDL) data (Boryan et al.,
2011).

2.4 Evaluation of BESS-STAIR ET

The BESS-STAIR ET estimations were evaluated against
flux-tower ET measurements in the US Corn Belt. The US
Corn Belt (Fig. 2) generally refers to a region in the Mid-
western United States that has dominated corn and soybean
production in the United States (Green et al., 2018), which
currently produces about 45 % and 30 % of global corn and
soybean, respectively (USDA, 2014). The region is charac-
terized by relatively flat land, deep fertile soils, and high soil
organic matter (Green et al., 2018). Most parts of the US
Corn Belt have favorable growing conditions of temperature
and rainfall. The majority of the croplands in the US Corn
Belt are rainfed, with a small portion in the western part re-
lying on irrigation.

A total of 12 cropland sites scattered in six areas across the
US Corn Belt are registered in the AmeriFlux or FLUXNET
networks with publicly available ET data (Fig. 2 and Ta-
ble 3). These sites include both corn only and corn–soybean
rotation sites and both rainfed and irrigated sites, cover-
ing typical cropping patterns in the US Corn Belt. All of
them were used in this study to ensure the representative-
ness of the validation for the precision agriculture appli-
cations in this region. For six sites, US-Bo1 (Meyers and
Hollinger, 2004), US-Bo2 (Bernacchi et al., 2005), US-Br1
(Prueger et al., 2003), US-Br3 (Prueger et al., 2003), US-
Ro2 (Turner et al., 2016), and US-SFP (Wilson and Mey-
ers, 2007), level 2 half-hourly data were downloaded from
the AmeriFlux website (http://ameriflux.lbl.gov/, last access:
11 March 2020). For three sites, US-IB1 (Matamala et al.,
2008), US-Ro1 (Griffis et al., 2010), and US-Ro3 (Griffis
et al., 2010), standardized gap-filled level 4 daily mean
data were downloaded from the Carbon Dioxide Information
Analysis Center data archive website (https://mirrors.asun.
co/climate-mirror/cdiac.ornl.gov/pub/ameriflux/, last access:
11 March 2020). For the other three sites (Suyker et al.,
2004), US-Ne1, US-Ne2, and US-Ne3, standardized high-
quality gap-filled daily mean data were downloaded from
the FLUXNET2015 website (http://fluxnet.fluxdata.org/data/
fluxnet2015-dataset/, last access: 11 March 2020).

By comparing with eddy-covariance ET, we evaluated
three ET estimations: BESS-STAIR with VI-based LAI,
BESS-STAIR with RTM-based LAI, and BESS-STAIR
with MODIS LAI. MODIS LAI refers to the MCD15A3H
500 m resolution 4 d composite LAI product downloaded
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Figure 2. Study areas. Red dots indicate 12 flux-tower sites scattered in six areas across the US Corn Belt. The background map indicates
the percent each state contributes to the total national corn and soybean plantation area (USDA, 2018). The background image is a © NASA
Blue Marble image.

Table 3. Information of 12 flux-tower sites used for validation.

ID Site Location Latitude Longitude Plant Irrigation Years Source

1 US-Bo1 Bondville, IL 40.0062 −88.2904 corn/soybean N 2000–2008 AmeriFlux L2
2 US-Bo2 Bondville, IL 40.0090 −88.2900 corn/soybean N 2004–2006 AmeriFlux L2
3 US-Br1 Brooks Field, IA 41.9749 −93.6906 corn/soybean N 2005–2011 AmeriFlux L2
4 US-Br3 Brooks Field, IA 41.9747 −93.6936 corn/soybean N 2005–2011 AmeriFlux L2
5 US-IB1 Fermilab, IL 41.8593 −88.2227 corn/soybean N 2005–2007 AmeriFlux L4
6 US-Ne1 Mead, NE 41.1651 −96.4766 corn Y 2001–2012 FLUXNET2015
7 US-Ne2 Mead, NE 41.1649 −96.4701 corn/soybean Y 2001–2012 FLUXNET2015
8 US-Ne3 Mead, NE 41.1797 −96.4397 corn/soybean N 2001–2012 FLUXNET2015
9 US-Ro1 Rosemount, MN 44.7143 −93.0898 corn/soybean N 2004–2006 AmeriFlux L4
10 US-Ro2 Rosemount, MN 44.7288 −93.0888 corn/soybean/clover N 2008–2016 AmeriFlux L2
11 US-Ro3 Rosemount, MN 44.7217 −93.0893 corn/soybean N 2004–2006 AmeriFlux L4
12 US-SFP Sioux Falls, SD 43.2408 −96.9020 corn N 2007–2009 AmeriFlux L2

