Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.153 IF 5.153
  • IF 5-year value: 5.460 IF 5-year
    5.460
  • CiteScore value: 7.8 CiteScore
    7.8
  • SNIP value: 1.623 SNIP 1.623
  • IPP value: 4.91 IPP 4.91
  • SJR value: 2.092 SJR 2.092
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 123 Scimago H
    index 123
  • h5-index value: 65 h5-index 65
HESS | Articles | Volume 23, issue 1
Hydrol. Earth Syst. Sci., 23, 405–425, 2019
https://doi.org/10.5194/hess-23-405-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 23, 405–425, 2019
https://doi.org/10.5194/hess-23-405-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 24 Jan 2019

Research article | 24 Jan 2019

Multi-scale temporal variability in meltwater contributions in a tropical glacierized watershed

Leila Saberi et al.

Related authors

BioRT-Flux-PIHM v1.0: a watershed biogeochemical reactive transport model
Wei Zhi, Yuning Shi, Hang Wen, Leila Saberi, Gene-Hua Crystal Ng, and Li Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-157,https://doi.org/10.5194/gmd-2020-157, 2020
Preprint under review for GMD
Short summary
Sinkholes and uvalas in evaporite karst: spatio-temporal development with links to base-level fall on the eastern shore of the Dead Sea
Robert A. Watson, Eoghan P. Holohan, Djamil Al-Halbouni, Leila Saberi, Ali Sawarieh, Damien Closson, Hussam Alrshdan, Najib Abou Karaki, Christian Siebert, Thomas R. Walter, and Torsten Dahm
Solid Earth, 10, 1451–1468, https://doi.org/10.5194/se-10-1451-2019,https://doi.org/10.5194/se-10-1451-2019, 2019
Short summary
GSFLOW–GRASS v1.0.0: GIS-enabled hydrologic modeling of coupled groundwater–surface-water systems
G.-H. Crystal Ng, Andrew D. Wickert, Lauren D. Somers, Leila Saberi, Collin Cronkite-Ratcliff, Richard G. Niswonger, and Jeffrey M. McKenzie
Geosci. Model Dev., 11, 4755–4777, https://doi.org/10.5194/gmd-11-4755-2018,https://doi.org/10.5194/gmd-11-4755-2018, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Risks and opportunities for a Swiss hydroelectricity company in a changing climate
Kirsti Hakala, Nans Addor, Thibault Gobbe, Johann Ruffieux, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3815–3833, https://doi.org/10.5194/hess-24-3815-2020,https://doi.org/10.5194/hess-24-3815-2020, 2020
Short summary
Survival of the Qaidam mega-lake system under mid-Pliocene climates and its restoration under future climates
Dieter Scherer
Hydrol. Earth Syst. Sci., 24, 3835–3850, https://doi.org/10.5194/hess-24-3835-2020,https://doi.org/10.5194/hess-24-3835-2020, 2020
Short summary
Hydrological evaluation of open-access precipitation data using SWAT at multiple temporal and spatial scales
Jianzhuang Pang, Huilan Zhang, Quanxi Xu, Yujie Wang, Yunqi Wang, Ouyang Zhang, and Jiaxin Hao
Hydrol. Earth Syst. Sci., 24, 3603–3626, https://doi.org/10.5194/hess-24-3603-2020,https://doi.org/10.5194/hess-24-3603-2020, 2020
Short summary
Understanding coastal wetland conditions and futures by closing their hydrologic balance: the case of the Gialova lagoon, Greece
Stefano Manzoni, Giorgos Maneas, Anna Scaini, Basil E. Psiloglou, Georgia Destouni, and Steve W. Lyon
Hydrol. Earth Syst. Sci., 24, 3557–3571, https://doi.org/10.5194/hess-24-3557-2020,https://doi.org/10.5194/hess-24-3557-2020, 2020
Short summary
Why does a conceptual hydrological model fail to correctly predict discharge changes in response to climate change?
Doris Duethmann, Günter Blöschl, and Juraj Parajka
Hydrol. Earth Syst. Sci., 24, 3493–3511, https://doi.org/10.5194/hess-24-3493-2020,https://doi.org/10.5194/hess-24-3493-2020, 2020
Short summary

Cited articles

Andermann, C., Longuevergne, L., Bonnet, S., Crave, A., Davy, P., and Gloaguen, R.: Impact of transient groundwater storage on the discharge of Himalayan rivers, Nat. Geosci., 5, 127–132, https://doi.org/10.1038/ngeo1356, 2012. a, b, c
Andrews, E. D.: Measurement and computation of bed-material discharge in a shallow sand-bed stream, Muddy Creek, Wyoming, Water Resour. Res., 17, 131–141, https://doi.org/10.1029/WR017i001p00131, 1981. a
Bao, C., Li, L., Shi, Y., and Duffy, C.: Understanding watershed hydrogeochemistry: 1. Development of RT-Flux-PIHM, Water Resour. Res., 53, 2328–2345, 2017. a
Baraer, M., McKenzie, J. M., Mark, B. G., Bury, J., and Knox, S.: Characterizing contributions of glacier melt and groundwater during the dry season in a poorly gauged catchment of the Cordillera Blanca (Peru), Adv. Geosci., 22, 41–49, https://doi.org/10.5194/adgeo-22-41-2009, 2009. a, b, c, d, e, f
Baraer, M., Mark, B. G., McKenzie, J. M., Condom, T., Bury, J., Huh, K.-I., Portocarrero, C., Gómez, J., and Rathay, S.: Glacier recession and water resources in Peru's Cordillera Blanca, J. Glaciol., 58, 134–150, https://doi.org/10.3189/2012JoG11J186, 2012. a, b
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
The relationship among glacier melt, groundwater, and streamflow remains highly uncertain, especially in tropical glacierized watersheds in response to climate. We implemented a multi-method approach and found that melt contribution varies considerably and may drive streamflow variability at hourly to multi-year timescales, rather than buffer it, as commonly thought. Some of the melt contribution occurs through groundwater pathways, resulting in longer timescale interactions with streamflow.
The relationship among glacier melt, groundwater, and streamflow remains highly uncertain,...
Citation