Articles | Volume 23, issue 11
https://doi.org/10.5194/hess-23-4419-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-4419-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detection and attribution of flood trends in Mediterranean basins
HSM (Univ. Montpellier, CNRS, IRD), 300 Av. du Professeur Emile
Jeanbrau, 34090 Montpellier, France
Louise Mimeau
HSM (Univ. Montpellier, CNRS, IRD), 300 Av. du Professeur Emile
Jeanbrau, 34090 Montpellier, France
Luc Neppel
HSM (Univ. Montpellier, CNRS, IRD), 300 Av. du Professeur Emile
Jeanbrau, 34090 Montpellier, France
Freddy Vinet
GRED (Univ. Paul Valéry, IRD), 2 rue du Pr Henri Serres, 34000
Montpellier, France
Eric Sauquet
IRSTEA, UR RiverLy, Centre de Lyon-Villeurbanne, 5 rue de la Doua
CS 20244, 69625 Villeurbanne, France
Related authors
Nils Poncet, Philippe Lucas-Picher, Yves Tramblay, Guillaume Thirel, Humberto Vergara, Jonathan Gourley, and Antoinette Alias
Nat. Hazards Earth Syst. Sci., 24, 1163–1183, https://doi.org/10.5194/nhess-24-1163-2024, https://doi.org/10.5194/nhess-24-1163-2024, 2024
Short summary
Short summary
High-resolution convection-permitting climate models (CPMs) are now available to better simulate rainstorm events leading to flash floods. In this study, two hydrological models are compared to simulate floods in a Mediterranean basin, showing a better ability of the CPM to reproduce flood peaks compared to coarser-resolution climate models. Future projections are also different, with a projected increase for the most severe floods and a potential decrease for the most frequent events.
Lorenzo Alfieri, Andrea Libertino, Lorenzo Campo, Francesco Dottori, Simone Gabellani, Tatiana Ghizzoni, Alessandro Masoero, Lauro Rossi, Roberto Rudari, Nicola Testa, Eva Trasforini, Ahmed Amdihun, Jully Ouma, Luca Rossi, Yves Tramblay, Huan Wu, and Marco Massabò
Nat. Hazards Earth Syst. Sci., 24, 199–224, https://doi.org/10.5194/nhess-24-199-2024, https://doi.org/10.5194/nhess-24-199-2024, 2024
Short summary
Short summary
This work describes Flood-PROOFS East Africa, an impact-based flood forecasting system for the Greater Horn of Africa. It is based on hydrological simulations, inundation mapping, and estimation of population and assets exposed to upcoming river floods. The system supports duty officers in African institutions in the daily monitoring of hydro-meteorological disasters. A first evaluation shows the system performance for the catastrophic floods in the Nile River basin in summer 2020.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Yves Tramblay, Patrick Arnaud, Guillaume Artigue, Michel Lang, Emmanuel Paquet, Luc Neppel, and Eric Sauquet
Hydrol. Earth Syst. Sci., 27, 2973–2987, https://doi.org/10.5194/hess-27-2973-2023, https://doi.org/10.5194/hess-27-2973-2023, 2023
Short summary
Short summary
Mediterranean floods are causing major damage, and recent studies have shown that, despite the increase in intense rainfall, there has been no increase in river floods. This study reveals that the seasonality of floods changed in the Mediterranean Basin during 1959–2021. There was also an increased frequency of floods linked to short episodes of intense rain, associated with a decrease in soil moisture. These changes need to be taken into consideration to adapt flood warning systems.
Yves Tramblay and Pere Quintana Seguí
Nat. Hazards Earth Syst. Sci., 22, 1325–1334, https://doi.org/10.5194/nhess-22-1325-2022, https://doi.org/10.5194/nhess-22-1325-2022, 2022
Short summary
Short summary
Monitoring soil moisture is important during droughts, but very few measurements are available. Consequently, land-surface models are essential tools for reproducing soil moisture dynamics. In this study, a hybrid approach allowed for regionalizing soil water content using a machine learning method. This approach proved to be efficient, compared to the use of soil property maps, to run a simple soil moisture accounting model, and therefore it can be applied in various regions.
Yves Tramblay, Nathalie Rouché, Jean-Emmanuel Paturel, Gil Mahé, Jean-François Boyer, Ernest Amoussou, Ansoumana Bodian, Honoré Dacosta, Hamouda Dakhlaoui, Alain Dezetter, Denis Hughes, Lahoucine Hanich, Christophe Peugeot, Raphael Tshimanga, and Patrick Lachassagne
Earth Syst. Sci. Data, 13, 1547–1560, https://doi.org/10.5194/essd-13-1547-2021, https://doi.org/10.5194/essd-13-1547-2021, 2021
Short summary
Short summary
This dataset provides a set of hydrometric indices for about 1500 stations across Africa with daily discharge data. These indices represent mean flow characteristics and extremes (low flows and floods), allowing us to study the long-term evolution of hydrology in Africa and support the modeling efforts that aim at reducing the vulnerability of African countries to hydro-climatic variability.
Louise Mimeau, Yves Tramblay, Luca Brocca, Christian Massari, Stefania Camici, and Pascal Finaud-Guyot
Hydrol. Earth Syst. Sci., 25, 653–669, https://doi.org/10.5194/hess-25-653-2021, https://doi.org/10.5194/hess-25-653-2021, 2021
Short summary
Short summary
Soil moisture is a key variable related to droughts and flood genesis, but little is known about the evolution of soil moisture under climate change. Here, using a simulation approach, we show that changes in soil moisture are driven by changes in precipitation intermittence rather than changes in precipitation intensity or in temperature.
El Mahdi El Khalki, Yves Tramblay, Christian Massari, Luca Brocca, Vincent Simonneaux, Simon Gascoin, and Mohamed El Mehdi Saidi
Nat. Hazards Earth Syst. Sci., 20, 2591–2607, https://doi.org/10.5194/nhess-20-2591-2020, https://doi.org/10.5194/nhess-20-2591-2020, 2020
Short summary
Short summary
In North Africa, the vulnerability to floods is high, and there is a need to improve the flood-forecasting systems. Remote-sensing and reanalysis data can palliate the lack of in situ measurements, in particular for soil moisture, which is a crucial parameter to consider when modeling floods. In this study we provide an evaluation of recent globally available soil moisture products for flood modeling in Morocco.
Pauline Rivoire, Yves Tramblay, Luc Neppel, Elke Hertig, and Sergio M. Vicente-Serrano
Nat. Hazards Earth Syst. Sci., 19, 1629–1638, https://doi.org/10.5194/nhess-19-1629-2019, https://doi.org/10.5194/nhess-19-1629-2019, 2019
Short summary
Short summary
In order to define a dry period, a threshold for wet days is usually considered to account for measurement errors and evaporation. In the present study, we compare the threshold of 1 mm d−1, the most commonly used threshold, to a time-varying threshold describing evapotranspiration to compare how the risk of extreme dry spells is estimated with both thresholds. Results indicate that considering a fixed threshold can underestimate extreme dry spells during the extended summer.
