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Abstract. The main objective of this study was to calibrate
and validate the eco-hydrological model Soil and Water As-
sessment Tool (SWAT) with satellite-based actual evapo-
transpiration (AET) data from the Global Land Evaporation
Amsterdam Model (GLEAM_v3.0a) and from the Moder-
ate Resolution Imaging Spectroradiometer Global Evapora-
tion (MOD16) for the Ogun River Basin (20 292 km2) lo-
cated in southwestern Nigeria. Three potential evapotran-
spiration (PET) equations (Hargreaves, Priestley–Taylor and
Penman–Monteith) were used for the SWAT simulation of
AET. The reference simulations were the three AET vari-
ables simulated with SWAT before model calibration took
place. The sequential uncertainty fitting technique (SUFI-2)
was used for the SWAT model sensitivity analysis, calibra-
tion, validation and uncertainty analysis. The GLEAM_v3.0a
and MOD16 products were subsequently used to calibrate the
three SWAT-simulated AET variables, thereby obtaining six
calibrations–validations at a monthly timescale. The model
performance for the three SWAT model runs was evaluated
for each of the 53 subbasins against the GLEAM_v3.0a and
MOD16 products, which enabled the best model run with the
highest-performing satellite-based AET product to be cho-
sen. A verification of the simulated AET variable was carried
out by (i) comparing the simulated AET of the calibrated

model to GLEAM_v3.0b AET, which is a product that has
different forcing data than the version of GLEAM used for
the calibration, and (ii) assessing the long-term average an-
nual and average monthly water balances at the outlet of the
watershed. Overall, the SWAT model, composed of the Harg-
reaves PET equation and calibrated using the GLEAM_v3.0a
data (GS1), performed well for the simulation of AET and
provided a good level of confidence for using the SWAT
model as a decision support tool. The 95 % uncertainty of
the SWAT-simulated variable bracketed most of the satellite-
based AET data in each subbasin. A validation of the simu-
lated soil moisture dynamics for GS1 was carried out using
satellite-retrieved soil moisture data, which revealed good
agreement. The SWAT model (GS1) also captured the sea-
sonal variability of the water balance components at the out-
let of the watershed.

This study demonstrated the potential to use remotely
sensed evapotranspiration data for hydrological model cali-
bration and validation in a sparsely gauged large river basin
with reasonable accuracy. The novelty of the study is the use
of these freely available satellite-derived AET datasets to ef-
fectively calibrate and validate an eco-hydrological model
for a data-scarce catchment.
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1 Introduction

Hydrological modelling in data-sparse catchments has al-
ways been a challenging task due to the lack of ground ob-
servations and insufficient or poor-quality data. Data scarcity
is the main limitation in tropical regions for setting up hy-
drological models for watershed simulations, which could
be used as significant decision support tools for sustain-
able water resources management. Water resources globally
are becoming increasingly vulnerable as a result of escalat-
ing water demand arising from population growth, expand-
ing industrialisation, increased food production and pollu-
tion due to various anthropogenic activities, climate and land
use change impacts (Carroll et al., 2013; McDonald et al.,
2014; Goonetilleke et al., 2016). The situation is more evi-
dent and critical in many developing countries where no wa-
ter resources monitoring plans or water management strate-
gies are in place for the future. Like many developing coun-
tries, Nigeria cannot satisfy its domestic water needs as only
47 % of the total population has access to water from im-
proved sources (Ishaku et al., 2012).

The Ogun River is the main source of public water sup-
ply for the people living in the states of Lagos and Ogun in
southwestern Nigeria. The prevalent situation of insufficient
hydrological data associated with a lack of up-to-date stream-
flow data (Sobowale and Oyedepo, 2013) and the poor level
of data quality in this watershed can be attributed to a grad-
ual decline in the number of hydrological stations and their
management. Water management planners are facing consid-
erable uncertainties in terms of future availability and quality
of water resources. Therefore, a clear understanding of the
ongoing challenges and innovative management approaches
are needed. One of the many ways to tackle this task is by
using hydrological models as tools coupled with the use of
increasingly available global and regional datasets to run the
models.

Numerous physically based distributed (PBD), continu-
ous models that aim to describe which driving processes are
present in a system and are able to make detailed predictions
in both time and space are available to simulate water quan-
tity and quality variables. These include, among others, the
Soil and Water Assessment Tool (SWAT; Arnold et al., 1998),
which is able to represent detailed agricultural management
practices and simulate water quantity and quality variables,
the Hydrologic Simulation Program Fortran (HSPF; Bick-
nell et al., 1997) used in predicting hydrology with in-stream
nutrient transport processes and SHETRAN (Ewen et al.,
2000), which has capabilities for modelling subsurface flow
and transport. These PBD models attempt to explain hydro-
logical phenomena through their underlying physical mech-
anisms and explicitly represent (through mathematical equa-
tions) the biological, chemical and physical processes of a
basin.

Schuol et al. (2008) have successfully applied the hydro-
logical model SWAT to quantify freshwater availability for

the whole of Africa at a detailed subbasin level and on a
monthly timescale. Using the SUFI-2 (sequential uncertainty
fitting algorithm) programme with three different objective
functions, the model was calibrated and validated at 207 dis-
charge stations. They reported the model inability to simu-
late runoff adequately in some areas in eastern and southern
Africa, but also reported that the model results were quite
satisfactory for such a large-scale application despite con-
taining large prediction uncertainties in some areas. Many
of the limitations reported within this continental modelling
study in Africa were data related. Abaho et al. (2012) applied
an uncalibrated SWAT model to evaluate the impacts of cli-
mate change on river flows and groundwater recharge in the
Sezibwa catchment, Uganda. They observed a 40 % increase
in groundwater recharge for the period of 2070–2100 and a
47 % increase in average river flow. However, there are high
levels of uncertainty associated with the model predictions
since the model was not calibrated due to insufficient data.

In West Africa, the SWAT model has been widely applied
to different river basins with satisfactory results. For exam-
ple, Schuol and Abbaspour (2006) applied SWAT to model
a 4× 106 km2 area, mainly in the basins of the Niger, Volta
and Senegal, addressing calibration and uncertainty issues.
Measured river discharges at 64 stations, at many of which
the available data do not cover the whole simulation period,
were used for annual and monthly calibration with the SUFI-
2 algorithm. Although the results obtained are preliminary
with a basis for discussion and further improvement, Schuol
and Abbaspour (2006) reported that the annual and monthly
simulations with the calibrated SWAT model for West Africa
showed promising results for freshwater quantification de-
spite the modelling shortcomings, which include a lacking
long-term dataset for dam management and operation. They
also pointed out the importance of evaluating the conceptual
model uncertainty as well as the parameter uncertainty. Lau-
rent and Ruelland (2010) successfully calibrated SWAT for
the Bani catchment (1× 106 km2) in Mali, a major tributary
of the upper Niger River. The calibration and validation re-
sults were satisfactory at the catchment outlet and also in var-
ious gauging stations located in tributaries. They showed the
model performance by reporting discharge and biomass cali-
bration results but did not assess the model prediction uncer-
tainty.

In northwestern Nigeria, Xie et al. (2010) evaluated
the SWAT model performance in a large watershed
(30 300 km2). Due to the short data period available, all the
data obtained were used for calibration. In their study, the
model parameters were first optimised with a genetic algo-
rithm, and the uncertainty in the calibration was further anal-
ysed using the generalised likelihood uncertainty estimation
(GLUE) method; the study presented a reasonably good cal-
ibrated model performance without validation. Adeogun et
al. (2014) successfully calibrated and validated the SWAT
model for the prediction of streamflow at the upstream water-
shed of Jebba reservoir (area: 12 992 km2) located in north-
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central Nigeria. The model results obtained were good, with
a Nash–Sutcliffe efficiency (NSE) of 0.72 and coefficient
of determination (R2) of 0.76 for the calibration period, an
R2 of 0.71 for the validation period, and NSE of 0.78 for
monthly average streamflow, but the model prediction uncer-
tainty was not quantified.

The findings from these past studies call for continued im-
provement in the hydrological model performances in Africa,
especially in data-sparse regions. One solution is to use freely
available global datasets to improve the model performance.

In the context of large-scale hydrological model sim-
ulation in data-scarce areas, López López et al. (2017)
investigated alternative ways to calibrate the large-scale
hydrological model PCRaster GLOBAL Water Balance
(PCR-GLOBWB) using satellite-based evapotranspiration
(GLEAM) and surface soil moisture (ESA CCI) for the data-
poor catchment Oum Er-Rbia in Morocco with the aim of
improving discharge estimates. In their study, different cal-
ibration scenarios are inter-compared. The results show that
GLEAM evapotranspiration and ESA CCI soil moisture used
for model calibration resulted in reasonable discharge esti-
mates (NSE ranges from −0.22 to 0.68 and −0.31 to 0.66,
respectively). Better model performance was achieved when
the model was calibrated with in situ streamflow observa-
tions, resulting in NSE values from −0.15 to 0.75. Their re-
sults showed the possibility of using globally available Earth
observation datasets in large-scale hydrological models to es-
timate discharge at a river basin scale. Abera et al. (2017) de-
veloped a methodology that can improve the state of the art
by using available, but sparse, hydrometeorological data and
satellite products to obtain the estimates of all the compo-
nents of the hydrological cycle (precipitation, evapotranspi-
ration, discharge and storage) in the upper Blue Nile basin.
To obtain a water-budget closure, Abera et al. (2017) used
the JGrass-NewAge hydrological model calibrated with ob-
served discharge (1994–1999) using particle swarm optimi-
sation. The simulation of each hydrological component by
JGrass-NewAge was verified using available in situ and re-
mote sensing data. GLEAM (Miralles et al., 2011a) and
MOD16 AET were used as independent datasets to assess
the JGrass-NewAge estimated AET. Overall, the AET simu-
lations showed that the correlation and PBIAS obtained be-
tween JGrass-NewAge and GLEAM AET had a better agree-
ment (very low bias and acceptable correlation) compared to
JGrass-NewAge and MOD16.

