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Abstract. The main objective of this study was to calibrate and validate the eco-hydrological model Soil and Water Assessment 

Tool (SWAT) with satellite-based actual evapotranspiration (AET) data from the Global Land Evaporation Amsterdam Model 

(GLEAM_v3.0a) and from the Moderate Resolution Imaging Spectroradiometer Global Evaporation (MOD16) for the Ogun 

River Basin (20 292 km2) located in southwestern Nigeria.  Three potential evapotranspiration (PET) equations (Hargreaves, 20 

Priestley-Taylor and Penman-Monteith) were used for the SWAT simulation of AET. The reference simulations were the three 

AET variables simulated with SWAT before model calibration took place. The Sequential Uncertainty Fitting technique 

(SUFI-2) was used for the SWAT model sensitivity analysis, calibration, validation, and uncertainty analysis. The 

GLEAM_v3.0a and MOD16 products were subsequently used to calibrate the three SWAT simulated AET variables, thereby 

obtaining six calibrations/validations at a monthly time scale. The model performance for the three SWAT model runs was 25 

evaluated for each of the 53 subbasins against the GLEAM_v3.0a and MOD16 products, which enabled the best model run 

with the highest performing satellite-based AET product to be chosen. A verification of the simulated AET variable was carried 

out by: (i) comparing the simulated AET of the calibrated model to GLEAM_v3.0b AET, this is a product that has a different 

forcing data to version of GLEAM used for the calibration, and (ii) assessing the long-term average annual and average 

monthly water balances at the outlet of the watershed. Overall, the SWAT model composed of Hargreaves PET equation and 30 

calibrated using the GLEAM_v3.0a data (GS1) performed well for the simulation of AET and provided a good level of 

confidence for using the SWAT model as a decision support tool. The 95% uncertainty of the SWAT simulated variable 

bracketed most of the satellite based AET data in each subbasin. A validation of the simulated soil moisture dynamics for GS1 
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was carried out using satellite retrieved soil moisture data, which revealed good agreement. The SWAT model (GS1) also 

captured the seasonal variability of the water balance components at the outlet of the watershed.  

This study demonstrated the potential to use remotely sensed evapotranspiration data for hydrological model calibration and 

validation in a sparsely gauged large river basin with reasonable accuracy. The novelty of the study is the use of these freely 

available satellite derived AET datasets to effectively calibrate and validate an eco-hydrological model for a data-scarce 5 

catchment. 

1. Introduction 

Hydrological modelling in data sparse catchments has always been a challenging task due to lack of ground observations, and 

insufficient or poor-quality data. Data scarcity is the main limitation in tropical regions for setting up hydrological models for 

watershed simulations, which could be used as significant decision support tools for sustainable water resources management. 10 

Water resources globally are becoming increasingly vulnerable as a result of escalating water demand arising from population 

growth, expanding industrialisation, increased food production and pollution due to various anthropogenic activities, climate 

and land use change impacts (Carroll et al., 2013; McDonald et al., 2014; Goonetilleke et al., 2016). The situation is more 

evident and critical in many developing countries where no water resources monitoring plans or water management strategies 

are in place for the future. Like many developing countries, Nigeria cannot satisfy its domestic water needs as only 47% of the 15 

total population have access to water from improved sources (Ishaku et al., 2012).  

The Ogun River is the main source of public water supply for the people living in the States of Lagos and Ogun in southwestern 

Nigeria. The prevalent situation of insufficient hydrological data associated with lack of up to date streamflow data (Sobowale 

and Oyedepo, 2013) and the poor level of data quality in this watershed can be attributed to a  gradual decline in hydrological 

stations number and their management. Water management planners are facing considerable uncertainties in terms of future 20 

availability and quality of the water resource. Therefore, a clear understanding of the on-going challenges and innovative 

management approaches are needed. One of the many ways to tackle this task is by using hydrological models as tools coupled 

with the use of increasingly available global and regional datasets to run the models.  