Y. Tramblay, S. El Adlouni, and E. Servat
Nat. Hazards Earth Syst. Sci., 13, 3235–3248, https://doi.org/10.5194/nhess-13-3235-2013, https://doi.org/10.5194/nhess-13-3235-2013, 2013
Y. Tramblay, D. Ruelland, S. Somot, R. Bouaicha, and E. Servat
Hydrol. Earth Syst. Sci., 17, 3721–3739, https://doi.org/10.5194/hess-17-3721-2013, https://doi.org/10.5194/hess-17-3721-2013, 2013
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024, https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Short summary
We conducted a high-resolution hydrological simulation from 1959 to 2020 across France. We used a simple trial-and-error calibration to reduce the biases of the simulated water budget compared to observations. The selected simulation satisfactorily reproduces water fluxes, including their spatial contrasts and temporal trends. This work offers a reliable historical overview of water resources and a robust configuration for climate change impact analysis at the nationwide scale of France.
Tristan Jaouen, Lionel Benoit, Louis Héraut, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2737, https://doi.org/10.5194/egusphere-2024-2737, 2024
Short summary
Short summary
This study uses a multi-model approach to assess future changes in river flow intermittency across France under climate change. Combining projections from the Explore2 project with historical flow observations, logistic regressions estimate daily probabilities of flow intermittency (PFI) under RCP 2.6, 4.5, and 8.5 scenarios. Results suggest intensifying and prolonged dry spells throughout the 21st century, with southern France more affected, while uncertainty remains higher in northern regions.
Christian Yao, Modeste Kacou, Ehouman Serge Koffi, Amidou Dao, Clément Dutremble, Maurice Guilliod, Bamory Kamagaté, Jean-Louis Perrin, Christian Salles, Luc Neppel, Jean-Emmanuel Paturel, Eric Pascal Zahiri, and Luc Séguis
Proc. IAHS, 385, 259–265, https://doi.org/10.5194/piahs-385-259-2024, https://doi.org/10.5194/piahs-385-259-2024, 2024
Short summary
Short summary
Rainfall causes material damage and human losses in Abidjan, Côte d'Ivoire, every year. This study shows that the period of the 60 wettest days of the long rainy season is more exposed to the risk of flooding than the rest of the year because the rains are more spatially extensive and heavier. The increase in the number of floods in recent years is probably due to the recovery of rainfall after the drought of the 80s associated with the sharp increase in urbanization of the District.
Nils Poncet, Philippe Lucas-Picher, Yves Tramblay, Guillaume Thirel, Humberto Vergara, Jonathan Gourley, and Antoinette Alias
Nat. Hazards Earth Syst. Sci., 24, 1163–1183, https://doi.org/10.5194/nhess-24-1163-2024, https://doi.org/10.5194/nhess-24-1163-2024, 2024
Short summary
Short summary
High-resolution convection-permitting climate models (CPMs) are now available to better simulate rainstorm events leading to flash floods. In this study, two hydrological models are compared to simulate floods in a Mediterranean basin, showing a better ability of the CPM to reproduce flood peaks compared to coarser-resolution climate models. Future projections are also different, with a projected increase for the most severe floods and a potential decrease for the most frequent events.
Lorenzo Alfieri, Andrea Libertino, Lorenzo Campo, Francesco Dottori, Simone Gabellani, Tatiana Ghizzoni, Alessandro Masoero, Lauro Rossi, Roberto Rudari, Nicola Testa, Eva Trasforini, Ahmed Amdihun, Jully Ouma, Luca Rossi, Yves Tramblay, Huan Wu, and Marco Massabò
Nat. Hazards Earth Syst. Sci., 24, 199–224, https://doi.org/10.5194/nhess-24-199-2024, https://doi.org/10.5194/nhess-24-199-2024, 2024
Short summary
Short summary
This work describes Flood-PROOFS East Africa, an impact-based flood forecasting system for the Greater Horn of Africa. It is based on hydrological simulations, inundation mapping, and estimation of population and assets exposed to upcoming river floods. The system supports duty officers in African institutions in the daily monitoring of hydro-meteorological disasters. A first evaluation shows the system performance for the catastrophic floods in the Nile River basin in summer 2020.
Samuel Morin, Hugues François, Marion Réveillet, Eric Sauquet, Louise Crochemore, Flora Branger, Étienne Leblois, and Marie Dumont
Hydrol. Earth Syst. Sci., 27, 4257–4277, https://doi.org/10.5194/hess-27-4257-2023, https://doi.org/10.5194/hess-27-4257-2023, 2023
Short summary
Short summary
Ski resorts are a key socio-economic asset of several mountain areas. Grooming and snowmaking are routinely used to manage the snow cover on ski pistes, but despite vivid debate, little is known about their impact on water resources downstream. This study quantifies, for the pilot ski resort La Plagne in the French Alps, the impact of grooming and snowmaking on downstream river flow. Hydrological impacts are mostly apparent at the seasonal scale and rather neutral on the annual scale.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Yves Tramblay, Patrick Arnaud, Guillaume Artigue, Michel Lang, Emmanuel Paquet, Luc Neppel, and Eric Sauquet
Hydrol. Earth Syst. Sci., 27, 2973–2987, https://doi.org/10.5194/hess-27-2973-2023, https://doi.org/10.5194/hess-27-2973-2023, 2023
Short summary
Short summary
Mediterranean floods are causing major damage, and recent studies have shown that, despite the increase in intense rainfall, there has been no increase in river floods. This study reveals that the seasonality of floods changed in the Mediterranean Basin during 1959–2021. There was also an increased frequency of floods linked to short episodes of intense rain, associated with a decrease in soil moisture. These changes need to be taken into consideration to adapt flood warning systems.
Aurélien Beaufort, Jacob S. Diamond, Eric Sauquet, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 3477–3495, https://doi.org/10.5194/hess-26-3477-2022, https://doi.org/10.5194/hess-26-3477-2022, 2022
Short summary
Short summary
We developed one of the largest stream temperature databases to calculate a simple, ecologically relevant metric – the thermal peak – that captures the magnitude of summer thermal extremes. Using statistical models, we extrapolated the thermal peak to nearly every stream in France, finding the hottest thermal peaks along large rivers without forested riparian zones and groundwater inputs. Air temperature was a poor proxy for the thermal peak, highlighting the need to grow monitoring networks.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Yves Tramblay and Pere Quintana Seguí
Nat. Hazards Earth Syst. Sci., 22, 1325–1334, https://doi.org/10.5194/nhess-22-1325-2022, https://doi.org/10.5194/nhess-22-1325-2022, 2022
Short summary
Short summary
Monitoring soil moisture is important during droughts, but very few measurements are available. Consequently, land-surface models are essential tools for reproducing soil moisture dynamics. In this study, a hybrid approach allowed for regionalizing soil water content using a machine learning method. This approach proved to be efficient, compared to the use of soil property maps, to run a simple soil moisture accounting model, and therefore it can be applied in various regions.