Recently, Ha et al. (2018) used remotely sensed precipi-
tation, actual evapotranspiration (AET) and leaf area index
(LAI) from open-access data sources to calibrate the SWAT
model for the Day Basin, a tributary of the Red River in Viet-
nam. The calibration was performed in SWAT-CUP using
the sequential uncertainty fitting algorithm (SUFI-2). In this
study simulated monthly AET correlations with remote sens-
ing estimates showed an R2 of 0.71. Pomeon et al. (2018) set
up a hydrological modelling framework for sparsely gauged
catchments in West Africa using the SWAT model whilst

largely relied on remote sensing and reanalysis inputs. In
their study, validation of the model was conducted to further
investigate its performance, whereby simulated actual evapo-
transpiration, soil moisture and total water storage were eval-
uated using remote sensing data. The validation result reveals
good agreement between predictions and the remotely sensed
data (R2 calibration: 0.52 and 0.51; R2 validation: 0.63 and
0.61)

Remote sensing technologies offer large-scale spatially
distributed observations and have opened up new opportu-
nities for calibrating and validating hydrologic models. This
advancement enables several global evapotranspiration prod-
ucts to be used. Extensive reviews of Earth-observation-
based methods for deriving AET have been carried out by
several research groups (Anderson et al., 2012; Bateni et al.,
2013; Li et al., 2013; Savoca et al., 2013; Senay et al., 2013;
Nouri et al., 2015; Wang-Erlandsson et al., 2016).

Two global-scale AET products derived from satellite ob-
servation have become available, and these two AET prod-
ucts were used in this study: the Global Land Evapora-
tion Amsterdam Model (GLEAM; http://www.gleam.eu, last
access: 12 July 2017) and Moderate Resolution Imaging
Spectroradiometer Global Evaporation (MOD16). GLEAM
is an evapotranspiration product developed by the VU Uni-
versity of Amsterdam (Miralles et al., 2011a, b) and con-
tains a set of algorithms that separately estimate the dif-
ferent components of terrestrial evaporation (i.e. transpira-
tion, interception loss, bare soil evaporation, snow subli-
mation and open water evaporation), as well as variables
such as the evaporative stress factor, potential evaporation,
root-zone soil moisture and surface soil moisture by us-
ing satellite-based climatic and environmental observations
(Miralles et al., 2011a; Martens et al., 2017). Recently, the
GLEAM_v3.0 AET has been validated against measure-
ments from 64 eddy-covariance towers and 2338 soil mois-
ture sensors across a broad range of ecosystems with vary-
ing levels of success (Martens et al., 2017). In this study,
GLEAM_v3.0a and v3.0b were used. These two datasets dif-
fer only in their forcing variables and spatial–temporal cov-
erage. GLEAM_v3.0a is a dataset spanning the 35-year pe-
riod 1980–2014 and is based on reanalysis net radiation and
air temperature, a combination of gauged-based, reanalysis
and satellite-based precipitation and satellite-based vegeta-
tion optical depth. GLEAM_v3.0b is a dataset spanning the
13-year period 2003–2015 and is derived by satellite data
only (Miralles et al., 2011a; Martens et al., 2017).

The MOD16 global evapotranspiration data are based
on a 1 km2 grid of land surface AET that was developed
with an energy balance model using satellite data as in-
put (Mu et al., 2011). The MOD16 product estimates evap-
otranspiration using a moderate-resolution imaging spec-
troradiometer, land cover, albedo, LAI, an enhanced veg-
etation index (EVI) and a daily meteorological reanalysis
dataset from NASA’s Global Modelling and Assimilation
Office (GMAO). The non-satellite input data are NASA’s
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MERRA GMAO (GEOS-5) daily meteorological reanalysis
data. MOD16 has been validated using measurements from
eddy-covariance stations at different tropical sites (Ruhoff et
al., 2013; Ramoelo et al., 2014). Ruhoff et al. (2013) val-
idated MOD16 AET using ground-based measurements of
energy fluxes obtained from eddy-covariance sites in tropical
regions in the Rio Grande basin, Brazil. Likewise, Ramoelo
et al. (2014) validated MOD16 using data from two eddy-
covariance flux towers installed in a savannah and woodland
ecosystem within the Kruger National Park, South Africa.

The objective of our study was to obtain a high-performing
eco-hydrological model for the Ogun River Basin in south-
western Nigeria that can be used as a decision support tool.
To this effect, the specific objectives were (i) to calibrate and
validate the SWAT model with remotely sensed actual evapo-
transpiration products, namely GLEAM_v3.0a and MOD16,
and (ii) to use further independent products to validate the
simulated soil moisture and verify the simulated water bal-
ance components.

Although the three PET equations and the corresponding
AET simulations from SWAT have been tested for their per-
formance before (Wang et al., 2006; Franco and Bonumá,
2017; Samadi, 2017; Ha et al., 2018), calibrating each of
the three SWAT-simulated AET variables with two remotely
sensed AET products for each delineated subbasin to deter-
mine the highest-performing model in a catchment has not
been undertaken.

Hence, the contribution of this study includes the fol-
lowing: (i) the calibration and validation of simulated AET
from the three SWAT models using satellite-derived AET
data; (ii) the use of satellite-based AET data for calibration
and validation of the SWAT model in each of the SWAT-
delineated subbasins; and (iii) the validation of simulated soil
moisture dynamics of the highest-performing SWAT model
run using European Space Agency Climate Change Initiative
soil moisture (ESA CCI SM) in each of the SWAT-delineated
subbasins.

2 Materials and methods

2.1 Description of the study site

The study area is a sub-watershed (20 292 km2) of the Ogun
River Basin (23 700 km2) located in southwestern Nige-
ria (Fig. 1), bordered geographically by latitudes 7◦7′ and
8◦59′ N and longitudes 2◦4′ and 4◦9′ E. About 2 % of the
catchment area is located in the Benin Republic. The study
area encompasses the Sepeteri, Iseyin, Olokemeji, Oyan and
Abeokuta catchments and cuts across the Oyo and Ogun state
administrative boundaries. The Ogun River, which literar-
ily means the River of Medicine, springs from the Igaran
Hills in Oyo state, near Saki, at an elevation of about 624 m
above mean sea level. The elevation ranges from 624 to
23 m. The mean annual rainfall (1984–2012) obtained from

measured data in Ogun watershed is 1224 mm yr−1 and the
mean annual temperature (1984–2012) obtained from mea-
sured data is about 27 ◦C. Mean annual potential evapotran-
spiration (PET) estimated by the Hargreaves method (Har-
greaves and Samani, 1985) from measured minimum and
maximum temperature is 1720 mm yr−1 and the mean AET
obtained from SWAT output (1989–2012) for this study area
is 692 mm yr−1. Two seasons are distinguishable in the wa-
tershed: a dry season from November to March and a wet sea-
son between April and October. The watershed area is char-
acterised by strong climatic variation and irregular rainfall
(Eruola et al., 2012). The geology of the study area can be
described as a rock sequence that starts with a Precambrian
basement, which consists of quartzites and biotite schist,
hornblende–biotite, granite and gneisses (Bhattacharya and
Bolaji, 2010). The major soils of the basin are sandy clayey
loam, sandy loam, clayey loam and silt loam. The land use
in the watershed is primarily forest (75 %), cropland (24 %)
and urban (1 %).

The basin, in which two large dams (Oyan and Ikere Gorge
dams) are located, is of great importance for economic ad-
vancement both at the federal and state level. The dams are
the principal provider of water to Lagos and Ogun State Wa-
ter Corporation for municipal drinking water production. The
Oyan reservoir is located at the confluence of the Oyan and
Ofiki rivers at an elevation of 43.3 m above mean sea level
and was built in 1984; it has a surface area of 40 km2 and a
catchment area of 9× 103 km2, with a dead storage capac-
ity of 16×106 m3, a gross storage capacity of 270×106 m3,
an embankment crest length of 1044 m, a height of 30.4 m,
four spillway gates (each 15 m wide and 7 m high) and three
outlet valves (each 1.8 m in diameter). The Ikere Gorge is an
uncontrolled dam, which started operation in 1991. The dam
crosses the Ogun River in the Iseyin local government area
of Oyo state. Ikere Gorge has a capacity of 690× 106 m3.
The reservoir is adjacent to the Old Oyo National Park, pro-
viding recreational facilities for tourists, and the river flows
through the park (Oyegoke and Sojobi, 2012). A total of 25
local government areas fall within the study area. In densely
populated areas, the Ogun River is used for bathing, washing
and drinking.

2.2 SWAT model description

SWAT (Arnold et al., 1998) is an open-source eco-
hydrological model developed for the USDA Agricultural
Research Services. SWAT is a semi-distributed, process-
based, continuous model that uses weather, soil, topography
and land use for the hydrologic modelling of a basin and runs
at a daily time step. It was developed to predict the impact
of agricultural land management practices on discharge, sed-
iments, nutrients, bacteria, pesticides and biomass in large
complex watersheds with varying soils, land use and man-
agement conditions over long periods of time. The SWAT
model uses at its core the plant growth model EPIC (Williams
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Figure 1. The Ogun River Basin located in Nigeria showing the SWAT-delineated subbasins, weather stations and river network.

et al., 1989) to simulate the growth (including nutrient and
water uptake) of many types of crops and trees as land cover.
SWAT categorises plants into seven different types: warm
season annual legume, cold season annual legume, perennial
legume, warm season annual, cold season annual, perennial
and trees. Plant growth is modelled by simulating leaf area
development, light interception and the conversion of inter-
cepted light into biomass assuming a plant species-specific
radiation use efficiency. Hence, in SWAT, phenological plant
development is based on daily accumulated heat units. The
plant growth model is used to assess the removal of water
and nutrients from the root zone, transpiration and biomass–
yield production.

For modelling purposes in SWAT, the watershed is divided
into subbasins which are then further subdivided into hydro-
logic response units (HRUs) that consist of homogeneous
land use, soil types and slope (Arnold et al., 1998). Soil wa-
ter balance (WB) is calculated for each HRU; the equation
comprises six variables and is estimated in SWAT using the
following (Eq. 1):

SWt =SW0+
∑t

i=1

(
Rday−Qsurf−Ea−Wseep

−Qgw
)
, (1)

where SWt is the final soil water content (mm of water), SW0
is the initial soil water content on day i (mm of water), t is the
time (days), Rday is the amount of precipitation on day i (mm

of water),Qsurf the amount of surface runoff on day i (mm of
water), Ea the amount of evapotranspiration on day i (mm of
water), Wseep the amount of water entering the vadose zone
from the soil profile on day i (mm of water) and Qgw the
amount of return flow on day i (mm of water).