Numerous physically based distributed (PBD), continuous models that aim to describe which driving processes are present in 

a system and are able to make detailed predictions in both time and space are available to simulate water quantity and  quality  25 

variables and these include, among others: the Soil and Water Assessment Tool (SWAT;  Arnold et al., 1998), which is able 

to represent detailed agricultural management practices and simulate water quantity and quality variables; or the Hydrologic 

Simulation Program Fortran (HSPF; Bicknell et al., 1997) that is used in predicting hydrology with in-stream nutrient transport 

processes; or SHETRAN (Ewen et al., 2000), which has capabilities for modelling subsurface flow and transport. These PBD 

models attempt to explain hydrological phenomena through their underlying physical mechanisms, and explicitly represent 30 

(through mathematical equations) the biological, chemical and physical processes of a basin.    
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Schuol et al. (2008)  have successfully applied the hydrological model SWAT to quantify the freshwater availability for the 

whole of Africa at a detailed subbasin level and on a monthly time scale. Using the SUFI-2 (Sequential Uncertainty Fitting 

Algorithm) program with three different objective functions, the model was calibrated and validated at 207 discharge stations. 

They reported the models’ inability to simulate runoff adequately in some areas in the East and South Africa, but also reported 

that the model results were quite satisfactory for such a large-scale application although containing large prediction 5 

uncertainties in some areas. Many of the limitations reported within this continental modelling study in Africa were data 

related. Abaho et al. (2009) applied an uncalibrated SWAT model to evaluate the impacts of climate change on river flows and 

groundwater recharge in Sezibwa catchment, Uganda. They observed a 40% increase in groundwater recharge for the period 

of 2070-2100 and a 47% increase in average river flow. However, there are high levels of uncertainty associated with the 

model predictions since the model was not calibrated due to insufficient data.  10 

In West Africa, the SWAT model has been widely applied to different river basins with satisfactory results. For example, 

Schuol and Abbaspour (2006) applied SWAT to model a 4 × 106 km2 area; mainly the basins of the Niger, Volta and Senegal, 

addressing calibration and uncertainty issues. Measured river discharges at 64 stations to which many of these stations available 

data doesn’t cover the whole simulation period were used for annual and monthly calibration using SUFI-2 algorithm.  

Although the results obtained are preliminary with basis for discussion of further improvement, Schuol and Abbaspour (2006) 15 

reported that the annual and monthly simulations with the calibrated SWAT model for West Africa showed promising results 

for the freshwater quantification despite the modelling shortcomings of  lack of  dams  management operation long-term 

dataset. They also pointed out the importance of evaluating the conceptual model uncertainty as well as the parameter 

uncertainty.  Laurent and Ruelland  (2010)  successfully calibrated SWAT for the Bani catchment (1 × 106 km²) in Mali, a 

major tributary of the upper Niger River. The calibration and validation results were satisfactory at the catchment outlet and 20 

also in various gauging stations located in tributaries. They showed the model performance by reporting discharge and biomass 

calibration results but did not assess the model prediction uncertainty.  

In northwestern Nigeria, Xie et al. (2010) evaluated the SWAT model performance in a large watershed (30 300 km2). Due to 

the short data period available, all the data obtained were used for calibration. In their study, the model parameters were first 

optimized with a genetic algorithm, and the uncertainty in the calibration was further analysed using the generalized likelihood 25 

uncertainty estimation (GLUE) method; the study presented a reasonably good calibrated model performance without 

validation. Adeogun et al. (2014) successfully calibrated and validated the SWAT model for the prediction of streamflow at 

the upstream watershed of Jebba reservoir (area: 12 992 km2) located in north central Nigeria. The model results obtained were 

good with a Nash-Sutcliffe Efficiency (NSE) of 0.72 and coefficient of determination (R2) of 0.76 for the calibration period, 

and for the validation period, an R2 of 0.71 and NSE of 0.78 for monthly average streamflow, but the model prediction 30 

uncertainty was not quantified.  