Yves Tramblay, Nathalie Rouché, Jean-Emmanuel Paturel, Gil Mahé, Jean-François Boyer, Ernest Amoussou, Ansoumana Bodian, Honoré Dacosta, Hamouda Dakhlaoui, Alain Dezetter, Denis Hughes, Lahoucine Hanich, Christophe Peugeot, Raphael Tshimanga, and Patrick Lachassagne
Earth Syst. Sci. Data, 13, 1547–1560, https://doi.org/10.5194/essd-13-1547-2021, https://doi.org/10.5194/essd-13-1547-2021, 2021
Short summary
Short summary
This dataset provides a set of hydrometric indices for about 1500 stations across Africa with daily discharge data. These indices represent mean flow characteristics and extremes (low flows and floods), allowing us to study the long-term evolution of hydrology in Africa and support the modeling efforts that aim at reducing the vulnerability of African countries to hydro-climatic variability.
Louise Mimeau, Yves Tramblay, Luca Brocca, Christian Massari, Stefania Camici, and Pascal Finaud-Guyot
Hydrol. Earth Syst. Sci., 25, 653–669, https://doi.org/10.5194/hess-25-653-2021, https://doi.org/10.5194/hess-25-653-2021, 2021
Short summary
Short summary
Soil moisture is a key variable related to droughts and flood genesis, but little is known about the evolution of soil moisture under climate change. Here, using a simulation approach, we show that changes in soil moisture are driven by changes in precipitation intermittence rather than changes in precipitation intensity or in temperature.
El Mahdi El Khalki, Yves Tramblay, Christian Massari, Luca Brocca, Vincent Simonneaux, Simon Gascoin, and Mohamed El Mehdi Saidi
Nat. Hazards Earth Syst. Sci., 20, 2591–2607, https://doi.org/10.5194/nhess-20-2591-2020, https://doi.org/10.5194/nhess-20-2591-2020, 2020
Short summary
Short summary
In North Africa, the vulnerability to floods is high, and there is a need to improve the flood-forecasting systems. Remote-sensing and reanalysis data can palliate the lack of in situ measurements, in particular for soil moisture, which is a crucial parameter to consider when modeling floods. In this study we provide an evaluation of recent globally available soil moisture products for flood modeling in Morocco.
Olga Petrucci, Luigi Aceto, Cinzia Bianchi, Victoria Bigot, Rudolf Brázdil, Moshe Inbar, Abdullah Kahraman, Özgenur Kılıç, Vassiliki Kotroni, Maria Carmen Llasat, Montserrat Llasat-Botija, Michele Mercuri, Katerina Papagiannaki, Susana Pereira, Jan Řehoř, Joan Rossello Geli, Paola Salvati, Freddy Vinet, and José Luis Zêzere
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-154, https://doi.org/10.5194/essd-2020-154, 2020
Preprint withdrawn
Short summary
Short summary
EUFF 2020 database (EUropean Flood Fatalities-FF) contains 2483 flood fatalities (1980–2018) occurred in 8 countries. Gender, age, activity of FF and dynamics of accidents were obtained from documentary sources. 64.8 % of FF were killed by floods killing less than 10 people. Males were more numerous than females due higher proportion of them driving and working outdoors. FF 30–64 years old died traveling to home/work, driving vehicles dragged by water. Elderly people were trapped indoor by flood.
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, Clovis Galiez, Thomas Condom, and Eric Sauquet
The Cryosphere, 14, 565–584, https://doi.org/10.5194/tc-14-565-2020, https://doi.org/10.5194/tc-14-565-2020, 2020
Short summary
Short summary
We introduce a novel approach for simulating glacier mass balances using a deep artificial neural network (i.e. deep learning) from climate and topographical data. This has been added as a component of a new open-source parameterized glacier evolution model. Deep learning is found to outperform linear machine learning methods, mainly due to its nonlinearity. Potential applications range from regional mass balance reconstructions from observations to simulations for past and future climates.
Louise Mimeau, Michel Esteves, Isabella Zin, Hans-Werner Jacobi, Fanny Brun, Patrick Wagnon, Devesh Koirala, and Yves Arnaud
Hydrol. Earth Syst. Sci., 23, 3969–3996, https://doi.org/10.5194/hess-23-3969-2019, https://doi.org/10.5194/hess-23-3969-2019, 2019
Short summary
Short summary
In a context of climate change, the quantification of the contributions of glacier melt, snowmelt, and rain to the river streamflow is a key issue for assessing the current and future water resource availability. This study discusses the representation of the snow and glacier processes in hydrological models and its impact on the estimated flow components, and also addresses the issue of defining the glacier contribution to the river streamflow.
Eric Sauquet, Bastien Richard, Alexandre Devers, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 3683–3710, https://doi.org/10.5194/hess-23-3683-2019, https://doi.org/10.5194/hess-23-3683-2019, 2019
Short summary
Short summary
This study aims to identify catchments and the associated water uses vulnerable to climate change. Vulnerability is considered here to be the likelihood of water restrictions which are unacceptable for agricultural uses. This study provides the first regional analysis of the stated water restrictions, highlighting heterogeneous decision-making processes; data from a national system of compensation to farmers for uninsurable damages were used to characterize past failure events.
Pauline Rivoire, Yves Tramblay, Luc Neppel, Elke Hertig, and Sergio M. Vicente-Serrano
Nat. Hazards Earth Syst. Sci., 19, 1629–1638, https://doi.org/10.5194/nhess-19-1629-2019, https://doi.org/10.5194/nhess-19-1629-2019, 2019
Short summary
Short summary
In order to define a dry period, a threshold for wet days is usually considered to account for measurement errors and evaporation. In the present study, we compare the threshold of 1 mm d−1, the most commonly used threshold, to a time-varying threshold describing evapotranspiration to compare how the risk of extreme dry spells is estimated with both thresholds. Results indicate that considering a fixed threshold can underestimate extreme dry spells during the extended summer.
Laurie Caillouet, Jean-Philippe Vidal, Eric Sauquet, Benjamin Graff, and Jean-Michel Soubeyroux
Earth Syst. Sci. Data, 11, 241–260, https://doi.org/10.5194/essd-11-241-2019, https://doi.org/10.5194/essd-11-241-2019, 2019
Short summary
Short summary
SCOPE Climate is a 25-member ensemble of 142-year daily high-resolution reconstructions of precipitation, temperature, and Penman–Monteith reference evapotranspiration over France. It is the first century-long gridded high-resolution homogeneous dataset available over France. It thus paves the way for studying local historical meteorological events and for assessing the local climate variability from the end of the 19th century.
Clotilde Saint-Martin, Pierre Javelle, and Freddy Vinet
Earth Syst. Sci. Data, 10, 1019–1029, https://doi.org/10.5194/essd-10-1019-2018, https://doi.org/10.5194/essd-10-1019-2018, 2018
Short summary
Short summary
DamaGIS is a GIS database which aims to collect and assess the severity of flood-related damage. The reason for creating this database is the lack of precise damage data available to calibrate and validate flood risk assessment models. To this end, DamaGIS offers highly precise and easily accessible flood-related damage data. It uses multiple sources such as social networks. Since 2011, 729 damages caused by 23 flood events in the south of France have been reported within the database.