from https://lpdaac.usgs.gov/tools/data-pool/ (last access:
11 March 2020). Flux-tower measurements usually have an
irregular and dynamic footprint at scales from 100 m to 1 km
(Fu et al., 2014), but for simplicity, only 30 m resolution
BESS-STAIR pixels containing the flux tower were used for
the direct comparison. With regard to flux towers, measure-
ment data were directly used without energy closure adjust-
ment. For AmeriFlux level 2 data, half-hourly data were aver-
aged to daily ET only if no gaps exist during the day to avoid
sampling bias caused by missing data. For AmeriFlux level 4
data and FLUXNET2015 data, gap-filled daily ET was used
directly.

3 Results

3.1 Performance of STAIR LAI

LAI is the key input of BESS. The accuracy of high-
resolution LAI estimations determines the validity of high-
resolution ET estimations. We evaluated VI-based LAI and
RTM-based LAI estimations derived from 30 m resolution
STAIR fused surface reflectance data against field mea-
surements. We also compared them with the 500 m resolu-
tion MODIS LAI. Overall, the STAIR-derived LAI agrees
well with the measured LAI, with R2 > 0.85, RMSE < 0.8,
and mean bias error (MBE) ≈ 0 (Fig. 3). The RTM-based
method, which is calibration-free, yields the same perfor-
mance as the VI-based method, which requires substantial
field measurements to build empirical relationships. Misclas-
sification of CDL data between corn and soybean is an im-
portant uncertainty source since both methods rely on crop
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types. During 2001–2007, 4 out of 21 site years (19 %) over
the three Mead sites were misclassified. By using the cor-
rect classification (not shown), the accuracy of LAI estima-
tions reaches R2

= 0.90 and RMSE= 0.62 for the VI-based
method andR2

= 0.89 and RMSE= 0.68 for the RTM-based
method. By comparison, the coarse-resolution MODIS LAI
has relatively large errors, especially a negative bias (R2

=

0.55, RMSE= 1.68, and MBE=−0.97).

3.2 Performance of BESS-STAIR ET

BESS-STAIR daily ET estimations are in highly aligned
agreement with ground truth from the 12 flux-tower measure-
ments (Fig. 4). Across all of the 12 sites, BESS-STAIR ET
with RTM-based LAI achieves an overall coefficient of deter-
mination (R2) of 0.75, a RMSE of 2.29 MJ m−2 d−1, a rel-
ative error (E(|Xestimation−Xmeasurement|)/E(Xmeasurement),
RE) of 27.9 %, and no overall bias. Figure 5 further exhibits
its performance over all of the 12 flux-tower sites. R2 values
range from 0.68 to 0.94 for corn and from 0.65 to 0.81 for
soybean, highlighting the robustness of BESS-STAIR ET in
the US Corn Belt. BESS-STAIR ET with VI-based LAI has
similar performance (R2

= 0.75, RMSE= 2.24 MJ m−2 d−1,
and RE= 27.4 %). Considering the relatively small dif-
ference between BESS-STAIR using RTM-based LAI and
that using VI-based LAI, only the former one, which is
calibration-free, is demonstrated in the following parts of
this paper. By comparison, BESS ET with MODIS LAI
shows larger errors (R2

= 0.65, RMSE= 2.50 MJ m−2 d−1,
and RE= 30.2 %) compared to BESS-STAIR.