The findings from these past studies call for continued improvement in the hydrological model performances in Africa, 

especially in data-sparse regions. One solution is to use freely available global datasets to improve the model performance. 
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In the context of large-scale hydrological model simulation in data scarce areas, Lopez Lopez et al. (2017) investigated 

alternative ways to calibrate the large-scale hydrological model PCRaster GLOBAL Water Balance (PCR-GLOBWB) using 

satellite-based evapotranspiration (GLEAM) and surface soil moisture (ESA CCI) for the data poor catchments Oum er Rbia 

in Morocco with the aim to improve discharge estimates. In their study, different calibration scenarios are inter-compared. The 

results show that GLEAM evapotranspiration and ESA CCI soil moisture used for model calibration resulted in reasonable 5 

discharge estimates (NSE ranges from -0.22 to 0.68 and -0.31 to 0.66, respectively). Although better model performance was 

achieved when the model was calibrated with in-situ streamflow observations resulting in NSE values from -0.15 to 0.75. 

Their results showed the possibility of using globally available Earth observation datasets in large scale hydrological models 

to estimate discharge at a river basin scale. Abera et al. (2017) developed a methodology that can improve the state of the art 

by using available, but sparse, hydrometeorological data and satellite products to obtain the estimates of all the components of 10 

the hydrological cycle (precipitation, evapotranspiration, discharge, and storage) in the Upper Blue Nile Basin. To obtain a 

water-budget closure, Abera et al. (2017) used the JGrass-NewAge hydrological model calibrated with observed discharge 

(1994-1999) using particle swarm optimization. The simulation of each hydrological component by JGrass-NewAge was 

verified using available in-situ and remote sensing data. GLEAM (Miralles et al., 2011a) and MOD 16 AET were used as 

independent data sets to assess the JGrass-NewAge estimated AET. Overall, the AET simulations showed the correlation and 15 

PBIAS obtained between JGrass-NewAge and GLEAM AET had a better agreement (very low bias and acceptable correlation) 

compared to JGrass-NewAge and MOD 16. 

Recently, Ha et al. (2018) used remotely sensed precipitation, actual evapotranspiration (AET) and leaf area index (LAI) from 

open access data sources to calibrate the SWAT model for the Day Basin, a tributary of the Red River in Vietnam. The 

calibration was performed in SWAT-CUP using the Sequential Uncertainty Fitting algorithm (SUFI-2). In this study simulated 20 

monthly AET correlations with remote sensing estimates showed an R2 of 0.71. Pomeon et al. (2018) set up a hydrological 

modelling framework for sparsely gauged catchments in West Africa using SWAT model whilst largely relied on remote 

sensing and reanalysis inputs. In their study, validation of the model was conducted to further investigate its performance, 

where simulated actual evapotranspiration, soil moisture, and total water storage were evaluated using remote sensing data. 

The validation result reveals good agreement between predictions and the remotely sensed data (R2 calibration: 0.52 and 0.51; 25 

R2 validation: 0.63 and 0.61) 

Remote sensing technologies offer large scale spatially distributed observations and have opened up new opportunities for 

calibrating and validating hydrologic models. This advancement enables several global evapotranspiration products to be used. 

Extensive reviews of earth observation based methods for deriving AET have been carried out by several research groups 

(Anderson et al., 2012; Bateni et al., 2013; Li et al., 2013; Savoca et al., 2013; Senay et al., 2013; Nouri et al., 2015; Wang-30 

Erlandsson et al., 2016). 

Two global-scale AET products derived from satellite observation have become available and these two AET products were 

used in this study.  The Global Land Evaporation Amsterdam Model (GLEAM, http://www.gleam.eu) and Moderate 

Resolution Imaging Spectroradiometer Global Evaporation (MOD16).  GLEAM is an evapotranspiration product developed 

http://www.gleam.eu/
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by the VU University of Amsterdam (Miralles et al., 2011a, 2011b) and contains a set of algorithms that separately estimate 

the different components of terrestrial evaporation (i.e. transpiration, interception loss, bare soil evaporation, snow sublimation 

and open water evaporation), as well as variables such as the evaporative stress factor, potential evaporation, root-zone soil 

moisture and surface soil moisture by using satellite-based climatic and environmental observations (Miralles et al., 2011a; 

Martens et al., 2017). Recently, the GLEAM_v3.0 AET has been validated against measurements from 64 eddy-covariance 5 

towers and 2338 soil moisture sensors across a broad range of ecosystems with varying levels of success (Martens et al., 2017). 

