Articles | Volume 23, issue 3
https://doi.org/10.5194/hess-23-1355-2019
https://doi.org/10.5194/hess-23-1355-2019
Research article
 | 
11 Mar 2019
Research article |  | 11 Mar 2019

Sources and fate of nitrate in groundwater at agricultural operations overlying glacial sediments

Sarah A. Bourke, Mike Iwanyshyn, Jacqueline Kohn, and M. Jim Hendry

Related authors

A hydrological framework for persistent pools along non-perennial rivers
Sarah A. Bourke, Margaret Shanafield, Paul Hedley, Sarah Chapman, and Shawan Dogramaci
Hydrol. Earth Syst. Sci., 27, 809–836, https://doi.org/10.5194/hess-27-809-2023,https://doi.org/10.5194/hess-27-809-2023, 2023
Short summary
A hydrological framework for persistent river pools in semi-arid environments
Sarah A. Bourke, Margaret Shanafield, Paul Hedley, and Shawan Dogramaci
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-133,https://doi.org/10.5194/hess-2020-133, 2020
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Mathematical applications
Estimating karst groundwater recharge from soil moisture observations – a new method tested at the Swabian Alb, southwest Germany
Romane Berthelin, Tunde Olarinoye, Michael Rinderer, Matías Mudarra, Dominic Demand, Mirjam Scheller, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 27, 385–400, https://doi.org/10.5194/hess-27-385-2023,https://doi.org/10.5194/hess-27-385-2023, 2023
Short summary
Present and future thermal regimes of intertidal groundwater springs in a threatened coastal ecosystem
Jason J. KarisAllen, Aaron A. Mohammed, Joseph J. Tamborski, Rob C. Jamieson, Serban Danielescu, and Barret L. Kurylyk
Hydrol. Earth Syst. Sci., 26, 4721–4740, https://doi.org/10.5194/hess-26-4721-2022,https://doi.org/10.5194/hess-26-4721-2022, 2022
Short summary
Understanding the potential of climate teleconnections to project future groundwater drought
William Rust, Ian Holman, John Bloomfield, Mark Cuthbert, and Ron Corstanje
Hydrol. Earth Syst. Sci., 23, 3233–3245, https://doi.org/10.5194/hess-23-3233-2019,https://doi.org/10.5194/hess-23-3233-2019, 2019
Short summary
Contaminant source localization via Bayesian global optimization
Guillaume Pirot, Tipaluck Krityakierne, David Ginsbourger, and Philippe Renard
Hydrol. Earth Syst. Sci., 23, 351–369, https://doi.org/10.5194/hess-23-351-2019,https://doi.org/10.5194/hess-23-351-2019, 2019
Short summary
Analysis of three-dimensional unsaturated–saturated flow induced by localized recharge in unconfined aquifers
Chia-Hao Chang, Ching-Sheng Huang, and Hund-Der Yeh
Hydrol. Earth Syst. Sci., 22, 3951–3963, https://doi.org/10.5194/hess-22-3951-2018,https://doi.org/10.5194/hess-22-3951-2018, 2018
Short summary

Cited articles

Arauzo, M.: Vulnerability of groundwater resources to nitrate pollution: A simple and effective procedure for delimiting Nitrate Vulnerable Zones, Sci. Total Environ., 575, 799–812, https://doi.org/10.1016/j.scitotenv.2016.09.139, 2017. 
Aravena, R., Evans, M., and Cherry, J. A.: Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems, Groundwater, 31, 180–186, 1993. 
Ascott, M. J., Gooddy, D. C., Wang, L., Stuart, M. E., Lewis, M. A., Ward, R. S., and Binley, A. M.: Global patterns of nitrate storage in the vadose zone, Nat. Commun., 8, 1416, https://doi.org/10.1038/s41467-017-01321-w, 2017. 
Baily, A., Rock, L., Watson, C., and Fenton, O.: Spatial and temporal variations in groundwater nitrate at an intensive dairy farm in south-east Ireland: Insights from stable isotope data, Agr. Ecosyst. Environ., 144, 308–318, 2011. 
Baram, S., Kurtzman, D., and Dahan, O.: Water percolation through a clayey vadose zone, J. Hydrol., 424–425, 165–171, https://doi.org/10.1016/j.jhydrol.2011.12.040, 2012. 
Download
Short summary
Agricultural operations can result in nitrate contamination of groundwater, lakes and streams. At two confined feeding operations in Alberta, Canada, nitrate in groundwater from temporary manure piles and pens exceeded nitrate from earthen manure storages. Identified denitrification reduced agriculturally derived nitrate concentrations in groundwater by at least half. Infiltration to groundwater systems where nitrate can be naturally attenuated is likely preferable to off-farm export via runoff.