Articles | Volume 23, issue 1
Hydrol. Earth Syst. Sci., 23, 537–548, 2019
https://doi.org/10.5194/hess-23-537-2019
Hydrol. Earth Syst. Sci., 23, 537–548, 2019
https://doi.org/10.5194/hess-23-537-2019

Education and communication 29 Jan 2019

Education and communication | 29 Jan 2019

Perspectives and ambitions of interdisciplinary connectivity researchers

Eva Nora Paton et al.

Related authors

Maximum Entropy Distribution of Rainfall Intensity and Duration – MEDRID: a method for precipitation temporal downscaling for sediment delivery assessment
Pedro Henrique Lima Alencar, Eva Nora Paton, and José Carlos de Araújo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-278,https://doi.org/10.5194/hess-2021-278, 2021
Preprint under review for HESS
Short summary
Seasonal ecosystem vulnerability to climatic anomalies in the Mediterranean
Johannes Vogel, Eva Paton, and Valentin Aich
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-47,https://doi.org/10.5194/bg-2021-47, 2021
Revised manuscript under review for BG
Short summary
Floods in the Niger basin – analysis and attribution
V. Aich, B. Koné, F. F. Hattermann, and E. N. Müller
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-5171-2014,https://doi.org/10.5194/nhessd-2-5171-2014, 2014
Revised manuscript not accepted
Comparing impacts of climate change on streamflow in four large African river basins
V. Aich, S. Liersch, T. Vetter, S. Huang, J. Tecklenburg, P. Hoffmann, H. Koch, S. Fournet, V. Krysanova, E. N. Müller, and F. F. Hattermann
Hydrol. Earth Syst. Sci., 18, 1305–1321, https://doi.org/10.5194/hess-18-1305-2014,https://doi.org/10.5194/hess-18-1305-2014, 2014

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021,https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
A new fractal-theory-based criterion for hydrological model calibration
Zhixu Bai, Yao Wu, Di Ma, and Yue-Ping Xu
Hydrol. Earth Syst. Sci., 25, 3675–3690, https://doi.org/10.5194/hess-25-3675-2021,https://doi.org/10.5194/hess-25-3675-2021, 2021
Short summary
The value of water isotope data on improving process understanding in a glacierized catchment on the Tibetan Plateau
Yi Nan, Lide Tian, Zhihua He, Fuqiang Tian, and Lili Shao
Hydrol. Earth Syst. Sci., 25, 3653–3673, https://doi.org/10.5194/hess-25-3653-2021,https://doi.org/10.5194/hess-25-3653-2021, 2021
Short summary
Machine learning deciphers CO2 sequestration and subsurface flowpaths from stream chemistry
Andrew R. Shaughnessy, Xin Gu, Tao Wen, and Susan L. Brantley
Hydrol. Earth Syst. Sci., 25, 3397–3409, https://doi.org/10.5194/hess-25-3397-2021,https://doi.org/10.5194/hess-25-3397-2021, 2021
Short summary
Future changes in annual, seasonal and monthly runoff signatures in contrasting Alpine catchments in Austria
Sarah Hanus, Markus Hrachowitz, Harry Zekollari, Gerrit Schoups, Miren Vizcaino, and Roland Kaitna
Hydrol. Earth Syst. Sci., 25, 3429–3453, https://doi.org/10.5194/hess-25-3429-2021,https://doi.org/10.5194/hess-25-3429-2021, 2021
Short summary

Cited articles

Ahlmer, A.-K., Cavalli, M., Hansson, K., Koutsouris, A. J., Crema, S., and Kalantari, Z.: Soil moisture remote-sensing applications for identification of flood-prone areas along transport infrastructure, Environ. Earth Sci., 77, 533, https://doi.org/10.1007/s12665-018-7704-z, 2018. 
Ali, G., Oswald, C., Spence, C., and Wellen, C.: The t-tel method for assessing water, sediment, and chemical connectivity, Water Resour. Res., 54, 634–662, https://doi.org/10.1002/2017wr020707, 2018. 
Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M., and Turlure, C.: Individual dispersal, landscape connectivity and ecological networks, Biol. Rev., 88, 310–326, https://doi.org/10.1111/brv.12000, 2013. 
Bracken, L. J. and Croke, J. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems, Hydrol. Proc., 21, 1749–1763, https://doi.org/10.1002/hyp.6313, 2007. 
Bracken, L. J. and Oughton, E. A.: 'What do you mean?' The importance of language in developing interdisciplinary research, Transactions of the Institute of British Geographers, 31, 371–382, https://doi.org/10.1111/j.1475-5661.2006.00218.x, 2006. 
Download
Short summary
We reviewed research perspectives and ambitions of connectivity scientists in order to improve joint connectivity research across disciplinary boundaries. We demonstrated the wide diversity of approaching science in the community. We introduced a shared mental model approach with an exploratory case study as a way to overcome persistent barriers in understanding by identifying gaps and overlaps of individual researchers' perspectives, which improves collaboration in interdisciplinary science.