In this study, GLEAM_v3.0a and v3.0b were used. These two datasets differ only in their forcing variables and spatial-temporal 

coverage. GLEAM_v3.0a is a dataset spanning the 35-year period 1980-2014 and is based on reanalysis net radiation and air 

temperature, a combination of gauged-based, reanalysis and satellite-based precipitation and satellite-based vegetation optical 

depth. GLEAM_v3.0b is a dataset spanning the 13-year period 2003-2015 and is derived by satellite data only (Miralles et al., 10 

2011a; Martens et al., 2017). 

The MOD16 global evapotranspiration data is based on a  1 km2 grid of land surface AET that was developed  with an energy 

balance model using satellite data as input (Mu et al., 2011).  The MOD16 product estimates evapotranspiration using Moderate 

Resolution Imaging Spectroradiometer, landcover, albedo, LAI, an Enhanced Vegetation Index (EVI), and a daily 

meteorological reanalysis data set from NASA’s Global Modelling and Assimilation office (GMAO). The non-satellite input 15 

data are NASA’s MERRA GMAO (GEOS-5) daily meteorological reanalysis data. MOD 16 has been validated using 

measurement from eddy covariance station in different tropical sites ( Ruhoff et al., 2013; Ramoelo et al., 2014).  Ruhoff et al. 

(2013) validated MOD16 AET using ground-based measurements of energy fluxes obtained from eddy covariance sites 

installed in tropical sites in the Rio Grande basin Brazil. Likewise, Ramoelo et al. (2014) validated MOD16 using data from 

two eddy-covariance flux towers installed in a savannah and woodland ecosystem within the Kruger National Park, South 20 

Africa.   

The objective of our study was to obtain a high performing eco-hydrological model for the Ogun River Basin in southwestern 

Nigeria that can be used as a decision-support tool. To this effect, the specific objectives were: (i) to calibrate/validate the 

SWAT model with remotely sensed actual evapotranspiration products; namely the Global Land Evaporation Amsterdam 

Model (GLEAM_v3.0a) and the Moderate Resolution Imaging Spectroradiometer Global Evaporation (MOD16), and ii) to 25 

use further independent products to validate the simulated soil moisture and verify the simulated water balance components. 

Although the three PET equations and the corresponding AET simulations from SWAT have been tested for their performance 

before (Wang et al. (2006); Franco and Bonumá (2017); Samadi (2017); Ha et al. (2018)), calibrating each of the three SWAT 

simulated AET variables with two remotely-sensed AET products for each delineated subbasin to determine the highest 

performing model in a catchment has not been undertaken.  30 

Hence, the contribution of this study include: (i) the calibration/validation of simulated AET from the three SWAT models 

using satellite derived AET data; (ii) the use of satellite-based AET data for calibration/validation of the SWAT model in each 

of the SWAT delineated subbasins; and (iii) the validation of simulated soil moisture dynamics of the highest performing 
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SWAT model run using European Space Agency Climate Change Initiative soil moisture (ESA CCI SM)  in each of the SWAT 

delineated subbasins. 

2. Materials and methods 

2.1 Description of the study site 

The study area is a sub-watershed (20 292 km2) of the Ogun River Basin (23 700 km2) located in southwestern Nigeria (Fig. 5 

1), bordered geographically by latitudes 7o 7’ N and 8o 59’ N and longitudes 2o 4’ E and 4o 9’ E. About 2 % of the catchment 

area is located in the Benin Republic. The study area encompasses the Sepeteri, Iseyin, Olokemeji, Oyan and Abeokuta 

catchments and cut across the Oyo and Ogun state administrative boundaries. The Ogun River, which literarily means the 

River of Medicine, springs from Igaran Hills in Oyo state, near Saki, at an elevation of about 624 m above the mean sea level. 