Figure 6 shows the comparison between BESS-STAIR
daily ET estimations and flux-tower measurements over site
years with the fewest data gaps in measurements. Across all
of the 12 sites, BESS-STAIR captures the seasonal charac-
teristics of ET observation from flux towers well, as they ex-
hibit generally consistent variations over the growing season.
During the peak growing season (June, July, and August), the
radiation displays a dominant impact on measured daily ET,
and it is reasonably estimated by BESS-STAIR ET as well.
In most cases, measured daily ET does not show a strong
and fast response to precipitation and/or irrigation, possibly
due to the plentiful water storage in soil. Two exceptions are
US-IB1 (2006) and US-Ne3 (2012). In the case of US-IB1,
no precipitation is available in August and little in July. As a
result, daily ET measurements drop slightly more quickly in
August than in the other cases. Such an anomaly is also de-
picted by BESS-STAIR ET. In the case of US-Ne3, the severe
drought in the 2012 summer causes slightly lower ET values
than the two adjacent irrigation sites (US-Ne1 and US-Ne2).
BESS-STAIR ET also captures this considerable reduction,
although a slight bias is observed in July.

Figure 7 shows the comparison between BESS-STAIR
ET/PET and flux-tower ET/PET at three sites (US-Ne1,
US-Ne2, and NS-Ne3) at Mead, Nebraska. Overall, BESS-
STAIR agrees well with the flux tower in both magnitude and

seasonal cycle. Although 2012 is a severe drought year, soil
water content (SWC) at the US-Ne3 rainfed site still shows
a relatively high level (> 0.2). As a result, ET/PET from both
BESS-STAIR and the flux tower is at the same level as the
adjacent two irrigated sites (US-Ne2 and US-Ne3).

3.3 Spatiotemporal variations of BESS-STAIR ET

BESS-STAIR daily ET demonstrates prominent spatial vari-
ations within the 0.1◦× 0.1◦ area near the Mead site in Ne-
braska (Fig. 8). Because of the impact of drought, central
pivot irrigated fields characterized by round-shaped plots
generally display higher values than surrounding croplands,
and croplands have much higher values than grasslands. Vari-
abilities of ET between different crop fields and within in-
dividual crop fields are also observable. Such variabilities
might be attributed to different irrigation strategies, varieties,
and/or other management. By comparison, though 500 m res-
olution BESS-MODIS ET is able to capture the general spa-
tial pattern, it has many mixed pixels and is unable to demon-
strate gradients across field boundaries.

Reasonable seasonal cycles for different land-cover types
are revealed by BESS-STAIR monthly ET averaged from
gap-free daily estimations. An example time series of
monthly ET maps at Brooks Field during the growing season
of 2000 is shown in Fig. 9. BESS-STAIR ET clearly cap-
tures the temporal dynamics throughout the growing season.
All vegetation shows low values (e.g., < 2 mm d−1) in April,
May, September, and October but high values in June, July,
and August (JJA), with their peaks in July. Different seasonal
cycles for corn, soybean, and grass are also captured. Grass
has the highest ET among the three vegetation types from
April through June. Corn has a higher ET than soybean in
June and July and decreases quickly from August. Soybean
has the lowest ET from April through June, but has the high-
est ET in August.

BESS-STAIR is also able to produce long-term ET/PET
estimation as an indicator of drought. Figure 10 shows an
example time series of peak growing season ET/PET at
Bondville from 2001 through 2017. Overall substantial inter-
annual variability is shown, with regional average ET/PET
values ranging from 0.76 in an extremely dry year (2012)
to 0.91 in an extremely wet year (2015). A positive linear
relationship (r = 0.42, p<0.1) is observed between BESS-
STAIR ET/PET and precipitation, and a negative linear rela-
tionship (r =−0.58, p<0.05) is observed between BESS-
STAIR ET/PET and VPD. The relatively stronger relation-
ship between ET/PET and VPD than that between ET/PET
and precipitation indicates atmospheric water demand is
likely to contribute more to drought than soil water supply
in this area.
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Figure 3. Scatter plots between LAI measurements and LAI estimations. LAI measurements are destructively collected at the three Mead
sites. (a–b) STAIR-derived daily 30 m resolution LAI using the VI-based method and the RTM-based method, respectively. (c) 500 m
resolution MODIS LAI.

Figure 4. Density scatter plots between ET measurements and ET estimations. ET measurements are from eddy-covariance data collected at
12 flux towers. (a, b) BESS-STAIR ET with VI-based LAI and RTM-based LAI, respectively. (c) 500 m BESS ET with MODIS LAI.