Evaporation estimation in SWAT

Evapotranspiration is a key process in water balance and
one of the more difficult components to determine. Although
different empirical methods for the estimation of PET are
widely adopted, AET is difficult to quantify and it usually
requires the reduction of PET through a factor that describes
the level of stress experienced by plants. This relationship has
been described in detail by several research papers (e.g. Mor-
ton, 1986; Hobbins et al., 1999; Wang et al., 2006). Numer-
ous methods have been developed to estimate PET (Lu et al.,
2005) and SWAT offers three PET estimation options from
which the user can choose depending on e.g. the data avail-
ability: the Penman–Monteith method (P–M), the Priestley–
Taylor method (P–T) or the Hargreaves method (HG). Any
one of these three PET equations can be chosen to run in
SWAT, but they vary in the amount of input data required.
The Hargreaves method (Hargreaves and Samani, 1985) is
temperature based and requires only average daily air tem-
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perature as input in Eq. (2):

λE0 = 0.0023×H0×(Tmax− Tmin)
0.5
×(Tmean+ 17.8) , (2)

where λ is the latent heat of vaporisation (MJ kg−1),E0 is the
potential evapotranspiration (mm day−1), H0 is the extrater-
restrial radiation (MJ m−2 day−1) , Tmax is the maximum air
temperature for a given day (◦C), Tmin is the maximum air
temperature for a given day (◦C) and Tmean is the mean air
temperature for a given day (◦C).

The Penman–Monteith method (Monteith, 1965; Allen,
1986; Allen et al., 1989) requires air temperature, solar ra-
diation, relative humidity and wind speed as input in Eq. (3):

λE =
1× (Hnet−G)+ ρair×CP ×

(
eoz − ez

)
/ra

1+ γ × (1+ rc/ra)
, (3)

where λE is the latent heat flux density (MJ m−2 day−1),
E is the depth rate evaporation (mm day−1), 1 is the slope
of the saturation vapour pressure–temperature curve, de/dT
(kPa ◦C−1), Hnet is the net radiation (MJ m−2 day−1), G is
the heat flux density to the ground (MJ m−2 day−1), ρair is
the air density (kg m−3), Cp is the specific heat at constant
pressure (MJ kg−1 ◦C−1), eoz is the saturation vapour pressure
of air at height z (kPa), ez is the water vapour pressure of air
at height z (kPa), γ is the psychrometric constant (kPa ◦C−1),
rc is the plant canopy resistance (s m−1) and ra is the aerody-
namic resistance (s m−1).

The Priestley–Taylor equation (Priestley and Taylor, 1972)
is a radiation-based method and it provides PET estimates
for low advective conditions. The P–T method requires so-
lar radiation, air temperature and relative humidity as input
(Eq. 4):

λEo = αpet×
1

1+ γ
× (Hnet−G), (4)

where αpet is a coefficient, 1 is the slope of the saturation
vapour pressure–temperature curve, de/dT (kPa ◦C−1), γ is
the psychometric constant (kPa ◦C−1), Hnet is the net radi-
ation (MJ m−2 day−1) and G is the heat flux density to the
ground (MJ m−2 day−1).

Once PET is determined, AET is estimated in SWAT,
whereby SWAT first evaporates any rainfall intercepted by
the plant canopy. Second, it calculates the maximum amount
of transpiration, sublimation and/or soil evaporation. Finally,
the actual amount of sublimation and evaporation from the
soil surface is calculated. If snow is presented in the HRU,
sublimation can occur. When there is no snow (such as in
this case study), only evaporation from the soil surface is cal-
culated. A complete description of the SWAT model and the
model equations can be found in Neitsch et al. (2002, 2005)
and Arnold et al. (1998).

2.3 Model set-up

The ArcView GIS interface for SWAT2012 (Winchell et al.,
2013) was used to configure and parameterise the SWAT

model. SWAT model inputs included a 30 m spatial resolu-
tion digital elevation model (DEM) with minimum, maxi-
mum and mean values of 23, 624 and 289.1 m, respectively
(Fig. 1), 17 soil classes, 17 land use classes, 3 slope cate-
gories, meteorological data and land use with its manage-
ment (Table 1).

For the SWAT model set-up, the watershed was delin-
eated into 53 subbasins, with the main outlet in Abeokuta.
The minimum and maximum subbasin areas are 72.4 and
853.1 km2, respectively, while the mean is 382.8 km2. Daily
precipitation data (1984–2012) and minimum and maximum
temperature data (1984–2012) were obtained from the Nige-
rian Meteorological Agency for four weather stations (Fig. 1)
and used as observed input data. The weather stations are
more or less evenly distributed in or around the watershed,
and the weather data obtained from stations located in the
same proximity show the same rise-and-fall dynamics. No
orographic effect correction is needed for correcting the pre-
cipitation values.

The missing values of daily measured precipitation and
minimum and maximum temperatures were simulated by the
WGEN_CFSR_World. The WGEN_CFSR_World weather
database is an input into SWAT (ArcSWAT CSFR_World
weather generator) containing long-term monthly weather
statistics covering the entire globe and developed using the
National Centres for Environmental Prediction (NCEP) Cli-
mate Forecast System Reanalysis (CFSR) global dataset. The
ArcSWAT CSFR_World weather generator was used to sim-
ulate daily solar radiation, relative humidity and wind speed.
The simulated variables were used as input variables into
the Penman–Monteith and Priestley–Taylor equations for ob-
taining the different PET estimates from SWAT.

The topHRU programme (Strauch et al., 2017) was used
to determine the optimum number of HRUs in the water-
shed. The topHRU programme allows for the identification
of a Pareto-optimal threshold which minimises the spatial er-
ror to 0.01 ha for a given number of HRUs and thereby min-
imises the trade-off between SWAT computation time and
the number of HRUs. In this case, topHRU determined the
optimum number of HRUs to be 1397 for the Ogun River
Basin. Thresholds of 150 ha for soil and 250 ha for slope
were used in the SWAT set-up. The physical consequences
of the thresholds include improving the computational effi-
ciency of simulations while keeping key landscape features
and information on the watershed in the hydrologic mod-
elling. Not selecting a threshold for land use was based on
our desire to retain all of the land use classes for future
land use change research needs. The surface runoff in SWAT
was estimated using the modified Soil Conservation Society
curve number method. The SWATfarmR programme (Schürz
et al., 2017) was used to write the management files in SWAT.
All SWAT simulations included a warm-up period of 5 years
for the simulation period from 1984 to 2012.

The SWAT model was set up once for the entire Ogun
River Basin and then run three times, whereby each model
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Table 1. Description and sources of input data used to configure the SWAT model for the Ogun River Basin.

Data type Description and resolution Sources

Topography 30 m resolution, digital
elevation model
1 arcsec global coverage

Shuttle Radar Topography Mission
(SRTM, 2015)
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-
shuttle-radar-topography-mission-srtm-1-arc?qt-science_center_objects=0#qt-
science_center_objects

Soil 250 m resolution, soil
property maps of Africa

Soil property maps of Africa (AFSIS, 2015; Hengl et al., 2015)
https://www.isric.org/projects/soil-property-maps-africa-250-m-resolution

Land use 300 m resolution, land use
classification
Year 2010

European Space Agency global land cover map
(ESA CCI LC, 2014)
https://www.esa-landcover-cci.org/?q=node/158

Weather Daily precipitation, max.
and min. temperature
(1984–2012)

Nigerian Metrological Agency

Reservoir
outflow

Reservoir daily discharge
(Oyan: 2007–2012)

Ogun–Oshun River Basin Authority Nigeria

Reservoir
water level

Daily water level
(Oyan: 1984–2012)

Ogun–Oshun River Basin Authority Nigeria

Management
practices

Major crop management
practices

Ogun Agricultural Development Authority, Nigeria
Oyo Agricultural Development Authority, Nigeria

Figure 2. Schematic diagram showing the set-up of the SWAT model, the two global AET products, the resulting six SWAT reference runs,
and calibration and validation procedures for the Ogun River Basin.

run is composed of a different PET equation available in
SWAT (HG, P–M or P–T). Figure 2 shows the framework
in which the three SWAT model runs (SWAT_HG, SWAT_P-
T and SWAT_P-M) were used to evaluate the model perfor-
mance by (i) comparing the three uncalibrated SWAT simu-
lations of AET with the two global AET products (GLEAM
and MOD16), thus allowing for six reference runs of SWAT

(RGS1 through RMS6). SWAT_HG represents the SWAT
run using the Hargreaves PET equation to simulate un-
calibrated AET, and these results were compared with the
AET from GLEAM_V3.0a (RGS1) and MOD16 (RMS4).
SWAT_P-T represents the SWAT run using the Priestley–
Taylor PET equation to simulate uncalibrated AET, and the
results were compared with the AET from GLEAM_V3.0a
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(RGS2) and MOD16 (RMS5). SWAT_P-M represents the
SWAT run using the Penman–Monteith PET equation to sim-
ulate uncalibrated AET, and the results were compared with
GLEAM_v3.0a (RGS3) and MOD16 (RMS6). (ii) The cali-
brations and validations implemented with two global AET
products (GLEAM and MOD16) were also compared, thus
allowing for six calibration results of SWAT (GS1 through
MS6). SWAT_HG represents the SWAT run using the Har-
greaves PET equation to simulate AET, and that was cal-
ibrated and validated with the AET from GLEAM_v3.0a
(GS1) and MOD16 (MS4). SWAT_P-T represents the SWAT
run using the Priestley–Taylor PET equation to simulate
AET, and that was calibrated and validated with the AET
from GLEAM_v3.0a (GS2) and MOD16 (MS5). SWAT_P-
M represents the SWAT run using the Penman–Monteith PET
equation to simulate AET, and that was calibrated and vali-
dated with the AET from GLEAM_v3.0a (GS3) and MOD16
(MS6). This procedure enabled the SWAT model run with the
highest-performing simulated AET to be chosen for further
use.

2.4 Satellite-derived datasets

Due to unavailability of discharge measurements in the wa-
tershed, two satellite-based AET products (GLEAM_v3.0a
and MOD16) were used for the SWAT calibration and vali-
dation. The criteria for choosing GLEAM and MOD16 prod-
ucts are based on their temporal and spatial resolution, the
fact that they are freely available, and because these two AET
datasets have been validated in several countries in Africa.
To further assess the model performance in simulating other
components of the water balance (e.g. soil moisture), a re-
motely sensed ESA CCI soil moisture v3.2 dataset was used
to validate SWAT-simulated soil moisture dynamics.