The elevation ranges from 624 m to 23 m. The mean annual rainfall (1984-2012) obtained from measured data in Ogun 10 

watershed is 1224 mm yr-1 and the mean annual temperature (1984-2012) obtained from measured data is about 27o C. Mean 

annual potential evapotranspiration (PET) estimated by Hargreaves method (Hargreaves and Samani, 1985) using measured 

minimum and maximum temperature is 1720 mm yr-1 and the mean AET obtained from SWAT output (1989-2012) for this 

study area is  692 mm yr-1. Two seasons are distinguishable in the watershed, a dry season from November to March and a wet 

season between April and October. The watershed area is characterized by strong climatic variation and an irregular rainfall 15 

(Eruola et al. 2012). The geology of the study area can be described as a rock sequence that starts with Precambrian Basement; 

which consists of quartzites and biotite schist, hornblende-biotite, granite and gneisses (Bhattacharya and Bolaji, 2010). The 

major soils of the basin are sandy clayey loam, sandy loam, clayey loam and silt loam. The landuse in the watershed is primarily 

forest (75 %), cropland (24 %), and urban (1 %).  

The basin, in which two large dams (Oyan and Ikere Gorge dams) are located, is of great importance for the economic 20 

advancement both at the federal and state level. The dams are the main principal provider of water to Lagos and Ogun States 

Water Corporation for municipal drinking water production. The Oyan reservoir is located at the confluence of Oyan and Ofiki 

rivers at an elevation of 43.3 m above mean sea level and was built in 1984, it has a surface area of 40 km2, and a catchment 

area of 9 × 103 km2, with a dead storage capacity of 16 × 106 m3, a gross storage capacity of 270 × 106 m3, an embankment 

crest length of 1044 m, a height of 30.4 m, four spillway gates (each 15 m wide and 7 m high) and three outlet valves (each 25 

1.8 m diameter). The Ikere Gorge is an uncontrolled dam, which started operation in 1991. The dam crosses Ogun River in 

Iseyin local government area of Oyo state. Ikere Gorge has a capacity of 690 × 106 m3. The reservoir is adjacent to the Old 

Oyo National Park, providing recreational facilities for tourists, and the river flows through the park (Oyegoke and Sojobi, 

2012). Twenty-five local government areas fall within the study area. In densely populated areas, the Ogun River is used for 

bathing, washing and drinking.  30 

 

Fig.1 

https://en.wikipedia.org/wiki/Old_Oyo_National_Park
https://en.wikipedia.org/wiki/Old_Oyo_National_Park
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2.2 SWAT model description 

The Soil and Water Assessment Tool (Arnold et al., 1998) is an open source eco-hydrological model developed for the USDA 

Agricultural Research Services. SWAT is a semi-distributed, process based, continuous model that uses weather, soil, 

topography and landuse for hydrologic modelling of a basin and runs at a daily time step. It was developed to predict the 

impact of agricultural land management practices on discharge, sediments, nutrients, bacteria, pesticides and biomass in large 5 

complex watersheds with varying soils, land use and management conditions over long periods of time. The SWAT model 

uses at its core the plant growth model EPIC (Williams et al., 1989) to simulate the growth (including nutrient and water 

uptake) of many types of crops and trees as land cover. SWAT categorizes plants into seven different types; warm season 

annual legume, cold season annual legume, perennial legume, warm season annual, cold season annual, perennial and trees. 

Plant growth is modeled by simulating leaf area development, light interception and conversion of intercepted light into 10 

biomass assuming a plant species-specific radiation-use efficiency. Hence, in SWAT, phenological plant development is based 

on the daily accumulated heat units. The plant growth model is used to assess removal of water and nutrients from the root 

zone, transpiration, and biomass/yield production. 

For modelling purpose in SWAT, the watershed is divided into subbasins which are then further subdivided into hydrologic 

response units (HRUs) that consist  of homogeneous landuse, soil types and slope (Arnold et al., 1998). The soil water balance 15 

(WB) is conducted for each HRU and the equation comprises six variables and is estimated in SWAT using the following Eq. 