4 Discussions

4.1 Performance of BESS-STAIR ET

In this study, we have presented BESS-STAIR, a new frame-
work for estimating cropland ET at field and daily scale,
and we have demonstrated its high performance in the US
Corn Belt. The BESS process-based biophysical model,
driven by 30 m resolution vegetation-related variables de-
rived from STAIR fused surface spectral reflectance data
(Fig. 3) and medium-resolution environmental inputs derived
from MODIS and other satellite data (Fig. 1), is able to pro-
duce gap-free ET and PET estimations at field scale and at
daily intervals across space and time (Figs. 4–7). Over the 12
sites across the US Corn Belt (Fig. 2), BESS-STAIR explains
75 % of variations in flux-tower measured daily ET (Fig. 4),
with an overall RMSE of 2.29 MJ m−2 d−1 (equivalent to
0.93 mm d−1 or 26 W m−2), a 27.9 % relative error, and sta-
ble performance across sites (Fig. 5), as well as consistent
seasonal dynamics with respect to flux-tower measurements
(Figs. 6–7).

The error statistics of BESS-STAIR are commensurate
with previous high-resolution cropland ET mapping stud-
ies. Typical RMSE values include 25 W m−2 by TSEB-
DTD (Guzinski et al., 2014), 35 W m−2 by METRIC (Ir-
mak et al., 2011), 62 W m−2 by SEBS (McCabe and Wood,
2006), 0.60 mm d−1 by SSEBop (Senay et al., 2016), and
1.04 mm d−1 by SEBAL (Singh et al., 2008). Nevertheless,
it is worth mentioning that those studies used original Land-
sat data and therefore suffered from considerably large data
gaps. In contrast, BESS-STAIR uses daily Landsat-MODIS
fusion data free from any gaps, which leads to temporally
continuous ET estimation at the field level and thus can meet
the requirements of precision agriculture. In addition, it is
worth mentioning that BESS-STAIR is calibration-free and
therefore is scalable. It also indicates that the accuracy of
BESS-STAIR ET is likely to further improve by using lo-
cally optimized driving force or parameter values.

BESS-STAIR is also comparable to other cropland ET
mapping studies utilizing data fusion techniques. For ex-
ample, DisALEXI-STARFM daily ET estimates were val-
idated against the flux-tower measurements over the three
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Figure 5. Site-by-site R2 between flux tower measured and BESS-STAIR estimated daily ET for corn and soybean, respectively. Crop type
is from CDL data.

Mead sites (Yang et al., 2018). They reported error statis-
tics of around 1.2 mm d−1 RMSE and 29 % relative error.
BESS-STAIR’s performance at these three same sites shows
an average of 0.89 mm d−1 RMSE and 25.3 % relative error
(Fig. 11). At a monthly scale, the average RMSE and relative
errors are only 0.48 mm d−1 and 14.3 % (Appendix Fig. A1).
In addition, BESS-STAIR has the potential to apply to any
croplands around the world back to 1984, when both high
spatial resolution data (e.g., Landsat/TM) and high temporal
resolution data (e.g., NOAA/AVHRR) were available.

4.2 Scientific advantages of BESS-STAIR ET

The efficacy of BESS-STAIR lies in several aspects. First,
BESS is a water–carbon–energy coupled biophysical model.
BESS employs atmospheric and canopy radiative transfer
modules, a carbon assimilation module, a stomatal conduc-
tance module, and an energy balance module (Jiang and
Ryu, 2016; Ryu et al., 2011). BESS integrates the simula-
tion of the carbon cycle, water cycle, and energy cycle in
the same framework. Such a carbon–water–energy coupling
strategy realistically and coherently simulates plant physi-
ology and its response to the environment; specifically, the
carbon uptake and water loss by plants have been simulated
synchronously through environmental constraints on stom-
atal conductance, with further constraints by available energy
(Baldocchi and Meyers, 1998; Leuning et al., 1995). Many
land-surface models have already adopted such a strategy
and have successfully simulated the evolution of terrestrial
ecosystems (Ju et al., 2006; Sellers, 1997; Tian et al., 2010).
However, this is not the case in commonly used remote-
sensing models. Empirical methods, water balance methods,
and Priestley–Taylor methods only focus on the water cy-
cle. Energy balance methods, triangular space methods, and