2.4.1 GLEAM

GLEAM combines a wide range of remote sensing observa-
tions from different satellites to separately estimate the dif-
ferent components of terrestrial evaporation and surface soil
moisture through a process-based methodology (Martens et
al., 2017). GLEAM was developed in 2011 and has been
continuously revised and updated. The Priestley and Tay-
lor (1972) equation used in GLEAM calculates the potential
evaporation (mm day−1) based on remotely sensed observa-
tions of surface net radiation and near-surface air temperature
(Eq. 4). Since GLEAM separately derives the different com-
ponents of terrestrial evaporation (Eq. 5), the estimates of
potential evaporation for the land fractions of bare soil, open
water, tall canopy and short canopy are converted into actual
evaporation using a multiplicative evaporative stress factor
(Eq. 6) obtained from observations of microwave vegetation
optical depth (VOD) used as a proxy for vegetation water
content and simulations of root-zone soil moisture. Intercep-
tion loss is estimated separately based on the Gash analytical

model of rainfall interception driven by observations of pre-
cipitation and both vegetation and rainfall characteristics.

Two of the three versions of the datasets produced
in 2016 using GLEAM_v3.0 were downloaded for this
study (GLEAM_v3.0a and GLEAM_v3.0b). In this study,
GLEAM_v3.0a was used for SWAT calibration and valida-
tion, while GLEAM_v3.0b was used for the verification of
the SWAT-simulated AET.

E = Et+Eb+Ew+Ei+Es (5)

S =
(E−Ei)

Ep
(6)

E is the actual evaporation (mm day−1), Et is the transpi-
ration (mm day−1), Eb is bare soil evaporation (mm day−1),
Ew is the open water evaporation (mm day−1), Ei is the
interception loss (mm day−1), Es is the snow sublimation
(mm day−1), S is the evaporative stress factor (–) and Ep is
potential evaporation (mm day−1).

The datasets are provided on a 0.25◦ by 0.25◦ regular grid.
For more information on GLEAM, its different forcing vari-
ables, and the satellite data used in the GLEAM_v3.0a and
GLEAM_v3.0b datasets, the reader is referred to Miralles et
al. (2011b) and Martens et al. (2017).

2.4.2 MOD16

The MOD16 retrieval algorithm (Mu et al., 2007, 2011) is
based on the Penman–Monteith framework (Monteith, 1965)
with modifications to account for parameters not readily
available from space (Cleugh et al., 2007). Terrestrial evap-
otranspiration includes evaporation from wet and moist soil,
evaporation from rainwater intercepted by the canopy before
it reaches the ground, the sublimation of water vapour from
ice and snow, and transpiration through stomata on plant
leaves and stems (Mu et al., 2011). Mu et al. (2007) de-
rived actual evaporation from potential evaporation data by
using multipliers to halt soil evaporation and plant transpi-
ration through transpiration flow that was limited by water
stress and low temperatures with a complementary relation-
ship which defines land–atmosphere interactions from rela-
tive humidity and vapour pressure deficit (Mu et al., 2007).
Mu et al. (2011) apply the P–M equation (Eq. 3) to cal-
culate PET on a global scale by using variables and pa-
rameters needed from Vis–NIR remote sensing (land cover,
LAI, albedo, FPAR) and from daily meteorological reanal-
ysis data from NASA’s Global Modelling and Assimilation
Office (radiation, Tair, pressure, relative humidity). In princi-
ple, the surface resistance (rs) parameter in the P–M equa-
tion accounts for any direct effect on evapotranspiration due
to limitations in available water. The way rs is derived in the
MOD16 evapotranspiration scheme only considers an indi-
rect effect via a non-linear dependency of rs with the water
vapour pressure deficit (VPD) in the atmosphere. VPD under
daytime conditions often represents a proxy for soil moisture
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conditions and therefore rs. MOD16 AET is described in de-
tail by Mu et al. (2007, 2011).

2.4.3 ESA CCI soil moisture

The European Space Agency Climate Change Initiative soil
moisture data were generated by merging various available
active and passive microwave-based soil moisture datasets
(Gruber et al., 2017; Wagner et al., 2012). The combined
product used is ESA CCI SM v3.2 that was released in 2017
and was generated by blending passive and active microwave
soil moisture retrieval generated by C-band scatterometers
(ERS-1/2 AMS WS; TU Wien, WARP 5.5) various addi-
tional scatterometers (ERS-2 AMI WS; TU Wien, WARP
5.4; MetOp A and B ASCAT, H – SAF H109–H110–WARP
5.6) and multi-frequency radiometer data (from SMMR,
SSM/I, TMI, WinSat, all VUA/NASA LPRM v5; AMSR-
E, AMSR2, SMOS, all VanderSat LPRM v6; Dorigo et al.,
2017). The blending scheme of this product used a weighted
average of measurements from all sensors that are available
at a certain point in time to compute the merged soil mois-
ture estimate (Dorigo et al., 2017). Since all input datasets
used in generating the data have different dynamic ranges,
they are rescaled through CDF matching into a common
climatology. Specifically, the soil moisture retrievals from
multi-frequency radiometer products (SMMR, SSM/I, TMI
and AMSR-E) were rescaled and merged on a pixel basis
(Liu et al., 2012). ESA CCI SM v3.2 data are available at a
daily resolution from 1978 to 2015, at a spatial resolution of
0.25◦ and representing the upper soil depth from 0.5–2 cm.
For more detailed information on ESA CCI SM, the reader is
referred to Wagner et al. (2012), Liu et al. (2012), Dorigo et
al. (2014, 2017) and Gruber et al. (2017). The ESA CCI SM
has been evaluated in West Africa using in situ soil moisture
data (Dorigo et al., 2014).

2.5 SWAT calibration, validation and uncertainty
analysis

A multi-objective calibration and validation of SWAT-
simulated AET using satellite-derived AET from
GLEAM_v3.0a and MOD16 was implemented in SWAT-
CUP (Abbaspour, 2015). SWAT-CUP is a package used to
carry out sensitivity analysis, calibration and validation of
the SWAT model. SUFI-2 (Abbaspour et al., 2004) is one of
the programmes available in SWAT-CUP that is a multi-site,
semi-automated, inverse modelling procedure used for
calibrating parameters. SUFI-2 is based on a stochastic
procedure for drawing independent parameter sets using
Latin hypercube sampling (LHS). In this paper, we followed
the split-sample test as presented by Klemes (1986) and
Gan et al. (1997) using a model calibration and validation
approach that consists of equally splitting the available data,
when the record is sufficiently long, to represent different
climatic conditions, i.e. wet, moderate and dry years in

both periods. An initial pre-selection of parameters based
on literature research (Bicknell et al., 1997; Wang et al.,
2006; Rafiei Emam et al., 2016; Ha et al., 2018; López
López et al., 2017) was undertaken to choose the most
sensitive parameters to AET and make sure that each of
the hydrological processes (runoff, evaporation, intercep-
tion, transpiration and percolation) is represented in the
50 parameters of the global sensitivity analysis. The initial
parameter ranges were based on Neitsch et al. (2002, 2005,
2011). A global sensitivity analysis based on the multiple
regression method (Abbaspour, 2015) was carried out in
which parameter sensitivities were determined by numerous
rounds of LHS to obtain the most sensitive parameters by
examining the resulting p value and the t stat value. The p
value determines the significance of the sensitivity (a value
close to zero has more significance) and the t stat provides a
measure of parameter sensitivity (a larger absolute value is
more sensitive). Based on the sensitivity analysis, 11 of the
most sensitive parameters were selected and altered during
the calibration process using SUFI-2. The ranking and the
calibrated values of the 11 parameters for each of the six
calibration procedures are listed in Table 2. The equations
written in SWAT theoretical documentation (Neitsch et al.,
2011) showing the selected 11 sensitive parameters are
presented in Appendix C.

In this study, the first three calibrations and validations
GS1, GS2 and GS3 use the AET from GLEAM_v3.0a for
SWAT calibration (1989–2000) and validation (2001–2012).
To compare SWAT-simulated AET in each subbasin to the
GLEAM_v3.0a and GLEAM_v3.0b AET pixel values and
compute their NSE, R2, PBIAS and KGE for each sub-
basin, a NetCDF raster layer was created in ArcGIS to view
how many pixels of GLEAM covered each Ogun River sub-
basin polygon (Fig. D1). A GLEAM AET pixel value (daily
resolution) was extracted for each subbasin by using the
“convert raster to points” and “make NetCDF table view”
tools in ArcGIS. The extracted daily data were aggregated
to monthly data for each subbasin for easy comparison with
the monthly AET output from SWAT. We preferred and se-
lected GLEAM_v3.0a AET for the calibration and validation
because of its long-term availability that allows for reason-
able selection and splitting of calibration and validation pe-
riods, which are not substantially different in climatic con-
ditions, i.e. wet, moderate and dry years in both periods,
and which cover our SWAT simulation output period (1989–
2012). The GLEAM_v3.0a dataset spanning a 24-year pe-
riod 1989–2012 was used because the SWAT simulation out-
put was from 1989–2012. The splitting of the calibration
period (1989–2000) and validation period (2001–2012) for
GLEAM_v3.0a AET followed the split-sample test as pre-
sented by Klemes (1986) and Gan et al. (1997).

The last three calibrations and validations MS4, MS5 and
MS6 use the MOD16 AET for SWAT calibration (2000–
2006) and validation (2007–2012). Considering the MOD16
AET available time series period, the splitting of calibration
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Table 2. Sensitivity rank and calibrated parameters with their optimal value for the three SWAT model runs through the six calibrations.