(1): 

          𝑆𝑊𝑡 = 𝑆𝑊0 +∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 −𝑊𝑠𝑒𝑒𝑝 −𝑄𝑔𝑤)
𝑡

𝑖=1
                    (1)                                   

Where SWt is the final soil water content (mm of water), SWo is the initial soil water content on day i (mm of water), t is the 

time (days), Rday is the amount of precipitation on day i (mm of water), Qsurf  the amount of surface runoff on day i (mm of 20 

water),  Ea the amount of evapotranspiration on day i (mm of water),  Wseep amount of water entering the vadose zone from the 

soil profile on day i (mm of water), and Qgw is the amount of return flow  on day i (mm of water) 

2.2.1 Evaporation estimation in SWAT  

Evapotranspiration is a key process of the water balance and one of the more difficult components to determine. Although 

different empirical methods for the estimation of PET are widely adopted, AET is difficult to quantify and it usually requires 25 

the reduction of PET through a factor that describes the level of stress experienced by plants. This relationship has been 

described in detail by several researches (e.g. Morton, 1986; Hobbins et al., 1999; Wang et al., 2006). Numerous methods have 

been developed to estimate PET (Lu et al., 2005) and SWAT offers three PET estimation options from which the user can 

choose depending on e.g. the data availability: the Penman-Monteith method (P-M), the Priestley-Taylor method (P-T), or the 

Hargreaves method (HG). Any one of these three PET equations can be chosen to run in SWAT, but they vary in the amount 30 
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of input data required. The Hargreaves method (Hargreaves et al., 1985) is temperature-based and requires only average daily 

air temperature as input Eq. (2): 

 

𝜆𝐸0 = 0.0023 × 𝐻0 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
0.5 × (𝑇𝑚𝑒𝑎𝑛 + 17.8)               (2) 

 5 

Where 𝛌 is the latent heat of vaporization (MJ kg-1), E0 is the potential evapotranspiration (mm  d-1), H0 is the extra-terrestrial 

radiation (MJ m-2 d-1) , Tmax is the maximum air temperature for a given day (oC), Tmin is the maximum air temperature for a 

given day (oC), Tmean is the mean air temperature for a given day (oC). 

The Penman-Monteith method (Monteith, 1965; Allen, 1986; Allen et al., 1989)  requires air temperature, solar radiation, 

relative humidity and wind speed as input Eq. (3): 10 

 

𝜆𝐸 =
∆×(𝐻𝑛𝑒𝑡−𝐺)+𝜌𝑎𝑖𝑟×𝐶𝑃×(𝑒𝑧

𝑜−𝑒𝑧)/𝑟𝑎

∆+𝛾×(1+𝑟𝑐/𝑟𝑎)
                  (3) 

 

Where λE  is the latent heat flux density (MJ m-2 d-1), E is the depth rate evaporation (mm d-1),  Δ is the slope of the saturation 

vapor pressure-temperature curve, de/dT (kPa oC-1), Hnet is the net radiation (MJ m-2 d-1), G is the heat flux density to the 15 

ground (MJ m-2 d-1), ρair is the air density (kg m-3); Cp is the specific heat at constant pressure (MJ kg-1 oC-1), 𝑒𝑧
𝑜  is the saturation 

vapor pressure of air at height z (kPa), ez is the water vapor pressure of air at height z (kPa), 𝛾 is the psychrometric constant 

(kPa oC-1), rc is the plant canopy resistance (s m-1), and ra is the aerodynamic resistance (s m-1). 

 

 The Priestley-Taylor equation (Priestley and Taylor, 1972) is a radiation-based method and it provides PET estimates for low 20 

advective conditions. The P-T method requires solar radiation, air temperature and relative humidity as input (Eq. 4):  

  

𝜆𝐸𝑜 = 𝛼𝑝𝑒𝑡 ×
𝛥

𝛥+𝛾
 × (𝐻𝑛𝑒𝑡 − 𝐺)                  (4) 

  

Where 𝛼𝑝𝑒𝑡  is a coefficient, Δ is the slope of the saturation vapour pressure-temperature curve, de/dT (kPa oC-1), 𝛾 is 25 

the psychometric constant (kPa oC-1), Hnet is the net radiation (MJ m-2 d-1), and G is the heat flux density to the ground 

(MJ m-2  d-1). 