Penman–Monteith methods couple the water cycle and en-
ergy cycle and consider ET in the context of energy partition-
ing. BESS, unlike these remote-sensing models, constrains
ET with regards to both energy requirement and carbon re-
quirement, thanks to explicit modeling of radiative trans-
fer and stomatal behavior processes. For the above reasons,
BESS-STAIR ET not only achieves high accuracy (Figs. A1–
A3), but also accurately captures responses to GPP, radiation,
temperature, and humidity at daily scale (Table 4). Thus,
BESS-STAIR has the potential to advance the understand-
ing of crop responses to climate change by bridging remote-
sensing data and land-surface models, which was first sug-
gested by Sellers et al. (1997) more than 20 years ago.

The second strength is that BESS-STAIR is designed to be
most sensitive to the variables which can be well-quantified
from remote-sensing data. BESS ET is most sensitive to solar
radiation, followed by LAI (Ryu et al., 2011), as BESS ET is
mainly constrained by net radiation and GPP. In most cases,
solar radiation is the predominant component of net radia-
tion, while LAI determines the capacity of radiation absorp-
tion and subsequently determines GPP. BESS explicitly com-
putes radiation components at high accuracy by driving an
atmosphere radiative transfer model, FLiES, using MODIS
cloud, aerosol, and atmospheric profile products. Globally,
BESS-estimated solar radiation has its R2 at about 0.85 and
0.95 for MODIS snapshots and 4 d averages, respectively
(Ryu et al., 2018). On the other hand, BESS-STAIR calcu-
lates high spatiotemporal resolution LAI and albedo from
fused surface reflectance data. Since Landsat and MODIS
surface reflectance products are publicly available and highly
reliable (Claverie et al., 2015; Masek et al., 2006), spatial
heterogeneity and temporal dynamics of crop growing con-
ditions are captured well (Fig. 8). This study only uses re-
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Figure 6. Seasonal time series of flux tower measured and BESS-STAIR estimated daily ET for 12 selected site years. Daily radiation and
precipitation/irrigation are overlaid except for US-Br3.

flectance data fused from Landsat and MODIS, but STAIR
can be easily extended to further incorporate other types of
data, such as Sentinel-2 (10 m resolution) and Planet Lab
CubeSats (3 m resolution) (McCabe et al., 2017). By incor-
porating more high-resolution observations, the relevance of
reconstructed high-resolution image series can be further im-
proved.

The third strength is that BESS-STAIR is able to per-
form under all-weather conditions. BESS-STAIR fills data
gaps in surface reflectance, which has a smooth day-to-day
variation even with changes in sky conditions (Liu et al.,
2017). Based on filtered surface reflectance, LAI and albedo

time series are well-reconstructed, and subsequently BESS-
STAIR could directly work under all-weather conditions. In
this manner, BESS-STAIR has no need to fill cloudy-sky ET
using clear-sky ET estimations, which is error prone because
the empirically filled ET estimations usually lack sophisti-
cated process-level model constraints and thus can have large
uncertainties. Figure 12 shows that the estimation errors of
BESS-STAIR ET do not change significantly under differ-
ent sky conditions, with a low to high “sky clearness index”
ranging from more cloudy to more clear-sky conditions.
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Figure 7. Seasonal time series of daily ET/PET derived from BESS-STAIR and the flux tower for US-Ne1, US-Ne2, and NS-Ne3 in 2012,
along with measured daily mean soil water content (SWC).

Figure 8. Daily ET (MJ m−2 d−1) derived from (a) BESS-STAIR and (b) BESS-MODIS at Mead (41.1–41.2◦ N, 96.4–96.5◦W) on 1 Au-
gust 2012. Circles indicate flux towers in this region.

