Articles | Volume 23, issue 2
https://doi.org/10.5194/hess-23-1113-2019
https://doi.org/10.5194/hess-23-1113-2019
Research article
 | 
28 Feb 2019
Research article |  | 28 Feb 2019

Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria

Abolanle E. Odusanya, Bano Mehdi, Christoph Schürz, Adebayo O. Oke, Olufiropo S. Awokola, Julius A. Awomeso, Joseph O. Adejuwon, and Karsten Schulz

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (further review by editor and referees) (04 Sep 2018) by Roger Moussa
AR by Natascha Töpfer on behalf of the Authors (16 Oct 2018)  Author's response
ED: Referee Nomination & Report Request started (11 Nov 2018) by Roger Moussa
RR by Anonymous Referee #1 (11 Dec 2018)
RR by Anonymous Referee #2 (15 Dec 2018)
ED: Publish subject to minor revisions (review by editor) (28 Dec 2018) by Roger Moussa
AR by Abolanle Elizabeth Odusanya on behalf of the Authors (21 Jan 2019)  Author's response    Manuscript
ED: Publish as is (31 Jan 2019) by Roger Moussa
Download
Short summary
The main objective was to calibrate and validate the eco-hydrological model Soil and Water Assessment Tool (SWAT) with satellite-based actual evapotranspiration (AET) data for the data-sparse Ogun River Basin (20 292 km2) located in southwestern Nigeria. The SWAT model, composed of the Hargreaves PET equation and calibrated using the GLEAM_v3.0a data (GS1), performed well for the simulation of AET and provided a good level of confidence for using the SWAT model as a decision support tool.