Aurélien Beaufort, Nicolas Lamouroux, Hervé Pella, Thibault Datry, and Eric Sauquet
Hydrol. Earth Syst. Sci., 22, 3033–3051, https://doi.org/10.5194/hess-22-3033-2018, https://doi.org/10.5194/hess-22-3033-2018, 2018
Short summary
Short summary
Streams which may stop flowing are poorly gauged. To improve their characterisation, we use an extended network providing monthly visual observations stating whether streams are flowing or not across France. These observations are combined with discharge and groundwater level in models to predict daily regional probability of drying. This approach allows identification of the most impacted regions by flow intermittence and estimation of the probability of drying dynamics over the last 27 years.
Gregor Laaha, Tobias Gauster, Lena M. Tallaksen, Jean-Philippe Vidal, Kerstin Stahl, Christel Prudhomme, Benedikt Heudorfer, Radek Vlnas, Monica Ionita, Henny A. J. Van Lanen, Mary-Jeanne Adler, Laurie Caillouet, Claire Delus, Miriam Fendekova, Sebastien Gailliez, Jamie Hannaford, Daniel Kingston, Anne F. Van Loon, Luis Mediero, Marzena Osuch, Renata Romanowicz, Eric Sauquet, James H. Stagge, and Wai K. Wong
Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, https://doi.org/10.5194/hess-21-3001-2017, 2017
Short summary
Short summary
In 2015 large parts of Europe were affected by a drought. In terms of low flow magnitude, a region around the Czech Republic was most affected, with return periods > 100 yr. In terms of deficit volumes, the drought was particularly severe around S. Germany where the event lasted notably long. Meteorological and hydrological events developed differently in space and time. For an assessment of drought impacts on water resources, hydrological data are required in addition to meteorological indices.
Laurie Caillouet, Jean-Philippe Vidal, Eric Sauquet, Alexandre Devers, and Benjamin Graff
Hydrol. Earth Syst. Sci., 21, 2923–2951, https://doi.org/10.5194/hess-21-2923-2017, https://doi.org/10.5194/hess-21-2923-2017, 2017
Short summary
Short summary
The historical depth of streamflow observations in France is extended through daily hydrometeorogical reconstructions from 1871 onwards over a large set of near-natural catchments. Innovative approaches are proposed to identify and intercompare extreme low-flow events from these reconstructions, both in time and across France in a homogeneous way over more than 140 years. Analyses bring forward recent well-known events like 1976 and 1989–1990 but also much older ones like 1878 and 1893.
Jean-Philippe Vidal, Benoît Hingray, Claire Magand, Eric Sauquet, and Agnès Ducharne
Hydrol. Earth Syst. Sci., 20, 3651–3672, https://doi.org/10.5194/hess-20-3651-2016, https://doi.org/10.5194/hess-20-3651-2016, 2016
Short summary
Short summary
Possible transient futures of winter and summer low flows for two snow-influenced catchments in the southern French Alps show a strong decrease signal. It is however largely masked by the year-to-year variability, which should be the main target for defining adaptation strategies. Responses of different hydrological models strongly diverge in the future, suggesting to carefully check the robustness of evapotranspiration and snowpack components under a changing climate.
Laurie Caillouet, Jean-Philippe Vidal, Eric Sauquet, and Benjamin Graff
Clim. Past, 12, 635–662, https://doi.org/10.5194/cp-12-635-2016, https://doi.org/10.5194/cp-12-635-2016, 2016
Short summary
Short summary
This paper describes a daily high-resolution reconstruction of precipitation and temperature fields in France from 1871 onwards. A statistical method linking atmospheric circulation to local precipitation is refined for taking advantage of recently published global long-term atmospheric and oceanic reconstructions. The resulting data set allows filling in the spatial and temporal data gaps in historical surface observations, and improving our knowledge on the local-scale climate variability.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
K. Kochanek, B. Renard, P. Arnaud, Y. Aubert, M. Lang, T. Cipriani, and E. Sauquet
Nat. Hazards Earth Syst. Sci., 14, 295–308, https://doi.org/10.5194/nhess-14-295-2014, https://doi.org/10.5194/nhess-14-295-2014, 2014
Y. Tramblay, S. El Adlouni, and E. Servat
Nat. Hazards Earth Syst. Sci., 13, 3235–3248, https://doi.org/10.5194/nhess-13-3235-2013, https://doi.org/10.5194/nhess-13-3235-2013, 2013
S. Radanovics, J.-P. Vidal, E. Sauquet, A. Ben Daoud, and G. Bontron
Hydrol. Earth Syst. Sci., 17, 4189–4208, https://doi.org/10.5194/hess-17-4189-2013, https://doi.org/10.5194/hess-17-4189-2013, 2013
Y. Tramblay, D. Ruelland, S. Somot, R. Bouaicha, and E. Servat
Hydrol. Earth Syst. Sci., 17, 3721–3739, https://doi.org/10.5194/hess-17-3721-2013, https://doi.org/10.5194/hess-17-3721-2013, 2013
T. H. Snelder, T. Datry, N. Lamouroux, S. T. Larned, E. Sauquet, H. Pella, and C. Catalogne
Hydrol. Earth Syst. Sci., 17, 2685–2699, https://doi.org/10.5194/hess-17-2685-2013, https://doi.org/10.5194/hess-17-2685-2013, 2013
M. C. Llasat, M. Llasat-Botija, O. Petrucci, A. A. Pasqua, J. Rosselló, F. Vinet, and L. Boissier
Nat. Hazards Earth Syst. Sci., 13, 1337–1350, https://doi.org/10.5194/nhess-13-1337-2013, https://doi.org/10.5194/nhess-13-1337-2013, 2013
Related subject area
Subject: Global hydrology | Techniques and Approaches: Stochastic approaches
Deducing Land-Atmosphere Coupling Regimes from SMAP Soil Moisture
Assimilating ESA-CCI Land Surface Temperature into the ORCHIDEE Land Surface Model: Insights from a multi-site study across Europe
Novel extensions to the Fisher copula to model flood spatial dependence over North America
Non-asymptotic distributions of water extremes: Superlative or superfluous?
Revisiting the global hydrological cycle: is it intensifying?
Examining the relationship between intermediate-scale soil moisture and terrestrial evaporation within a semi-arid grassland
How streamflow has changed across Australia since the 1950s: evidence from the network of hydrologic reference stations
Investigation of hydrological time series using copulas for detecting catchment characteristics and anthropogenic impacts
Towards observation-based gridded runoff estimates for Europe
Historical land-use-induced evapotranspiration changes estimated from present-day observations and reconstructed land-cover maps
Detection of global runoff changes: results from observations and CMIP5 experiments
Rainfall statistics changes in Sicily
Spatial variability and its scale dependency of observed and modeled soil moisture over different climate regions
How extreme is extreme? An assessment of daily rainfall distribution tails
Impact of climate change on the stream flow of the lower Brahmaputra: trends in high and low flows based on discharge-weighted ensemble modelling
Climate model bias correction and the role of timescales
Streamflow trends in Europe: evidence from a dataset of near-natural catchments
Payal Makhasana, Joseph Santanello, Patricia Lawston-Parker, and Joshua Roundy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-125, https://doi.org/10.5194/hess-2024-125, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Exploring two decades of climate data, this study investigates soil moisture's influence on land-atmosphere interactions, which are vital for predicting weather and climate. Leveraging SMAP soil moisture data and integrating multiple atmospheric datasets, the study offers new insights into the dynamics of land-atmosphere coupling strength. Our findings pave the way for future innovations that will contribute to advancements in drought monitoring and management.