Rank (optimal value)

SWAT parameter Description GS1 GS2 GS3 MS4 MS5 MS6

r__CN2.mgt SCS runoff curve number for soil
moisture condition II

1 (−0.01) 1 (−0.13) 1 (0.08) 1 (−0.48) 1 (−0.48) 1 (−0.47)

v__ESCO.hru Soil evaporation compensation co-
efficient

2 (0.02) 4 (0.20) 3 (0.20) 4 (0.23) 8 (0.33) 5 (0.50)

v__CANMX.hru Maximum canopy storage 3 (6.96) 2 (0.61) 2 (3.86) 5 (82.11) 9 (33.9) 4 (15.6)
r__SOL_BD,sol Moist bulk density 4 (−0.19) 3 (0.11) 4 (−0.20) 3 (−0.82) 3 (−0.005) 2 (−0.07)
v__ALPHA_BF.gw Baseflow alpha factor 5 (0.66) 5 (0.62) 7 (0.13) 6 (0.42) 6 (0.9) 8 (0.14)
r__SOL_K.sol Saturated hydraulic conductivity 6 (0.23) 10 (−0.26) 8 (0.24) 10 (0.49) 10 (−0.19) 10 (0.26)
v__EVRSV.res Lake evaporation coefficient 7 (0.59) 7 (0.55) 10 (0.62) 8 (0.22) 7 (0.23) 7 (0.74)
v__GSI.plant.dat Maximum stomatal conductance 8 (4.7) 11 (1.66) 11 (3.4) 7 (2.34) 5 (1.9) 6 (0.34)
v__FFCB.bsn Initial soil water storage expressed

as a fraction of field capacity water
content

9 (0.59) 6 (0.82) 5 (0.15) 11 (0.99) 11 (0.4) 11 (0.83)

v__EPCO.hru Plant uptake compensation factor 10 (0.47) 9 (0.61) 9 (0.07) 9 (0.95) 4 (0.88) 9 (0.47)
r__SOL_AWC.sol Soil-available water storage capac-

ity
11 (0.8) 8 (0.92) 6 (0.77) 2 (0.96) 2 (0.89) 3 (0.93)

“v_” means a replacement (initial or existing parameter value is to be replaced by a given value); “r_” means a relative change (initial or existing parameter value is multiplied by
1+ given value within the range).

and validation periods also followed the split-sample test as
presented by Klemes (1986). Since MOD16 AET is a raster
in geotiff format, to compare the AET pixel value to SWAT-
simulated monthly AET values for each subbasin, an area-
weighted averaging scheme was performed in ArcGIS to cre-
ate aggregated monthly time series of MODIS AET for each
subbasin (Fig. D2).

The three model runs were calibrated (GS1 through MS6)
by adjusting the 11 most sensitive parameters found in SUFI-
2. In the calibration of SWAT with the AET from GLEAM,
a sample size of 1000 was chosen for the first iteration and
a sample size of 500 for the second iteration, resulting in
1500 simulations. In the calibration of SWAT with AET from
MOD16, a sample size of 1000 was chosen for two iterations
of LHS, resulting in 2000 simulations. The validation process
involved running the model using parameter values that were
determined during the calibration process and comparing the
SWAT AET simulations to satellite-based AET data.

In this study, we do not consider runoff-measured data for
an independent validation because they are not available for
the study basin, and this is the main reason we considered
AET derived from satellite products as an alternative option
for the SWAT model calibration and validation. We believe
using available AET products (GLEAM and MOD16), which
have been tested in the past in various calibration and valida-
tion studies undertaken by a number of scientists (Roy et al.,
2017; Herman et al., 2017; López López et al., 2017; Ha et
al., 2018; Poméon et al., 2018), is one solution to setting up
a hydrological model that will be used as a decision support
tool in such a data-scarce region.

The three SWAT model runs calibrated and validated us-
ing GLEAM and MOD16 AET (GS1 through MS6) were

evaluated with four objective functions, and their mathemat-
ical formulations are presented in Appendix A. It should be
noted again that the AET in the GLEAM and MOD16 prod-
ucts does not stem from measured data obtained from eddy-
covariance instruments, but instead is based on global Earth
observation products (satellite).

Presently, the general hydrologic model performance rat-
ings for recommended statistics (NSE, PBIAS, R2) per-
formed at a monthly time step and mentioned by Moriasi et
al. (2007, 2015) are mostly relevant for runoff, sediment and
nutrients. For this study, the literature was searched on model
evaluation methods for hydrologic model calibration using
satellite- or non-satellite-derived evapotranspiration. The re-
viewed literature (Djaman et al., 2016; Samadi, 2017; López
López et al., 2017; Ha et al., 2018) showed that these studies
also set their performance ratings for recommended statistics
(NSE, PBIAS and, R2) based on the Moriasi et al. (2007,
2015) guidelines. In this study, we followed López López
et al. (2017) and others as the basis of our performance rat-
ing criteria for judging the SWAT model performance (GS1
to MS6) by using Nash–Sutcliffe efficiency (NSE; Nash and
Sutcliffe, 1970), Kling–Gupta efficiency (KGE, Gupta et al.,
2009), the percent bias (PBIAS) and the coefficient of deter-
mination (R2). NSE ranges from−∞ to 1, where NSE> 0.5
indicates a good agreement (Moriasi et al., 2007, 2015) be-
tween simulated and satellite-based evapotranspiration with
an NSE of 1 being the optimal value. R2 ranges from 0 to
1 with higher values indicating less error variance and 1 be-
ing the optimal value. KGE ranges from −∞ to 1, where a
KGE of 1 is the optimal value. PBIAS ranges from −∞ to
∞, where low-magnitude values indicate better simulation.
The optimum value of PBIAS is 0. In this paper, NSE is the
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selected objective function that was optimised during the cal-
ibration process.

The recommended statistics for a monthly time step based
on Kouchi et al. (2017) and Moriasi et al. (2007, 2015) stipu-
late that NSE > 0.50, R2 > 0.60, KGE ≥ 0.50 and PBIAS
≤±25 % are the required satisfactory thresholds. SUFI-2
was also used for the uncertainty analysis of the AET mod-
elling process. In this step, the procedure depicts the 95 %
prediction uncertainty (95PPU) of the model compared with
satellite-based AET. The 95PPU was estimated at the 2.5 %
and 97.5 % levels of the cumulative distribution of the AET-
simulated output variable derived through LHS. The uncer-
tainties were quantified by two indices referred to as P factor
and R factor (Abbaspour et al., 2004). The P factor repre-
sents the percentage of observed data plus the error bracketed
by the 95 % predictive uncertainty (95PPU) band and varies
from 0 to 1, where 1 indicates 100 % bracketing of the ob-
served data within model simulations. While the R factor is
the ratio of the average width of the 95PPU and the standard
deviation of the observed variable, this value ranges between
0 and infinity. These two indices were also used to judge the
strength of the calibration and validation in which the ideal
situation would be to account for 100 % of the satellite AET
data in the 95PPU while at the same time having an R factor
close to 0.

2.6 SWAT model verification

In some modelling studies (EPA, 2018; Faramarzi et al.,
2017), the term model verification is used to refer to the ex-
amination of the numerical technique and computer code to
ascertain whether it truly represents the conceptual model
and confirm that there are no inherent numerical problems
with obtaining a solution. In this study, to further examine
the accuracy of the calibrated SWAT model, a verification of
the simulated variables was carried out through (i) a graph-
ical comparison of calibrated SWAT-simulated AET to the
GLEAM_v3.0b AET time series (2003–2012). We consid-
ered the GLEAM_v3.0b dataset for the verification of SWAT-
simulated AET because there are no ground-truth AET data
in the study area and because of its different forcing variable,
which categorises it as an independent dataset not considered
in the calibration and validation. (ii) An assessment of the
long-term average annual and monthly water balances at the
outlet of the watershed was also performed. The long-term
average monthly and annual water balance assessment was
based on SWAT-simulated output with only precipitation and
temperature as measured input data. The SWAT water bal-
ance equations used for the assessment are

WYLD= SURQ+LAT_Q+GW_Q−Q_TLOSS, (7)
PRECIP=WYLD+AET+1SW+PERC−GW_Q, (8)

where PRECIP (mm) is the observed precipitation; AET
(mm) is the actual evapotranspiration; WYLD (mm) is the
net amount of water that leaves the subbasin and contributes

to streamflow in the reach; SURQ (mm) is the surface runoff
contribution to streamflow; GW_Q (mm) is the groundwa-
ter contribution to streamflow; 1SW (mm) is the change in
soil water content; PERC (mm) is the water percolating past
the root zone; LAT_Q (mm) is the lateral flow contribution
to streamflow; and Q_TLOSS (mm) is the transmission loss.
The soil water content for both monthly and annual output is
the average soil water content for the time period. Hence, the
initial soil water content is the average for the time period of
25 years.

2.7 SWAT soil moisture validation

Soil moisture is a key driver for runoff, evaporation and in-
filtration processes in a catchment. The ESA CCI SM v3.2
was used for validation because it has a similar spatial res-
olution to the satellite-based AET products used for model
calibration, the available time period (1978–2015) fits the
period of interest and the product has achieved reasonable
accuracy when evaluated at various sites in West Africa
(Dorigo et al., 2014). The SWAT-simulated soil moisture
was validated using SUFI-2 against ESA CCI SM v3.2 for
each of the Ogun River subbasins using 500 simulations in
one iteration from the period 2001 to 2012. The R2 statis-
tics were computed between SWAT-simulated soil moisture
and ESA CCCI SM v3.2 for each pixel (Fig. E1) using the
same approach described for GLEAM extraction in Sect. 2.5.
The ESA CCI SM product provides volumetric moisture
in the shallow soil depth (0.5–2 cm), whereas SWAT pro-
vides plant-available soil moisture for the total soil layer
(0–200 cm); therefore, a direct comparison was not possible.
Hence, the proportion of the variance was considered to be
an important criterion for evaluating the dynamics of the soil
moisture simulated rather than evaluating the absolute values
(Fig. 14).

3 Results

The results of the global sensitivity analysis revealed that the
SCS runoff curve number (CN2.mgt) is the most sensitive pa-
rameter to SWAT simulations of AET for all six calibrations
(Table 2). The sensitivity ranking of the remaining 10 param-
eters varies significantly.

Figure 3 show the performance of the uncalibrated SWAT
(RGS1, RGS2, RGS3, RMS4, RMS5 and RSM6), which rep-
resents the reference runs. Results indicate that the uncali-
brated SWAT model underestimated AET (positive PBIAS)
and has a high percentage of deviation from GLEAM and
MOD16 AET. The NSE, KGE, PBIAS and R2 all depict
a low model performance. Interestingly, the reference runs
with MOD16 tend to have higher R2 compared to reference
runs with GLEAM. The results from all six reference runs
justify the need to further improve the SWAT model perfor-
mance.
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Figure 3. Plots of the performance results for the uncalibrated SWAT in simulating actual evapotranspiration. The values and the black dot
symbols (•) depict the average value of R2, NSE, KGE and PBIAS obtained for each of the reference runs.

In this paper, only the spatial representations of
SWAT_HG with the highest (GS1) and the lowest (MS6)
model performance are included for the purpose of show-
ing the two extreme results obtained (Figs. 4, 5, 6 and 7).
The calibration and validation results for GS1 show a model
performance of NSE > 0.50, KGE > 0.50 and R2 > 0.6 in
more than half of the 53 subbasins and a PBIAS <±15 % in
all 53 subbasins (Figs. 4 and 5). The calibration and valida-
tion results for MS6 (Figs. 6 and 7) show the lowest model
performance.