4.3 Limitations and future improvements of
BESS-STAIR ET

In this study, several inputs used by BESS have some limita-
tions in terms of generality and accessibility. First, three plant
functional parameters, peak Vcmax25 and Ball–Barry slope
and intercept, are obtained from the literature, assuming a
constant given C3 or C4 plant type. Other land-surface mod-
els tend to use a similar strategy by assigning fixed values
to a given plant functional type (PFT) (Bonan et al., 2011;
Kattge et al., 2009; Miner et al., 2017). The drawback of this
strategy is that it overlooks within-PFT variations and the
feedback mechanisms between vegetation and its environ-
ment (Van Bodegom et al., 2014). These limitations might

be mitigated by incorporating innovative leaf trait estima-
tion techniques that have emerged in recent years, such as
imaging spectroscopy (Serbin et al., 2015), sun-induced flu-
orescence (Zhang et al., 2018), and plant optimization the-
ory (Walker et al., 2017; Wang et al., 2017). Second, BESS-
STAIR in this study uses CDL data which are only available
in the United States. Fortunately, BESS does not require spe-
cific crop types, but only C3/C4 distributions, and the separa-
tion of the major C4 crop maize from other crops is practical
using time-series satellite data (Cai et al., 2018; Zhong et al.,
2016). It is noted that misclassification of C3 and C4 crops is
likely to cause a large bias in GPP but a relatively small bias
in ET (Figs. A1–A3).
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Figure 9. Monthly mean BESS-STAIR ET at Brooks Field (41.9–42.0◦ N, 96.65–96.75◦W) during the growing season of 2000, along with
a CDL land-cover map. The last subplot shows the average time series of corn, soybean, and grass. Circles indicate flux towers in this region.

Table 4. BESS-STAIR captures the correct response of daily ET to GPP, radiation (Rg), temperature (Ta), and humidity (VPD) as compared to
flux-tower measurements over the three Mead sites from 2001 through 2012. The linear equation slopes and correlation coefficients between
ET and other factors are similar in flux-tower measurements and BESS-STAIR estimations, for both the whole growing season (April–
October) or only the peak growing season (June, July, and August). For “flux-tower” columns, Rg, Ta, and VPD are from site measurements,
while for “BESS-STAIR” columns, they are from satellite-derived coarse-resolution inputs.

Time period Relationship Flux tower BESS-STAIR

Equation Correlation Equation Correlation

Growing season ET (MJ m−2 d−1) ∼ GPP (gC m−2 d−1) y = 0.44x+ 3.19 r = 0.86(p<0.01) y = 0.65x+ 2.60 r = 0.90(p<0.01)
(April–October) ET (MJ m−2 d−1) ∼ Rg (MJ m−2 d−1) y = 0.33x− 0.07 r = 0.56(p<0.01) y = 0.29x+ 0.28 r = 0.51(p<0.01)

ET (MJ m−2 d−1) ∼ Ta (◦C) y = 0.44x− 1.60 r = 0.67(p<0.01) y = 0.43x− 1.64 r = 0.54(p<0.01)
ET (MJ m−2 d−1) ∼ VPD (hPa) y = 0.32x+ 4.10 r = 0.31(p<0.01) y = 0.44x− 2.50 r = 0.68(p<0.01)

JJA (June, July, ET (MJ m−2 d−1) ∼ GPP (gC m−2 d−1) y = 0.35x+ 4.85 r = 0.76(p<0.01) y = 0.39x+ 6.36 r = 0.63(p<0.01)
August) ET (MJ m−2 d−1) ∼ Rg (MJ m−2 d−1) y = 0.36x+ 1.79 r = 0.58(p<0.01) y = 0.36x+ 3.40 r = 0.77(p<0.01)

ET (MJ m−2 d−1) ∼ Ta (◦C) y = 0.52x− 2.20 r = 0.46(p<0.01) y = 0.15x+ 9.40 r = 0.28(p<0.01)
ET (MJ m−2 d−1) ∼ VPD (hPa) y = 0.28x+ 7.61 r = 0.32(p<0.001) y = 0.28x+ 4.37 r = 0.30(p<0.001)