Luis-Enrique Olivera-Guerra, Catherine Ottlé, Nina Raoult, and Philippe Peylin
EGUsphere, https://doi.org/10.5194/egusphere-2024-546, https://doi.org/10.5194/egusphere-2024-546, 2024
Short summary
Short summary
We assimilate the recent land surface temperature (LST) product from ESA-CCI to optimize parameters of the ORCHIDEE model. We test different strategies of assimilation to evaluate the best strategy over various in situ stations across Europe. We provide some advice on how to assimilate this recent LST product to better simulate LST and surface energy fluxes from ORCHIDEE. We demonstrate the effectiveness of this optimization, which is essential to better simulate future projections.
Duy Anh Alexandre, Chiranjib Chaudhuri, and Jasmin Gill-Fortin
EGUsphere, https://doi.org/10.5194/egusphere-2024-442, https://doi.org/10.5194/egusphere-2024-442, 2024
Short summary
Short summary
Estimating extreme river discharges at single stations is relatively simple. However, flooding is a spatial phenomenon as rivers are connected. We develop a statistical method to estimate extreme flows with global coverage, accounting for spatial dependence. Using our model, synthetic flood events are simulated with more information than the limited historical events. This event catalogue can be used to produce spatially coherent flood depth maps, for flood risk assessment.
Francesco Serinaldi, Federico Lombardo, and Chris G. Kilsby
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-234, https://doi.org/10.5194/hess-2023-234, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Non-asymptotic probability distributions of block maxima (BM) have been proposed as an alternative to asymptotic distributions from classic extreme value theory. We show that the non-asymptotic models are unnecessary and redundant approximations of the corresponding parent distributions, which are readily available, are not affected by serial dependence, have simpler expression, and describe the probability of all quantiles of the process of interest, not only the probability of BM.
Demetris Koutsoyiannis
Hydrol. Earth Syst. Sci., 24, 3899–3932, https://doi.org/10.5194/hess-24-3899-2020, https://doi.org/10.5194/hess-24-3899-2020, 2020
Short summary
Short summary
We overview and retrieve a great amount of global hydroclimatic data sets. We improve the quantification of the global hydrological cycle, its variability and its uncertainties through the surge of newly available data sets. We test (but do not confirm) established climatological hypotheses, according to which the hydrological cycle should be intensifying due to global warming. We outline a stochastic view of hydroclimate, which provides a reliable means of dealing with its variability.
Raghavendra B. Jana, Ali Ershadi, and Matthew F. McCabe
Hydrol. Earth Syst. Sci., 20, 3987–4004, https://doi.org/10.5194/hess-20-3987-2016, https://doi.org/10.5194/hess-20-3987-2016, 2016
Short summary
Short summary
Interactions between soil moisture and terrestrial evaporation affect responses between land surface and the atmosphere across scales. We present an analysis of the link between soil moisture and evaporation estimates from three distinct models. The relationships were examined over nearly 2 years of observation data. Results show that while direct correlations of raw data were mostly not useful, the root-zone soil moisture and the modelled evaporation estimates reflect similar distributions.
Xiaoyong Sophie Zhang, Gnanathikkam E. Amirthanathan, Mohammed A. Bari, Richard M. Laugesen, Daehyok Shin, David M. Kent, Andrew M. MacDonald, Margot E. Turner, and Narendra K. Tuteja
Hydrol. Earth Syst. Sci., 20, 3947–3965, https://doi.org/10.5194/hess-20-3947-2016, https://doi.org/10.5194/hess-20-3947-2016, 2016
Short summary
Short summary
The hydrologic reference stations website (www.bom.gov.au/water/hrs/), developed by the Australia Bureau of Meteorology, is a one-stop portal to access long-term and high-quality streamflow information for 222 stations across Australia. This study investigated the streamflow variability and inferred trends in water availability for those stations. The results present a systematic analysis of recent hydrological changes in Australian rivers, which will aid water management decision making.
Takayuki Sugimoto, András Bárdossy, Geoffrey G. S. Pegram, and Johannes Cullmann
Hydrol. Earth Syst. Sci., 20, 2705–2720, https://doi.org/10.5194/hess-20-2705-2016, https://doi.org/10.5194/hess-20-2705-2016, 2016
Short summary
Short summary
This paper is aims to detect the climate change impacts on the hydrological regime from the long-term discharge records. A new method for stochastic analysis using copulas, which has the advantage of scrutinizing the data independent of marginal, is suggested in this paper. Two measures are used in the copula domain: one focuses on the asymmetric characteristic of data and the other compares the distances between the copulas. These are calculated for 100 years of daily discharges and the results are discussed.
L. Gudmundsson and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 19, 2859–2879, https://doi.org/10.5194/hess-19-2859-2015, https://doi.org/10.5194/hess-19-2859-2015, 2015
Short summary
Short summary
Water storages and fluxes on land are key variables in the Earth system. To provide context for local investigations and to understand phenomena that emerge at large spatial scales, information on continental freshwater dynamics is needed. This paper presents a methodology to estimate continental-scale runoff on a 0.5° spatial grid, which combines the advantages of in situ observations with the power of machine learning regression. The resulting runoff estimates compare well with observations.
J. P. Boisier, N. de Noblet-Ducoudré, and P. Ciais
Hydrol. Earth Syst. Sci., 18, 3571–3590, https://doi.org/10.5194/hess-18-3571-2014, https://doi.org/10.5194/hess-18-3571-2014, 2014
R. Alkama, L. Marchand, A. Ribes, and B. Decharme
Hydrol. Earth Syst. Sci., 17, 2967–2979, https://doi.org/10.5194/hess-17-2967-2013, https://doi.org/10.5194/hess-17-2967-2013, 2013
E. Arnone, D. Pumo, F. Viola, L. V. Noto, and G. La Loggia
Hydrol. Earth Syst. Sci., 17, 2449–2458, https://doi.org/10.5194/hess-17-2449-2013, https://doi.org/10.5194/hess-17-2449-2013, 2013
B. Li and M. Rodell
Hydrol. Earth Syst. Sci., 17, 1177–1188, https://doi.org/10.5194/hess-17-1177-2013, https://doi.org/10.5194/hess-17-1177-2013, 2013
S. M. Papalexiou, D. Koutsoyiannis, and C. Makropoulos
Hydrol. Earth Syst. Sci., 17, 851–862, https://doi.org/10.5194/hess-17-851-2013, https://doi.org/10.5194/hess-17-851-2013, 2013
A. K. Gain, W. W. Immerzeel, F. C. Sperna Weiland, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 15, 1537–1545, https://doi.org/10.5194/hess-15-1537-2011, https://doi.org/10.5194/hess-15-1537-2011, 2011
J. O. Haerter, S. Hagemann, C. Moseley, and C. Piani
Hydrol. Earth Syst. Sci., 15, 1065–1079, https://doi.org/10.5194/hess-15-1065-2011, https://doi.org/10.5194/hess-15-1065-2011, 2011
K. Stahl, H. Hisdal, J. Hannaford, L. M. Tallaksen, H. A. J. van Lanen, E. Sauquet, S. Demuth, M. Fendekova, and J. Jódar
Hydrol. Earth Syst. Sci., 14, 2367–2382, https://doi.org/10.5194/hess-14-2367-2010, https://doi.org/10.5194/hess-14-2367-2010, 2010
Cited articles
Alfieri, L., Burek, P., Feyen, L., and Forzieri, G.: Global warming increases the frequency of river floods in Europe, Hydrol. Earth Syst. Sci., 19, 2247–2260, https://doi.org/10.5194/hess-19-2247-2015, 2015.
Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: A
practical and powerful approach to multiple testing, J. Roy. Stat. Soc. B,
57, 289–300, 1995.
Bennett B., Leonard, M., Deng Y., and Westra, S.: An empirical investigation
into the effect of antecedent precipitation on flood volume, J. Hydrol.,
567, 435–445, 2018.
Blanchet, J., Molinié, G., and Touati, J.: Spatial analysis of trend in
extreme daily rainfall in southern France, Clim Dynam., 51, 799–812, 2018.
Blöschl, G., Gaál, L., Hall, J., Kiss, A., Komma, J., Nester, T., Parajka, J., Perdigão, R. A., Plavcová, L., Rogger, M., Salinas, J. L., and Viglione, A.: Increasing river floods: fiction or reality?, WIREs Water, 2, 329–344,
2015.
Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A., Merz, B.,
Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci, O., Borga,M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Fiala, K., Frolova, N., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnová,S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari,A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Rogger,M., Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J., Viglione, A., Volpi, E., Wilson, D., Zaimi, K., and Živković, N.: Changing climate shifts timing of European floods,
Science, 357, 588–590, 2017.
Boudou, M., Lang, M., Vinet, F., and Cœur, D.: Comparative hazard
analysis of processes leading to remarkable flash floods (France,
1930–1999), J. Hydrol., 541, 533–552, 2016.
Bouwer, L. M.: Have disaster losses increased due to anthropogenic climate
change?, B. Am. Meteorol. Soc., 92, 39–46, 2011.
Brocca, L., Melone, F., and Moramarco, T.: On the estimation of antecedent
wetness conditions in rainfall–runoff modelling, Hydrol. Process., 22,
629–642, 2008.
Büttner, G., Feranec, F., and Jaffrain, G.: Corine land cover up-date
2000. Technical report, European Environment Agency, Copenhagen, Denmark, 2002.
Camarasa-Belmonte, A. M.: Flash floods in Mediterranean ephemeral streams in
Valencia Region, J. Hydrol., 541, 99–115, 2016.
Camici, S., Brocca, L., and Moramarco, T.: Accuracy versus variability of
climate projections for flood assessment in central Italy, Climatic Change,
141, 273–286, 2017.
CCR: Conséquences du changement climatique sur les coûts des
catastrophes naturelles en France à Horizon 2050, available at:
https://catastrophes-naturelles.ccr.fr/-/consequences-du-changement-climatique-sur-le-cout-des-catastrophes-naturelles-en-france-a-horizon-2050 (last access: 26 October 2019), 2018.
Dayon, G., Boé, J., Martin, E., and Gailhard, J.: Impacts of climate
change on the hydrological cycle over France and associated uncertainties,
C. R. Geosci., 350, 141–153, 2018.
Do, H. X., Westra, S., and Leonard, M.: A global-scale investigation of
trends in annual maximum streamflow, J. Hydrol., 552, 28–43, 2017.
Donnelly, C., Greuell, W., Andersson, J., Gerten, D., Pisacane, G., Roudier,
P., and Ludwig, F.: Impacts of climate change on European hydrology at 1.5,
2 and 3 degrees mean global warming above preindustrial level, Climatic
Change, 19, 1–14, 2017.
Drobinski, P., Alonzo, B., Bastin, S., Silva, N. D., and Muller, C.: Scaling
of precipitation extremes with temper-ature in the French Mediterranean
region: what explainsthe hook shape?, J. Geophys. Res.-Atmos., 121,
3100–3119, https://doi.org/10.1002/2015JD023497, 2016
Efron, B.: Bootstrap Methods: Another Look at the Jackknife, Ann. Stat., 7,
1–26, 1979.
Giuntoli, I., Renard, B., and Lang, M.: Floods in France, in:Changes in flood risk in Europe, edited by:
Kundzewicz, Z. W., IAHS and
CRC/Balkema, Wallingford, UK, IAHS Special Publ., 10, 212–224, 2012.
Grillakis, M. G., Koutroulis, A. G., Komma, J., Tsanis, I. K., Wagner, W., and
Blöschl, G.: Initial soil moisture effects on flash flood generation – A
comparison between basins of contrasting hydro-climatic conditions, J. Hydrol., 541, 206–217, 2016.
Habets, F., Boone, A., Champeaux, J.-L., Etchevers, P., Franchis-teguy, L.,
Leblois, E., Ledoux, E., Le Moigne, P., Martin, E., Morel, S., Noilhan, J.,
Quintana-Segui, P., Rousset-Regimbeau, F., and Viennot, P.: The
SAFRAN-ISBA-MODCOU hydrometeorological model applied over France, J.
Geophys. Res., 113, D06113, https://doi.org/10.1029/2007JD008548, 2008.
Hamed, K. H. and Rao, A. R.: A modified Mann-Kendall trend test for
autocorrelated data, J. Hydrol., 204, 182–196, 1998.
Hodgkins, G. A., Whitfield, P. H., Burn, D. H., Hannaford, J., Re-nard, B.,
Stahl, K., Fleig, A. K., Madsen, H., Mediero, L., Ko-rhonen, J., Murphy, C.,
and Wilson, D.: Climate-driven variability in the occurrence of major floods
across North America and Europe, J. Hydrol., 552, 704–717, 2017.
Ivancic, T. J. and Shaw S. B.: Examining why trends in very heavy precipitation
should not be mistaken for trends in very high river discharge, Climatic
Change, 133, 681–693, 2015.
Jourde, H., Roesch, A., Guinot, V., and Bailly-Comte, V.: Dynamics and
contribution of karst groundwater to surface flow during Mediterranean
flood, Environ. Geol., 51, 725–730, 2007.
Khaliq, M. N., Ouarda, T. B. M. J., Gachon, P., Sushama, L., and St-Hilaire, A.:
Identification of hydrological trends in the presence of serial and cross
correlations: A review of selected methods and their application to annual
flow regimes of Canadian rivers, J. Hydrol., 368, 117–130, 2009.
Knighton, J. O., DeGaetano, A., and Walter, M. T.: Hydrologic state influence
on riverine flood discharge for a small temperate watershed (Fall Creek,
United States): negative feedbacks on the effects of climate change, J.
Hydrometeorol., 18, 431–449, 2017.
Koenker, R. and Basset, B. G.: Regression quantiles, Econometrica, 46,
33–50, 1978.