Once PET is determined, AET is estimated in SWAT, whereby first, SWAT evaporates any rainfall intercepted by the plant 

canopy. Second, it calculates the maximum amount of transpiration and sublimation/soil evaporation. Finally, the actual 

amount of sublimation and evaporation from the soil surface is calculated. If snow is presented in the HRU, sublimation can 30 

occur. When there is no snow (such as this case study), only evaporation from the soil surface is calculated. A complete 

description of the SWAT  model and the model equations can be found in  Neitsch et al. (2002, 2005) and in Arnold et al. 

(1998). 
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2.3 Model set-up 

The ArcView GIS interface for SWAT2012 (Winchell et al., 2013) was used to configure and parameterize the SWAT model. 

SWAT model inputs included a 30 m spatial resolution digital elevation model (DEM) with minimum, maximum and mean 

value of 23 m, 624 m and 289.1 m respectively (Fig 1), 17 soil classes, 17 landuse classes, 3 slope categories, meteorological 

data and landuse with its management (Table 1).   5 

For the SWAT model set-up, the watershed was delineated into 53 subbasins, with the main outlet in Abeokuta. The minimum 

and maximum subbasin areas are 72.4 km2 and 853.1 km2 respectively, while the mean is 382.8 km2. Daily precipitation data 

(1984-2012) and minimum and maximum temperature data (1984-2012) obtained from the Nigerian Meteorological Agency 

for four weather stations (Fig. 1) were used as observed input data. The weather stations are more or less evenly distributed in 

or around the watershed, and the weather data obtained from stations located in the same proximity show the same rise and 10 

fall dynamics. No orographic effect correction is needed for correcting the precipitation values.  

The missing values of daily measured precipitation and minimum and maximum temperatures, were simulated by the WGEN 

_CFSR _World. The WGEN_CFSR_World weather database is an input into SWAT (ArcSWAT CSFR_World weather 

generator), containing long-term monthly weather statistics covering the entire globe and developed using the National Centres 

for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) global dataset. The ArcSWAT 15 

CSFR_World weather generator was used to simulate daily solar radiation, wind speed, relative humidity and wind speed. The 

simulated variables were used as input variables into the Penman-Monteith and Priestley-Taylor equations for obtaining the 

different PET estimates from SWAT.  

The topHRU program (Strauch et al., 2017) was used to determine the optimum number of HRUs to use in the watershed. The 

topHRU program allows the identification of a pareto-optimal threshold which minimizes the spatial error to 0.01 ha for a 20 

given number of HRUs and thereby minimizes the trade-off between SWAT computation time and number of HRUs. In this 

case, topHRU determined the optimum number of HRUs to be 1397 for the Ogun River Basin. Thresholds of 150 ha for soil 

and 250 ha for slope were used in the SWAT set-up. The physical consequences of the thresholds is to improve the 

computational efficiency of simulations while keeping key landscape features and information of the watershed in the 

hydrologic modelling. Not selecting a threshold for landuse was based on our desire to retain all of the landuse classes for 25 

future landuse change research needs.  The surface runoff in SWAT was estimated using the modified Soil Conservation 

Society Curve Number method. The SWATfarmR program (Schürz et al., 2017)  was used to write the management files in 

SWAT. All SWAT simulations included a warm-up period of 5 years for the simulation period from 1984 to 2012.   

The SWAT model was set-up once for the entire Ogun River Basin and then run three times, where each model run is composed 

of a different PET equation available in SWAT (HG, P-M or P-T). Figure 2 shows the framework in which the three SWAT 30 

model runs (SWAT_HG, SWAT_P-T, and SWAT_P-M) were used to evaluate the model performance by: (i) comparing the 

three uncalibrated SWAT simulations of AET with the two global AET products (GLEAM and MOD16), thus allowing for 
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six reference runs of SWAT (RGS1 through RMS6). SWAT_HG represents the SWAT run using the Hargreaves PET equation 

to simulate uncalibrated AET, these results were compare with the AET from GLEAM_V3.0a (RGS1) and MOD16 (RMS4).  