Though BESS-STAIR is able to capture water stress im-
pact on ET in the US Corn Belt where atmospheric demands
play a major role, its applicability to regions where soil sup-
ply dominates needs further investigation. Some studies sug-
gest that an optical signal as an indicator of drought per-
forms at a longer timescale than a thermal signal does (Otkin
et al., 2017). Drought first decreases soil moisture content
due to enhanced ET induced by high atmospheric demand,
then decreases ET due to low soil moisture content, and
finally causes damage to plants which changes surface re-
flectance. Accordingly, LAI may not serve as a relevant early
warning of droughts. Furthermore, severe soil moisture stress
may cause physiological deterioration in addition to struc-
tural damage that has been reflected in LAI. To address this
issue for dry regions, we acknowledge that LST observations
may provide essential adding values. At this point, the ca-
pacity of BESS-STAIR to estimate LST leads to the possibil-

ity of optimizing BESS-STAIR using satellite-derived LST.
Recent advances in innovative thermal observation platforms
such as ECOSTRESS (Hulley et al., 2017), GOES-R (Schmit
et al., 2017), and Sentinel-3 (Zheng et al., 2019) have pro-
vided a great opportunity to integrate satellite-derived LST
with BESS-STAIR.

The BESS model itself in essence estimates instantaneous
ET. The ratio of snapshot potential solar radiation to daily
potential solar radiation is adopted as a scaling factor for the
temporal upscaling of ET (Ryu et al., 2012). In this study,
BESS runs two times per day, utilizing radiation components
derived from Terra/MODIS (around 11:00 solar time) and
Aqua/MODIS (around 13:00 solar time) data, respectively.
The two instantaneous ET estimates are separately upscaled
to daily estimates and averaged. In spite of the robustness
of the upscaling algorithm (Ryu et al., 2012), bias cannot
be avoided if the sky conditions at two overpass times are
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Figure 10. Peak growing season (June, July, and August) BESS-STAIR ET/PET at Bondville (39.95–40.05◦ N, 88.25–88.35◦W) from
2001 through 2017 along with two scatter plots between peak growing season precipitation and ET/PET and peak growing season VPD
and ET/PET over the 17 years. Precipitation and VPD data are from Daily Surface Weather Data (Daymet) at Bondville, Illinois (https:
//modis.ornl.gov/cgi-bin/sites/site/?id=us_illinois_bondville&product=Daymet, last access: 11 March 2020), where VPD is derived using
maximum air temperature and water vapor pressure. Circles indicate flux towers in this region.

Figure 11. Scatter plots between ET measurements and ET estimations at three sites: US-Ne1, US-Ne2, and US-Ne3.
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Figure 12. BESS-STAIR estimated daily ET has a similar perfor-
mance with a varying sky clearness index (the ratio of incoming ra-
diation on the surface to that on the top-of-atmosphere). The lower
and upper boundaries of boxes refer to the first and third quartiles
of error statistics. The bars inside the boxes refer to median values.
The whiskers indicate 1.5 times the distance between the first and
third quartiles.

not representative for that day, which is natural and com-
mon in the presence of moving cloud. Since BESS is a time-
independent model and can perform at any time during day-
time, adding more snapshots to account for the diurnal varia-
tions of radiation can solve this problem. Unfortunately, fine-
resolution polar-orbiting satellites usually have similar over-
pass times (10:00–11:00 and 13:00–14:00), so adding even
more satellites is likely to bring redundant information only.
Reanalysis radiation data covering the diurnal cycle have
limited accuracy and coarse resolution (Babst et al., 2008;
X. Zhang et al., 2016), so they may be unable to provide
much added value as well. Next-generation geostationary
satellites acquiring data with both high spatial and temporal
resolutions, such as GOES-R and GaoFen-4 (Goodman et al.,
2012; Xu et al., 2017), are expected to enable BESS-STAIR
ET in an hourly or sub-hourly interval and subsequently gen-
erate more realistic daily ET estimates.