Koenker, R. and Machado J. A. F.: Goodness-of-fit and related inference processes
for quantile regression, J. Am. Stat. Assoc.,
94, 1296–1310, 1999.
Kundzewicz, Z. W., Krysanova, V., Dankers, R., Hirabayashi, Y., Kanae, S.,
Hattermann, F. F., Huang, S., Milly, P. C. D., Stoffel, M., Driessen, P. P. J.,
Matczak, P., Quevauviller, P., and Schellnhuber, H.-J.: Differences in flood
hazard projections in Europe – their causes and consequences for decision
making, Hydrolog. Sci. J., 62, 1–14, 2017.
Llasat, M. C., Llasat-Botija, M., Petrucci, O., Pasqua, A. A., Rosselló, J., Vinet, F., and Boissier, L.: Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX project, Nat. Hazards Earth Syst. Sci., 13, 1337–1350, https://doi.org/10.5194/nhess-13-1337-2013, 2013.
Mangini, W., Viglione, A., Hall, J., Hundecha, Y., Ceola, S., Montanari, A.,
Rogger, M., Salinas, J. L., Borzì, I., and Parajka, J.: Detection of
trends in magnitude and frequency of flood peaks across Europe, Hydrolog.
Sci. J., 63, 493–512, 2018.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259,
1945.
Mediero, L., Santillán, D., Garrote, L., and Granados, A.: Detection and
attribution of trends in magnitude, frequency and timing of floods in Spain,
J. Hydrol., 517, 1072–1088, 2014.
Merz, B., Aerts, J., Arnbjerg-Nielsen, K., Baldi, M., Becker, A., Bichet, A., Blöschl, G., Bouwer, L. M., Brauer, A., Cioffi, F., Delgado, J. M., Gocht, M., Guzzetti, F., Harrigan, S., Hirschboeck, K., Kilsby, C., Kron, W., Kwon, H.-H., Lall, U., Merz, R., Nissen, K., Salvatti, P., Swierczynski, T., Ulbrich, U., Viglione, A., Ward, P. J., Weiler, M., Wilhelm, B., and Nied, M.: Floods and climate: emerging perspectives for flood risk assessment and management, Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, 2014.
Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Genovese, E., Green, C., Hallegatte, S., Kreibich, H., Lequeux, Q., Logar, I., Papyrakis, E., Pfurtscheller, C., Poussin, J., Przyluski, V., Thieken, A. H., and Viavattene, C.: Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps, Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, 2013.
Najibi, N. and Devineni, N.: Recent trends in the frequency and duration of global floods, Earth Syst. Dynam., 9, 757–783, https://doi.org/10.5194/esd-9-757-2018, 2018.
Neppel L., Bouvier C., Desbordes M., and Vinet F.: A possible origin for the
increase in floods in the Mediterranean region, Rev. Sci. Eau,
16, 389–494, 2003.
Norbiato, D., Borga, M., Esposti, S.D., Gaume, E., and Anquetin, S.: Flash
flood warning based on rainfall thresholds and soil moisture conditions: An
assessment for gauged and ungauged basins, J. Hydrol., 362,
274–290, 2008.
Paprotny, D., Sebastian, A., Morales-Nápoles, O., and Jonkman, S. N.:
Trends in flood losses in Europe over the past 150 years, Nat.
Commun., 9, 1985, https://doi.org/10.1038/s41467-018-04253-1, 2018.
Paxian, A., Hertig, E., Seubert, S., Vogt, G., Jacobeit, J., and Paeth, H.:
Present-day and future mediterranean precipitation extremesassessed by
different statistical approaches, Clim. Dynam., 44, 845–860,
https://doi.org/10.1007/s00382-014-2428-6, 2015
Penna, D., Tromp-van Meerveld, H. J., Gobbi, A., Borga, M., and Dalla Fontana, G.: The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment, Hydrol. Earth Syst. Sci., 15, 689–702, https://doi.org/10.5194/hess-15-689-2011, 2011.
Petrucci, O., Papagiannaki, K., Aceto, L., Boissier, L., Kotroni,V.,
Grimalt, M., Llasat, M. C., Llasat-Botija, M., Rosselló, J.,Pasqua, A.
A., and Vinet, F.: MEFF: The database of MEditer-ranean Flood Fatalities
(1980 to 2015), J. Flood Risk Manage., 12, e12461,
https://doi.org/10.1111/jfr3.12461, 2019.
Pfahl, S., O'Gorman, P. A., and Fischer, E. M.: Under-standing the regional
pattern of projected future changesin extreme precipitation, Nat. Clim.
Change, 7, 423–427, https://doi.org/10.1038/nclimate3287, 2017.
Piras, M., Mascaro, G., Deidda, R., and Vivoni, E. R.: Impacts of climate
change on precipitation and discharge extremes through the use of
statistical downscaling approaches in a Mediterranean basin, Sci. Total
Environ., 543, 952–964, 2016.
Polade, S. D., Pierce, D. W., Cayan, D. R., Gershunov, A., and Dettinger, M.
D.: The key role of dry days in changing regional climate and precipitation
regimes, Sci. Rep., 4, 4364, https://doi.org/10.1038/srep04364, 2014.
Polade, S. D., Gershunov, A., Cayan, D. R., Dettinger, M. D., and Pierce, D. W.:
Precipitation in a warming world: Assessing projected hydro-climate changes
in California and other Mediterranean climate regions, Sci. Rep., 7,
10783, https://doi.org/10.1038/s41598-017-11285-y, 2017.
Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F.,
Baillon, M., Canellas, C., Franchisteguy, L., and Morel, S.: Analysis of
Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over
France, J. Appl. Meteorol. Clim., 47, 92–107, 2008.
Quintana-Seguí, P., Habets, F., and Martin, E.: Comparison of past and future Mediterranean high and low extremes of precipitation and river flow projected using different statistical downscaling methods, Nat. Hazards Earth Syst. Sci., 11, 1411–1432, https://doi.org/10.5194/nhess-11-1411-2011, 2011.
Raynaud, D., Thielen, J., Salamon, P., Burek, P., Anquetin, S., and Alfieri,
L.: A dynamic runoff coefficient to improve flash flood early warning in
Europe: validation on the 2013 Central Euro-pean floods in Germany, Meteorol.
Appl., 22, 410–418, 2015.
Renard, B., Lang, M., Bois, P., Dupeyrat, A., Mestre, O., Niel, H.,Sauquet,
E., Prudhomme, C., Parey, S., Paquet, E., Neppel, L., and Gailhard, J.:
Regional methods for trend detection: assessingfield significance and
regional consistency, Water Resour. Res., 44, W08419,
https://doi.org/10.1029/2007WR006268, 2008.
Ribes, A., Soulivanh, T., Vautard, R., Dubuisson, B., Somot, S., Colin, J.,
Planton, S., and Soubeyroux, J.-M.: Observed increase in extreme daily
rainfall in the French Mediterranean, Clim. Dynam., 52, 1095–1114, 2019.