The remaining calibration and validation results of GS2,
GS3, MS4 and MS5 (Figs. S1, S2, S3, S4, S5, S6, S7 and S8
in the Supplement) show a lower model performance than
GS1.

Figures 8 and 9 summarise the model performance re-
sults of the SWAT model runs when calibrated and validated
with GLEAM_v3.0a (GS1, GS2 and GS3) and MOD16 AET
(MS4, MS5 and MS6). Overall, results indicate that the cali-
bration and validation of GS1 (Figs. 8 and 9) exhibits a model
performance superior to the remaining two model runs for
AET simulation (through GS1 to MS6) judging by the four
objective functions except for the validation period, during
which a lower NSE (average value of 0.45) was obtained
(GS1, Fig. 9). NSE > 0.50 was achieved in 32 out of 53 sub-
basins during the model validation (GS1), meaning that more
than half of the 53 subbasins have a satisfactory model per-

formance, and therefore the average NSE value of 0.45 can
be considered acceptable.

3.1 Uncertainty analysis of SWAT model

The SWAT model performance results of SWAT-HG when
calibrated and validated with the AET from GLEAM_v3.0a
(GS1) proved to be the most efficient of the three model runs
(through GS1 to MS6); therefore, it was used to further pre-
dict the uncertainty associated with the AET simulations for
each of the 53 subbasins to map error sources. In the calibra-
tion period, the values of the P factor were between 0.50 and
0.90, and the values of the R factor were between 1.40 and
2.4. In the validation period, the values of the P factor were
between 0.6 and 0.88, and those of the R factor were be-
tween 1.43 and 2.5. The P factor values revealed that more
than half of the Earth-observation-derived AET plus its error
are bracketed by the 95 % predictive uncertainty. The predic-
tive uncertainties were adequate in the 53 subbasins and had
a satisfactory performance for monthly AET simulations us-
ing the Hargreaves equation, though the R factor was quite
large in all 53 subbasins, indicating large model uncertain-
ties. Extracts of the monthly calibration and validation results
showing the 95 % prediction uncertainty intervals, along with
the satellite-based AET (GLEAM_v3.0a), are presented in
Fig. 10.
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Figure 4. Performance metrics (NSE, KGE, R2 and PBIAS) of SWAT (SWAT_HG) when calibrated with GLEAM_v3.0a (GS1).

3.2 Model verification result

It was found that the AET from GLEAM_v3.0b was brack-
eted within the 95 % uncertainty prediction (Fig. 11). The
long-term average monthly water balance assessment per-
formed at the outlet of the watershed shows a seasonal fluctu-
ation, which agrees with previous water balance studies con-
ducted at the outlet of the study area located in Abeokuta
(Ufoegbune et al., 2011, 2012; Eruola et al., 2012; Sobowale

and Oyedepo, 2013). (i) The study area is characterised by
a bimodal rainfall pattern, (ii) the AET increases in Febru-
ary from 55 to 76 mm as the wet season approaches and de-
creases in October from 72 to 54 mm as the dry season ap-
proaches (Ufoegbune et al., 2011), (iii) rainfall commences
in March (66 mm) and is plentiful in June (165 mm) and
September (167 mm), (iv) in August there is a decrease in
precipitation to 96 mm and a decrease in AET to 94 mm,
and the dry spell often experienced in August is termed the
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Figure 5. Performance metrics (NSE, KGE, R2 and PBIAS) of SWAT (SWAT_HG) when validated with GLEAM_v.3.0a (GS1).

“August break” (Ufoegbune et al., 2011). (v) The dry period
extends from November to March, the months of low rain-
fall, AET and soil moisture values (Ufoegbune et al., 2011),
(vi) with moderate rain in March (soil water increases from
83 to 200 mm in July; Ufoegbune et al., 2011), (vii) and as
the dry season commences, the soil water gradually declines.

The differences in the long-term mean monthly water bal-
ance values obtained in past studies conducted within the
catchment are due to variation in the number of years con-

sidered. Also, Eruola et al. (2012) revealed that two rainfall
peaks in July and September agree with the current study,
while Ufoegbune et al. (2011) showed the two rainfall peaks
to be in the months of June and September. All these previ-
ous studies and the current study water balance results are in
the same range. Figure 12 shows the seasonal fluctuation of
the SWAT-estimated water balance components at the outlet
of watershed, located in Abeokuta. Our results show the av-
erage long-term annual water balance estimated by SWAT to
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Figure 6. Performance metrics (NSE, KGE, R2 and PBIAS) of SWAT (SWAT_P-M) when calibrated with MOD16 (MS6).

be within a reasonable percentage error of closure of ±15 %
(Table 3).

3.3 SWAT soil moisture validation result

Only the spatial representation of SWAT_HG with the high-
est AET calibration model result was validated against the

ESA CCI SM. Overall, the average R2 value obtained for the
Ogun River Basin is 0.76 (Fig. 13). The results show that
88.6 % of the basin has R2 > 0.60 and 11.3 % of the basin
has R2 < 0.60. A graphical representation of the soil mois-
ture dynamics from the highest and the lowest R2 results ob-
tained is presented in Fig. 14.
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Figure 7. Performance metric (NSE, KGE, R2 and PBIAS) results of SWAT (SWAT_P-M) when validated with MOD16 (MS6).

4 Discussion

The global sensitivity analysis revealed that for the three
SWAT model set-up calibrations (GS1 to MS6), the same
11 SWAT hydrologic parameters governing AET were sen-
sitive (Table 2). When different PET equations were tested

in SWAT, different simulated AET values were obtained and
the overall sensitivity ranking of the parameters varied sig-
nificantly. Since parameters represent processes, the signif-
icant variation in the sensitivity ranking of the parameters
implies that the impact of the selected PET methods in sim-
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Figure 8. Plots of the performance result of SWAT in simulating actual evapotranspiration. The values and the black dot symbols (•) depict
the average value of R2, NSE, KGE and PBIAS obtained for each calibration.

Figure 9. Plots of the performance result of SWAT in simulating actual evapotranspiration. The values and the black dot symbols (•) depict
the average value of R2, NSE, KGE and PBIAS obtained for each validation.
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Figure 10. Extracts of the monthly calibration and validation results (GSI) showing the 95 % prediction uncertainty interval along with the
best SWAT-simulated actual evapotranspiration and satellite-based actual evapotranspiration (GLEAM-v3.0a).
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Table 3. Average annual water balance at the outlet of the watershed in Abeokuta based on SWAT-simulated output.

Year PRECIP AET SW PERC SURQ GW_Q WYLD LAT_Q 1SW ∗Estimated Balance PBIAS
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) PRECIP Year (%)

1989 1357 941 57 188 294 147 456 5 5 1442 −85 −6
1990 1094 882 82 69 145 52 207 4 −25 1081 13 1
1991 1161 881 54 117 228 84 321 4 27 1263 −101 −9
1992 1066 806 57 113 177 86 274 4 −3 1104 −38 −4
1993 1185 862 63 55 305 38 351 4 −5 1225 −41 −3
1994 870 768 47 34 96 17 118 3 16 918 −48 −6
1995 1166 858 55 116 225 83 317 4 −8 1200 −34 −3
1996 1457 885 45 201 460 148 621 5 10 1569 −112 −8
1997 1341 851 110 151 342 122 478 5 −65 1292 50 4
1998 1107 767 81 124 290 93 394 4 29 1222 −114 −10
1999 1515 900 100 223 458 183 656 5 −19 1577 −62 −4
2000 1198 814 55 175 306 143 463 4 45 1355 −157 −13
2001 841 738 35 27 108 12 128 3 20 900 −60 −7
2002 1241 758 64 146 375 108 492 4 −29 1260 −19 −2
2003 1456 845 56 216 488 177 681 5 8 1572 −117 −8
2004 1156 922 44 90 186 69 265 4 12 1220 −64 −6
2005 915 792 41 27 114 14 134 3 3 942 −27 −3
2006 1153 804 46 128 263 94 365 4 −5 1198 −45 −4
2007 1600 910 50 229 552 175 742 6 −4 1702 −103 −6
2008 1395 832 55 221 416 174 605 5 −4 1480 −85 −6
2009 1338 872 65 185 334 151 500 5 −10 1397 −59 −4
2010 1609 928 91 232 519 189 722 6 −26 1667 −58 −4
2011 1264 815 64 172 367 134 515 5 27 1395 −130 −10
2012 1409 839 60 265 386 205 609 6 4 1512 −103 −7

PRECIP: precipitation; AET: actual evapotranspiration; SW: soil water; PERC: percolation; SURQ: surface runoff; GW_Q: groundwater recharge; WYLD: water yield;
LAT_Q: lateral flow; SW: change in soil moisture; ∗ Estimated PRECIP is WYLD+AET+1S+PERC-GW_Q expressed in millimetres.

ulating the AET in the study area is relatively high. The SCS
runoff curve number for moisture condition II (CN2.mgt),
which is one of the parameters that controls the overland
processes and is a function of the soil permeability, land
use and antecedent soil water, was used to determine the
surface runoff generation in the basin. CN2.mgt is found
to be the most sensitive parameter of the three model runs
(through GS1 to MS6), indicating that it is also the dominant
parameter controlling the AET processes in SWAT for the
Ogun River Basin (Table 2). The soil evaporation compen-
sation coefficient (ESCO.hru) controls soil evaporation and
depends on soil characteristics. As the value of ESCO is re-
duced, more water is extracted from the lower layers to meet
evaporative demand. ESCO is the second-most-sensitive pa-
rameter for GS1, with a very low value of 0.02, but for
other runs (GS2 to MS6), the sensitivity ranking varies. The
maximum canopy storage (CANMAX.hru) accounts for the
amount of water that can be trapped in the canopy when
fully developed and affects infiltration, surface runoff and
evapotranspiration processes. It was more sensitive when the
model was calibrated with GLEAM than when the model
was calibrated with MOD16 AET. The soil bulk density
(SOL_BD.sol) defines the relative amount of pore space
and its overall sensitivity ranking is between 2 and 4 (GS1

through MS6). It was more sensitive when SWAT was cal-
ibrated with MOD16 than when SWAT was calibrated with
GLEAM AET. The baseflow alpha factor (ALPHA_BF.gw)
is the index of groundwater flow response to changes in
recharge; it influences the baseflow simulation and its sensi-
tivity varies (GS1 to MS6). The saturated hydraulic conduc-
tivity (SOL_K.sol) determines the shallow subsurface flow
and groundwater recharge, and it affects the surface runoff
response. In order to correctly account for the volume of wa-
ter lost to evaporation from the two reservoirs (Oyan dam and
Ikere George dam), the evaporation coefficient (EVRSV.res)
was calibrated. Interestingly, we observed that GS1, GS3 and
MS6 have higher EVRSV.res values that agree with the ex-
pected values in such a humid tropical region compared to
EVRSV.res values obtained from GS2, MS4 and MS5. It
is observed that GS1 tends to have the highest (4.7) max-
imum stomatal conductance (GSI.plant.dat), which denotes
the maximum conductance of a leaf when the canopy resis-
tance term is modified to reflect the impact of high vapour
pressure deficit, during the calibration. MS4 has the high-
est value (0.99) of initial soil water storage expressed as a
fraction of field capacity water content (FFCB). MS4 also
obtained the highest value (0.95) of the plant uptake com-
pensation factor (EPCO.hru), meaning that the calibration
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procedure makes the model allow more of the water uptake
demand to be met by lower layers in the soil and as EPCO ap-
proaches 0 (GS3 with the value 0.07). The soil-available stor-
age capacity (SOL_AWC.sol) values for GS1 to MS6 were
allowed to vary by a factor of 0.8 to 0.96, meaning there is
an increase in SOL_AWC for the soil in the model set-up for
the Ogun River Basin.