5 Conclusions

In this study we presented BESS-STAIR, a new framework to
estimate high spatiotemporal resolution ET that can be used
for field-level precision water resource management. BESS-
STAIR couples a satellite-driven water–energy–carbon cou-
pled biophysical model, BESS, with a generic and fully au-
tomated fusion algorithm, STAIR, to generate gap-free 30 m
resolution daily ET estimations. Comprehensive evaluation
of BESS-STAIR ET estimations revealed (1) reliable perfor-
mance over 12 flux-tower sites across the US Corn Belt and
(2) reasonable spatial patterns, seasonal cycles, and interan-
nual dynamics. The proposed BESS-STAIR framework has
demonstrated its ability to provide significant advancements
with regard to daily field-level estimations of ET at regional
and decadal scales. We expect BESS-STAIR to become a
solid tool for precision water resource management and other
precision agriculture applications for the US Corn Belt as
well as other agricultural areas around the world, thanks to
the global coverage of input data.

www.hydrol-earth-syst-sci.net/24/1251/2020/ Hydrol. Earth Syst. Sci., 24, 1251–1273, 2020



1266 C. Jiang et al.: BESS-STAIR: a daily, 30 m ET estimation framework

Appendix A: Key equations for energy balance in BESS.
Subscript i represents sunlit or shaded canopy

Canopy conductance Gc,i for sunlit/shaded canopy is calcu-
lated as (Ball, 1988)

Gc,i =m
RH
Ca
Ac,i + b, (A1)

wherem and b are Ball–Berry coefficients, RH is relative hu-
midity, Ca is ambient CO2 concentration, and Ac,j is carbon
assimilation by sunlit/shaded canopy.

Canopy net radiation Rn for sunlit/shaded canopy is calcu-
lated as (Kowalczyk et al., 2006)

Rn,i =QS,i +QL,i − cpGr
(
Tf,i − Ta

)
, (A2)

where Qs,i and QL,i are net shortwave and longwave radia-
tion for sunlit/shaded canopy, Tf,i is leaf temperature for sun-
lit/shaded canopy, Ta is air temperature, cp is specific heat,
and Gr is canopy conductance for radiation:

Gr = 4σεf T 3
a /cp. (A3)

At this point, Ac,j is calculated by the Farquhar photo-
synthesis model for C3 (Collatz et al., 1991) and C4 (Col-
latz et al., 1992) crops, and Qs,i and QL,i are calculated by
radiative transfer models for shortwave (Ryu et al., 2011)
and longwave (Kowalczyk et al., 2006), respectively. Tf,i is
solved through an iterative procedure (Jiang and Ryu, 2016).
Subsequently, latent heat flux λEi for sunlit/shaded canopy
is calculated by the quadratic form of the Penman–Monteith
equation:

aλE2
i + bλEi + c = 0, (A4)

where λ is latent heat of vaporization, and

a =
1
2
d2es (Ta)

dT 2
a

r2
a

ρCpγ
(
ra+ rc,i

) , (A5)

b =−1−
des (Ta)

dTa

ra

γ
(
ra+ rc,i

) − d2es (Ta)

dT 2
a

Rn,ir
2
a

ρCpγ
(
ra+ rc,i

) , (A6)

c =
ρCp

γ
(
ra+ rc,i

)D+ des (Ta)

dTa

ra

γ
(
ra+ rc,i

)Rn+ aR
2
n,i, (A7)

where es(Ta) is saturated vapor pressure, ra is aerodynamic
resistance, ρ is air density, γ is a psychrometric constant, D
is vapor pressure deficit, and rc,i is canopy resistance, the
reciprocal of Gc,i .

Soil evaporation is calculated as (Fisher et al., 2008)

λEi =

des(Ta)
dTa

des(Ta)
dTa
+ γ

(
Rn,soil−G

)
RHD/1000, (A8)

where Rn,soil is net radiation for soil and G is ground heat
storage calculated as 0.3×Rn,soil.

Figure A1. Time series of monthly mean ET from flux-tower mea-
surements and BESS-STAIR estimations.

Figure A2. Time series of monthly mean GPP from flux-tower mea-
surements and BESS-STAIR estimations. Significant underestima-
tions in 2003 and 2011 for Ne1, in 2005 for Ne2, and in 2005 for
Ne3 are due to misclassification of corn as soybean in CDL. Signif-
icant overestimations in 2006 for Ne2 are due to misclassification
of soybean as corn in CDL.
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Figure A3. Time series of monthly mean Rn from flux-tower mea-
surements and BESS-STAIR estimations.

Figure A4. Examples of daily GPP (gC m−2 d−1) derived from
BESS-STAIR at Rosemount (44.65–44.75◦ N, 93.05–93.15◦W) in
2017. Circles indicate flux towers in this region.
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