Articles | Volume 23, issue 11
https://doi.org/10.5194/hess-23-4661-2019
https://doi.org/10.5194/hess-23-4661-2019
Research article
 | Highlight paper
 | 
18 Nov 2019
Research article | Highlight paper |  | 18 Nov 2019

Distinct stores and the routing of water in the deep critical zone of a snow-dominated volcanic catchment

Alissa White, Bryan Moravec, Jennifer McIntosh, Yaniv Olshansky, Ben Paras, R. Andres Sanchez, Ty P. A. Ferré, Thomas Meixner, and Jon Chorover

Related authors

Wet–dry cycles impact DOM retention in subsurface soils
Yaniv Olshansky, Robert A. Root, and Jon Chorover
Biogeosciences, 15, 821–832, https://doi.org/10.5194/bg-15-821-2018,https://doi.org/10.5194/bg-15-821-2018, 2018
Short summary
Influence of climate variability on water partitioning and effective energy and mass transfer in a semi-arid critical zone
Xavier Zapata-Rios, Paul D. Brooks, Peter A. Troch, Jennifer McIntosh, and Craig Rasmussen
Hydrol. Earth Syst. Sci., 20, 1103–1115, https://doi.org/10.5194/hess-20-1103-2016,https://doi.org/10.5194/hess-20-1103-2016, 2016
Short summary

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Instruments and observation techniques
Mixed-cultivation grasslands enhance runoff generation and reduce soil loss in the restoration of degraded alpine hillsides
Yulei Ma, Yifan Liu, Jesús Rodrigo-Comino, Manuel López-Vicente, and Gao-Lin Wu
Hydrol. Earth Syst. Sci., 28, 3947–3961, https://doi.org/10.5194/hess-28-3947-2024,https://doi.org/10.5194/hess-28-3947-2024, 2024
Short summary
Assessment of plot-scale sediment transport on young moraines in the Swiss Alps using a fluorescent sand tracer
Fabian Maier, Florian Lustenberger, and Ilja van Meerveld
Hydrol. Earth Syst. Sci., 27, 4609–4635, https://doi.org/10.5194/hess-27-4609-2023,https://doi.org/10.5194/hess-27-4609-2023, 2023
Short summary
Subsurface flow paths in a chronosequence of calcareous soils: impact of soil age and rainfall intensities on preferential flow occurrence
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci., 26, 4953–4974, https://doi.org/10.5194/hess-26-4953-2022,https://doi.org/10.5194/hess-26-4953-2022, 2022
Short summary
Evaporation, infiltration and storage of soil water in different vegetation zones in the Qilian Mountains: a stable isotope perspective
Guofeng Zhu, Leilei Yong, Xi Zhao, Yuwei Liu, Zhuanxia Zhang, Yuanxiao Xu, Zhigang Sun, Liyuan Sang, and Lei Wang
Hydrol. Earth Syst. Sci., 26, 3771–3784, https://doi.org/10.5194/hess-26-3771-2022,https://doi.org/10.5194/hess-26-3771-2022, 2022
Short summary
Groundwater fluctuations during a debris flow event in western Norway – triggered by rain and snowmelt
Stein Bondevik and Asgeir Sorteberg
Hydrol. Earth Syst. Sci., 25, 4147–4158, https://doi.org/10.5194/hess-25-4147-2021,https://doi.org/10.5194/hess-25-4147-2021, 2021
Short summary

Cited articles

Anderson, S. P., von Blanckenburg, F., and White, A. F.: Physical and chemical controls on the critical zone, Elements, 3, 315–319, https://doi.org/10.2113/gselements.3.5.315, 2007. 
Anderson, S. P., Bales, R. C., and Duffy, C. J.: Critical Zone Observatories: Building a network to advance interdisciplinary study of Earth surface processes, Mineralogical Magazine, 72, 7–10, https://doi.org/10.1180/minmag.2008.072.1.7, 2008. 
Appelo, C. A. J. and Postma, D.: Geochemistry, Groundwater and Pollution, 2nd edn., CRC press, New York, USA, 2005. 
Bailey, R. A., Smith, R. L., and Ross, C. S.: Stratigraphic Nomenclature of Volcanic Rocks in the Jemez Mountains, New Mexico, Geological Survey Bulletin 1274-P: Contributions to Stratigraphy, US Geological Survey, 1969. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 
Download
Short summary
This paper examines the influence of the subsurface structure on water routing, water residence times, and the hydrologic response of distinct groundwater stores and further investigates their contribution to streamflow. We conclude that deep groundwater from the fractured aquifer system, rather than shallow groundwater, is the dominant source of streamflow, which highlights the need to better characterize the deep subsurface of mountain systems using interdisciplinary studies such as this one.