Assessing the model performance with the objective func-
tions and their satisfactory threshold values used in this
study, the calibration and validation with the AET from
GLEAM_v3.0a showed an overall satisfactory SWAT model
performance when the Hargreaves PET equation was used in
SWAT to simulate AET (GS1) compared to the other model
calibration results (GS2 to MS6). The calibration and vali-
dation with the AET from MOD16 yielded a lower SWAT
model performance regardless of which of the three PET
equations was tested in SWAT.

Using the guidelines in Moriasi et al. (2007, 2015) and
Kouchi et al. (2017) for evaluating the SWAT model perfor-
mance at a monthly time step, the PBIAS values showed a
satisfactory model performance (PBIAS ≤±25) in the six
calibrations and validations of the three SWAT model runs
(Figs. 8 and 9). The positive PBIAS obtained in the calibra-
tion and validation of the three SWAT model runs using the
AET from MOD16 (MS4, MS5 and MS6) indicated a ten-
dency for the SWAT model to underestimate monthly AET
at the Ogun River Basin. An intuitive reason for this may
be due to transient water stress occurring in the basin; how-
ever, transient water stress is not the main challenge in the
study area, which is located in the humid region of south-
western Nigeria with a mean aridity index of 0.75 (for the
period 1989–2012). The careful consideration of equal wet
and dry years in the calibration and validation years has ac-
counted for similar climatic conditions in both periods.

The positive PBIAS obtained using MOD16 for calibra-
tion agrees with previous studies conducted at sites in tropi-
cal regions. Ruhoff et al. (2013) validated MOD16 AET us-
ing ground-based measurements of energy fluxes obtained
from eddy-covariance sites in tropical regions in the Rio
Grande basin, Brazil, from a hydrological model (MGB-IPH)
at both local and regional scales and found that at the natural
savannah vegetation site, the annual AET estimate derived
by the MOD16 algorithm was 19 % higher than the mea-
sured amount. Ruhoff et al. (2013) found that misclassifica-
tion of land use and land cover was identified as the largest
contributor to error from the MOD16 algorithm. Ramoelo
et al. (2014) validated MOD16 using data from two eddy-
covariance flux towers installed in a savannah and woodland
ecosystem within the Kruger National Park, South Africa,
and found that one flux tower result showed inconsistent
comparisons with MOD16 AET and the other site achieved
a poor comparison with MOD16 ET. In their study, they
found that the inconsistent comparison of MOD16 and flux-
tower-based AET can be attributed to the parameterisation
of the Penman–Monteith model, flux tower measurement er-

rors and flux tower footprint vs. MODIS pixels. Also, Tram-
bauer et al. (2014) compared different evaporation prod-
ucts in Africa and found that MOD16 evaporation does not
show a good agreement with other products in most parts of
Africa, while other evaporation datasets (GLEAM, ECMWF
reanalysis ERA-LAND and PCR-GLOBWB hydrological-
model-simulated AET) are more consistent. From our re-
sults, we found that when the SWAT model was calibrated
with MOD16 AET, the SWAT simulations tend to underesti-
mate AET.

A satisfactory SWAT model GS1 performance was
achieved for all objective functions, except for the average
NSE value of 0.45 in the validation period; however, NSE
values > 0.50 were obtained in 60 % of the subbasins. The
KGE result revealed the SWAT-HG model validation (GS1)
to be satisfactory (Fig. 9). Also, the low PBIAS result of
−0.02 % and 0.45 % (GS1, Figs. 8 and 9) corresponded to
a performance rating of “very good”, indicating predictive
capability for accurate model simulation. The better SWAT
model performance in GS1 is attributed to the selection of the
Hargreaves equation, which is based on available observed
precipitation and maximum and minimum temperature to ob-
tain AET, while the Penman–Monteith and Priestly–Taylor
equations are driven by simulated variables (wind speed, rel-
ative humidity and solar radiation) in this study. Also, the
complex water balance algorithm of GLEAM takes into ac-
count soil water balance, bare soil evaporation, open water
evaporation, evaporative stress factor and rainfall intercep-
tion, all of which assist in simulating dynamic hydrological
components, especially the AET.

The differences in GLEAM and MOD16 products are due
to their input and forcing data (Trambauer et al., 2014). Our
results agree with another study in which AET from GLEAM
performed satisfactorily for the calibration of a large-scale
hydrological model set-up in Morocco (López López et al.,
2017). The 95 % predictive uncertainty of the highest SWAT
model performance (GS1) was quantified, and the 95 %
predictive uncertainty bracketed most of the satellite-based
AET, although the R factor was quite large in all of the sub-
basins, signifying a large model uncertainty which can be as-
cribed to the uncertainty in satellite-derived AET, the forcing
climate data, the conceptual model and the model parame-
ters. The 95PPUs are the combined outcome of the uncer-
tainties. These uncertainty sources are not separately evalu-
ated in SUFI-2 but attributed as a total model uncertainty to
the parameters, which are visualised through the simulated
model output ranges. A first verification of the SWAT model
run with the best model performance (GS1) was carried out
using GLEAM_v3.0b as an independent dataset, and the re-
sults were bracketed within the 95PPU of GS1 (Fig. 11).
The second verification of the SWAT model structure with
the best model performance (GS1) was carried out by as-
sessing the output of SWAT water balance components (Ta-
ble 3 and Fig. 12). The results obtained from the long-term
mean monthly water balance agree with previous water bal-
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Figure 11. SWAT model verification results showing the satellite-
based AET GLEAM_v3.0a used for the model calibration and val-
idation, the best SWAT-simulated actual evapotranspiration (GS1)
and an independent GLEAM_v3.0b time series bracketed by 95 %
predictive uncertainty.

Figure 12. Seasonal fluctuation of water balance components at the
outlet of the watershed located in Abeokuta.

ance studies conducted within the study area. The differences
in the water balance component values of past and the cur-
rent study are due to variation in the number of years consid-
ered. The average long-term water balance at the outlet of the
study area shows a satisfactory percentage error of closure of
±15 % (Table 3).

At a monthly time step, the dynamics of the SWAT-
simulated soil moisture (mm) for the whole soil profile com-
pared to the ESA CCI SM (%) in the upper few centimetres
of the soil profile fit very well in most of the basin. The lowest
R2 of 0.45 obtained in subbasin 44 of the Ogun River Basin
(Fig. 14) also corresponded to the lowest result (R2

= 0.28)
obtained in subbasin 44 when the model was validated with
AET from GLEAM_v3.0a (Fig. 10). Nevertheless, the high
overall average soil moisture validationR2 agrees with a pre-
vious study that validated a hydrological model with ESA
CCI SM in West Africa (Poméon et al., 2018). The multi-
calibration and validation results show the SWAT model to
perform satisfactorily in the study area.

5 Conclusion

This study examined an alternative method to calibrate
and validate the SWAT eco-hydrological model using avail-
able satellite-based AET products for the data-sparse Ogun
River Basin in southwestern Nigeria. The approach opens
up a new direction for the calibration and validation of
hydrological models in ungauged basins. Due to the dif-
ferent retrieval algorithms of both the satellite-based AET
and SWAT-simulated AET, two global evaporation products
(GLEAM and MOD16) were used to calibrate the three
SWAT-simulated AETs on a monthly timescale. The use
of the Hargreaves, Priestley–Taylor and Penman–Monteith
equations in SWAT cause the different AET values obtained.
Six different calibrations were implemented for the global
AET products with the aim of obtaining a high-performing
model for the Ogun River Basin. Overall, the results are
promising and show that global satellite-based AET data can
be used as an alternative method to calibrate and validate the
SWAT model in a tropical sparsely gauged basin. Specifi-
cally, when the SWAT model was used with the Hargreaves
PET equation and was calibrated using the GLEAM_v3.0a
AET product, the highest model performance was obtained
with an acceptable predictive uncertainty.

Statistical analysis of the model performance shows that
global AET datasets used for the calibration were signifi-
cantly different from each other, which was expected because
of their different retrieval algorithms. Our findings suggest
that the SWAT model run using the Hargreaves equation can
be used as a potential decision support tool for further studies
and predictions on basin hydrology in the Ogun River Basin.

There is still a need for further research on (i) improv-
ing the model calibration performance in subbasins where
the performances are unsatisfactory and (ii) the validation of
other simulated variables (e.g. streamflow) of the calibrated
SWAT model using observed datasets when these are avail-
able.

The results from this research contribute to a better under-
standing of the ease and suitability of using freely available
satellite-based AET datasets for model calibration in tropi-
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Figure 13. Performance metric (R2) of SWAT-simulated soil moisture when validated with ESA CCI soil moisture v3.2.

Figure 14. Extracts of R2 results for SWAT monthly simulated soil moisture validation against ESA CCI SM v3.2 and a graphical represen-
tation of the SWAT SM 95 % prediction uncertainty band.

cal ungauged basins where the main limitation of setting up
hydrological models for discharge simulations is the lack of
measured streamflow data. Furthermore, a new contribution
of this study is the better understanding of the calibration of
the three different estimated AETs in SWAT to derive the
model with the best goodness of fit and a satisfactory predic-
tive capability.