Rivoire, P., Tramblay, Y., Neppel, L., Hertig, E., and Vicente-Serrano, S. M.: Impact of the dry-day definition on Mediterranean extreme dry-spell analysis, Nat. Hazards Earth Syst. Sci., 19, 1629–1638, https://doi.org/10.5194/nhess-19-1629-2019, 2019.
Ruin, I., Creutin, J.-D., Anquetin, S., and Lutoff, C.: Human exposure to
flash-floods – Relation between flood parameters and human vulnerability
during a storm of September 2002 in southern France, J. Hydrol., 361,
199–213, 2008.
Saint-Martin, C., Javelle, P., and Vinet, F.: DamaGIS: a multisource geodatabase for collection of flood-related damage data, Earth Syst. Sci. Data, 10, 1019–1029, https://doi.org/10.5194/essd-10-1019-2018, 2018.
Sauquet, E. and Catalogne, C.: Comparison of catchment grouping methods for flow duration curve estimation at ungauged sites in France, Hydrol. Earth Syst. Sci., 15, 2421–2435, https://doi.org/10.5194/hess-15-2421-2011, 2011.
Schomburgk, S., Allier, D., and Seguin, J. J.: The new aquifer Reference system
BDLISA in France and the representation of karst units: challenges of
small-scale mapping, in: Grundwasser – Mensch – Ökosysteme. 25. Tagung
des Fachsektion Hydrogeologie in der DGGV 2016, Karlsruher Institut für
Technologie (KIT), 13–17 April 2016, Karlsruhe, Germany, KIT Scientific Publishing,
ISBN: 978-3-7315-0475-7, 2016.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389, 1968
Sharma, A., Wasko, C., and Lettenmaier, D. P.: If precipitation extremes are
increasing, why aren't floods?, Water Resour. Res., 54, 8545–8551,
2017.
Snelder, T. H., Datry, T., Lamouroux, N., Larned, S. T., Sauquet, E., Pella, H., and Catalogne, C.: Regionalization of patterns of flow intermittence from gauging station records, Hydrol. Earth Syst. Sci., 17, 2685–2699, https://doi.org/10.5194/hess-17-2685-2013, 2013.
Thober, S., Kumar, R., Wanders, N., Marx, A., Pan, M., Rakovec,O.,
Samaniego, L., Sheffield, J., Wood, E. F., and Zink, M.: Multi-model
ensemble projections of European river floods and high flows at 1.5, 2, and
3 degree global warming, Environ. Res. Lett., 13, 1–22, 2018.
Tramblay, Y. and Somot, S.: Future evolution of extreme precipitation in the
Mediterranean, Climatic Change, 151, 289–302, 2018.
Tramblay, Y., Bouvier, C., Martin, C., Didon-Lescot, J. F., Todorovik, D.,
and Domergue, J. M.: Assessment of initial soil moisture conditions for
event-based rainfall-runoff modelling, J. Hydrol., 387, 176–187, 2010.
Tramblay, Y., Neppel, L., Carreau, J., and Najib, K.:
Non-stationaryfrequency analysis of heavy rainfall events in southern
France, Hydrolog. Sci. J., 58, 1–15, 2013.
Uber, M., Vandervaere, J.-P., Zin, I., Braud, I., Heistermann, M., Legoût, C., Molinié, G., and Nord, G.: How does initial soil moisture influence the hydrological response? A case study from southern France, Hydrol. Earth Syst. Sci., 22, 6127–6146, https://doi.org/10.5194/hess-22-6127-2018, 2018.
Vicente-Serrano, S. M., Azorin-Molina, C., Sanchez-Lorenzo, A., Revuelto, J.,
López-Moreno, J. I., González-Hidalgo, J. C., and Espejo, F.:
Reference evapotranspiration variability and trends in Spain, 1961–2011,
Global Planet. Change, 121, 26–40, 2014.
Vidal, J.-P., Martin, E., Kitova, N., Najac, J., and Soubeyroux, J.-M.: Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios, Hydrol. Earth Syst. Sci., 16, 2935–2955, https://doi.org/10.5194/hess-16-2935-2012, 2012.
Viglione, A., Merz, R., and Blöschl, G.: On the role of the runoff coefficient in the mapping of rainfall to flood return periods, Hydrol. Earth Syst. Sci., 13, 577–593, https://doi.org/10.5194/hess-13-577-2009, 2009.
Villarini G. and Slater L.: Examination of Changes in Annual Maximum Gauge
Height in the Continental United States Using Quantile Regression, J.
Hydrol. Eng., 23, 6017010, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001620, 2017.
Vinet, F.: Flood Risk Assessment and Management in France. The Case of
Mediterranean Basins, Flood Prevention and Remediation, WIT Press,
Southampton, UK, 105–132, 2011.
Vinet, F. and de Richemond, N. M.: Changes in Flood Risk: Retrospective
and Prospective Approach, chap. 14, in: Floods 1: risk
knowledge, edited by: Vinet, F., ISTE edition, London, UK, 311–323, 2017.
Wasko, C. and Nathan, R.: Influence of changes in rainfall and soil moisture
on trends in flooding, J. Hydrol., 575, 432–441, 2019.
Wasko, C. and Sharma, A.: Global assessment of flood and storm extremes with
increased temperatures, Sci. Rep., 7, 7945, https://doi.org/10.1038/s41598-017-08481-1,
2017.
Wasko, C., Parinussa, R. M., and Sharma, A.: A quasi-global assessment of changes
in remotely sensed rainfall extremes with temperature, Geophys. Res. Lett.,
43, 12659–12668, 2016.
Westra, S., Alexander, L. V., and Zwiers, F. W.: Global increasing trends in
annual maximum daily precipitation, J. Climate, 26, 3904–3918, 2013
Whitfield, P.: Changing floods in future climates, J. Flood Risk Manage, 5,
336–365, 2012.
Wilks, D. S.: The stippling shows statistically significant grid points: how
research results are routinely overstated and over interpreted, and what to
do about it, B. Am. Meteorol. Soc., 97, 2263–2273, 2016.
Woldemeskel, F. and Sharma, A.: Should flood regimes change in a warming
climate? The role of antecedent moisture conditions, Geophys. Res. Lett.,
43, 7556–7563, https://doi.org/10.1002/2016GL069448, 2016.
Yin, J., Gentine, P., Zhou, S., Sullivan, S. C., Wang, R., Zhang, Y., and
Guo, S.: Large increase in global storm runoff extremes driven by climate
and anthropogenic changes, Nat. Commun., 9, 4389,
https://doi.org/10.1038/s41467-018-06765-2, 2018.
Zhang, Y., Wei, H., and Nearing, M. A.: Effects of antecedent soil moisture on runoff modeling in small semiarid watersheds of southeastern Arizona, Hydrol. Earth Syst. Sci., 15, 3171–3179, https://doi.org/10.5194/hess-15-3171-2011, 2011.
Short summary
In the present study the flood trends have been assessed for a large sample of 171 basins located in southern France, which has a Mediterranean climate. Results show that, despite the increase in rainfall intensity previously observed in this area, there is no general increase in flood magnitude. Instead, a reduction in the annual number of floods is found, linked to a decrease in soil moisture caused by the increase in temperature observed in recent decades.
In the present study the flood trends have been assessed for a large sample of 171 basins...