We recommend testing the three PET equations in SWAT
to simulate AET whenever SWAT calibration is carried out

with any satellite-based AET products and to independently
validate other water balance components. The work pre-
sented here is a first step in hydrological modelling that will
establish a basis for future modelling applications within the
study basin.
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Data availability. The location and availability of SWAT hydro-
logical model software and all the data (meteorological forcing,
satellite-based evapotranspiration and soil moisture, digital eleva-
tion model, soil and land use map) used for this research are indi-
cated in the paper, including links to repositories and references.
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Appendix A: Performance metrics and their equations

Table A1. Table showing the performance metrics and their equations used to evaluate the model performance in this study.

Criterion Mathematical equation Description

R2

R2
=

 ∑n
i=1
(
Oi−O

)(
Pi−P

)√∑n
i=1
(
Oi−O

)2 n∑
i=1

(
Pi−P

)2


2 The percent of variance explained by the model. It is a
statistical measure of how close the data are to the fitted
regression line.

NSE

NSE= 1−

n∑
i=1

(Oi−Pi )
2

∑n
i=1
(
Oi−O

)2
Quantifies the relative magnitudes of the residual vari-
ance (noise) compared to the observed data variance.

KGE
KGE= 1−

√
(r − 1)2+ (α− 1)2+ (β − 1)2

The goodness-of-fit measure provides an analysis of
the relative importance of different components (corre-
lation, bias and variability) in hydrologic simulation.

PBIAS

PBIAS= 100×

n∑
i=1
(Oi−Pi )

n∑
i=1

Oi

The deviation of data being evaluated expressed in per-
centage. It measures the average tendency of the simu-
lated data to be larger or smaller than the observation.
Negative values indicate model overestimating (over-
prediction) and positive values indicate model under-
estimating (underprediction).

Oi represents satellite-based AET values; Pi represents simulated AET values; O represents mean satellite-based AET values; P represents mean
simulated AET values; r is the Pearson product correlation coefficient between satellite-based AET and the simulated AET; α is the standard deviation of
the simulated AET over the standard deviation of the satellite-based AET; and β is the ratio of the mean simulated AET to the satellite-based AET.
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Appendix B: SWAT model calibrated parameters

Table B1. The 11 parameters and their minimum and maximum
range used in this study for the first iteration (1000 simulations) of
all six calibrations.

Parameter name Minimum Maximum
range range

v__ESCO.hru 0.00 1.00
v__EPCO.hru 0.00 1.00
v__CANMX.hru 0.00 100.00
v__GSI{2,4,5}.plant.dat 0.00 5.00
v__ALPHA_BF.gw 0.00 1.00
v__EVRSV.res________17,50 0.00 1.00
v__FFCB.bsn 0.00 1.00
r__CN2.mgt −0.25 0.85
r__SOL_AWC().sol 0.23 0.95
r__SOL_K().sol −0.06 0.95
r__SOL_BD().sol −0.41 0.95

Appendix C: Equations (taken from SWAT theoretical
documentation; Neitsch et al., 2011) showing the selected
11 most sensitive SWAT parameters used in this study

C1 Maximum stomata conductance

The canopy resistance term is modified to reflect the impact
of high vapour pressure deficit on leaf conductance when cal-
culating actual evapotranspiration (Stockle et al., 1992). The
adjusted leaf conductance in which parameter GSI appears is
calculated in SWAT using Eqs. (C1) and (C2):

ge = ge,mx×
[
1−1ge,dcl

(
vpd− vpdthr

)]
if vpd> vpdthr, (C1)

ge = ge,mx if vpd≤ vpdthr, (C2)

where ge is the conductance of a single leaf (m s−1), ge,mx is
the parameter GS1, which is the maximum stomatal conduc-
tance of a single leaf (m s−1),1ge,dcl is the rate of decline in
leaf conductance per unit increase in vapour pressure deficit
(m s−1 kPa−1), VPD is the vapour pressure deficit (kPa) and
vpdthr is the threshold vapour pressure deficit above which a
plant will exhibit reduced leaf conductance (kPa). The rate of
decline in leaf conductance per unit increase in vapour pres-
sure is calculated by solving equation C1.

C2 The SCS curve number for soil moisture condition
II

Three antecedent moisture conditions are defined by SCS
curve number: I – dry (wilting point), II – average moisture
and III – wet (field capacity). The SCS curve number II is
calculated from either SCS moisture condition I or from SCS

moisture III in Eqs. (C3) and (C4):

CN1 = CN2, (C3)

−
20× (100−CN2)

(100−CN2+ exp[2.533− 0.0636× (100−CN2)])
CN3 = CN2× exp[0.00673× (100−CN2)] , (C4)

where CN1 is the moisture condition I curve number, CN2
is the moisture condition II curve number and CN3 is the
moisture condition III curve number.

C3 Maximum canopy storage

The maximum amount of water that can be held in canopy
storage varies from day to day as a function of the leaf area
index in the SWAT model and is estimated with Eq. (C5) in
which the CANMAX parameter appears:

canday = canmx×
LAI

LAImx
, (C5)

where canday is the maximum amount of water that can be
trapped in the canopy on a given day (mm H2O), canmx is the
CANMAX parameter and is the maximum amount of water
than can be trapped in the canopy when the canopy is fully
developed (mm H2O), LAI is the leaf area index for a given
day, and LAImx is the maximum leaf area index for the plant.

C4 Bulk density

Bulk density is calculated using Eq. (C6):

ρb =
Ms

VT
, (C6)

where ρb is the bulk density (Mg m−3), Ms is the mass of
solids (Mg) and VT is the total volume (m3). The total volume
is calculated as

VT = VA+VW+VS, (C7)

where VA is the volume of air (m3), VW is the volume of
water (m3) and VS is the volume of solids (m3).

C5 Soil-available water storage capacity

Soil-available water storage capacity is calculated by sub-
tracting the fraction of water present at the permanent wilting
point from that present at field capacity:

AWC= FC−WP, (C8)

where AWC is the plant-available water content, FC is the
water content at field capacity and WP is the water content at
the permanent wilting point.

www.hydrol-earth-syst-sci.net/23/1113/2019/ Hydrol. Earth Syst. Sci., 23, 1113–1144, 2019



1138 A. E. Odusanya et al.: Multi-site calibration and validation of SWAT

C6 Saturated hydraulic conductivity

The equation in which the parameter saturated hydraulic con-
ductivity (SOL_K) appears is given in Eq. (C9):

TTperc =
SATly−FCly

Ksat
, (C9)

where TTperc is the travel time for percolation (h), SATly is
the amount of water in the soil layer when completely satu-
rated (mm H2O), FCly is the water content of the soil layer at
field capacity (mm H2O) and Ksat is the saturated hydraulic
conductivity for the layer (mm h−1).

C7 Baseflow alpha factor

The baseflow recession constant (baseflow alpha factor) is
αgw. The αgw is calculated using Eq. (C10):

αgw =
1
N
× ln

⌊
Qgw,N

Qgw,0

⌋
, (C10)

where αgw is the ALPHA_BF parameter,N is the time lapsed
since the start of the recession (days), Qgw,N is the ground-
water flow on day N (mm H2O) and Qgw,0 is the groundwa-
ter flow at the of the start of the recession (mm H2O).

C8 Lake evaporation coefficient

The equation in which the reservoir evaporation coefficient
(EVRSV.res) appears is shown in Eq. (C11):

Vevap = 10× η×E0×SA, (C11)

where Vevap is the volume of water removed from the water
body by evaporation during the day (m3 H2O), η is an evap-
oration coefficient with a default value of 0.6 (EVRSV), E0
is the potential evapotranspiration for a given day (mm H2O)
and SA is the surface area of the water body (ha).

C9 Plant uptake compensation factor

The equation in which the plant uptake compensation factor
(EPCO) appears (Eq. C13) is used to calculate the adjusted
potential water uptake when the upper layers in the soil pro-
file do not contain enough water to meet the potential water
uptake (Eq. C12):

Wup,ly =Wup,zl−Eup,zu, (C12)

where Wup,ly is the potential water uptake for layer ly
(mm H2O), Wup,zl is the potential water uptake for the pro-
file to the lower boundary of the soil layer (mm H2O) and
Eup,zu is the potential water uptake for the profile to the up-
per boundary of the soil layer (mm H2O).

W ′up,ly =Wup,ly+Wdemand×EPCO, (C13)

where W ′up,ly is the adjusted potential water uptake for layer
ly (mm H2O), Wdemand is the water uptake demand not met
by overlying soil layers (mm H2O) and EPCO is the plant
uptake compensation factor.

C10 Soil evaporation compensation coefficient

The modified equation for the amount of evaporative demand
for a soil layer, which is determined by taking the difference
between the evaporative demands calculated at the upper and
lower boundaries of the soil layer, incorporates a coefficient
called ESCO for depth distribution modification. The modi-
fied equation is

Esoil,ly = Esoil,zl−Esoil,zu×ESCO, (C14)

where Esoil,ly is the evaporative demand for layer ly
(mm H2O), Esoil,zl is the evaporative demand at the lower
boundary of the soil layer (mm H2O), Esoil,zu is the evapora-
tive demand at the upper boundary of the soil (mm H2O) and
ESCO is the soil evaporative compensation coefficient.

C11 Initial soil water storage expressed a fraction of
field capacity water content

The estimation of field capacity water content is the equation
in which the initial soil water storage expressed as a fraction
of field capacity water content (FFCB) appears (Eq. C15):

FCly =WPly+AWCly, (C15)

where FCly is the water content at field capacity expressed as
a fraction of the total soil volume (FFCB), WPly is the water
content at the wilting point expressed as a fraction of the total
soil volume and AWCly is the available water capacity of the
soil layer expressed as a fraction of the total soil volume.
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Appendix D: Ogun River Basin with its 53 subbasins
intersected by the satellite-based AET pixels

Figure D1. Mean monthly actual evapotranspiration of
GLEAM_v3.0a over the entire Ogun River Basin for 1989–
2012.

Figure D2. Mean monthly actual evapotranspiration of MOD16
over the entire Ogun River Basin for 2000–2012.
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Appendix E: Ogun River Basin with its 53 subbasins
intersected by the ESA CCI soil moisture pixels

Figure E1. Mean monthly soil moisture of ESA CCI over the entire
Ogun River Basin for 2001–2012.
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