SWAT_P-T represents the SWAT run using the Priestley-Taylor PET equation to simulate uncalibrated AET and the results 

were compared with the AET from GLEAM_V3.0a (RGS2) and MOD16 (RMS5). SWAT_P-M represents the SWAT run 

using the Penman-Monteith PET equation to simulate uncalibrated AET and the results were compared with GLEAM_v3.0a 5 

(RGS3) and MOD16 (RMS6) and, (ii) comparing the calibrations/validations implemented with two global AET products 

(GLEAM and MOD16), thus allowing for six calibration results of SWAT (GS1 through MS6). SWAT_HG represents the 

SWAT run using the Hargreaves PET equation to simulate AET and that was calibrated and validated with the AET from 

GLEAM_v3.0a (GS1) and MOD16 (MS4). SWAT_P-T represents the SWAT run using the Priestley-Taylor PET equation to 

simulate AET and that was calibrated and validated with the AET from GLEAM_v3.0a (GS2) and MOD16 (MS5). SWAT_P-10 

M represents the SWAT run using the Penman-Monteith PET equation to simulate AET and that was calibrated and validated 

with the AET from GLEAM_v3.0a (GS3) and MOD16 (MS6). This procedure enabled the SWAT model run with the highest 

performing simulated AET to be chosen for further use. 

 

Table 1 15 

Fig. 2 

2.4 Satellite derived datasets 

Due to unavailability of discharge measurements in the watershed, two satellites based AET products (GLEAM_v3.0a and 

MOD16) were used for the SWAT calibration and validation. The criteria for choosing GLEAM and MOD16 products are 

based on their temporal and spatial resolution and the fact that they are freely available and because these two AET data sets 20 

have been validated in several countries in Africa. To further assess the model performance in simulating other components 

of the water balance (e.g. soil moisture), a remotely sensed ESA CCI soil moisture v3.2 data was used to validate SWAT 

simulated soil moisture dynamics.  

2.4.1 GLEAM  

The Global Land Evaporation Amsterdam Model (GLEAM) combines a wide range of remote sensing observations from 25 

different satellites to separately estimate the different components of terrestrial evaporation and surface soil moisture through 

a process-based methodology (Martens et al., 2017).  GLEAM developed in developed in 2011 has been continuously revised 

and updated. The Priestley and Taylor equation (1972) used in GLEAM calculates the potential evaporation (mm d-1) based 

on remotely sensed observation of surface net radiation and near-surface air temperature (Eq. 4). Since GLEAM separately 

derives the different components of terrestrial evaporation (Eq. 5), the estimates of potential evaporation for the land fractions 30 

of bare soil, open water, tall canopy and short canopy derived are converted into actual evaporation using a multiplicative 

evaporative stress factor (Eq. 6) obtained from observations of microwave Vegetation Optical Depth (VOD) used as a proxy 
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for vegetation water content and simulations of root-zone soil moisture. Interception loss is estimated separately based on the 

Gash analytical model of rainfall interception driven by observations of precipitation and both vegetation and rainfall 

characteristics. 

Two of the three version of the datasets produced in 2016 using GLEAM_v3.0 were downloaded for this study (GLEAM_v3.0a 

and GLEAM_v3.0b). In this study, GLEAM_v3.0a was used for SWAT calibration and validation while GLEAM_v3.0b was 5 

used for the verification of the SWAT simulated AET.  

 

𝐸 = 𝐸𝑡 + 𝐸𝑏 + 𝐸𝑤 + 𝐸𝑖 + 𝐸𝑠                   (5) 

  

  𝑆 =
(𝐸−𝐸𝑖)

𝐸𝑝
                     (6) 10 

 

Where E is the actual evaporation (mm d-1), Et is the transpiration (mm d-1), Eb is bare-soil evaporation (mm d-1), Ew is the 

open-water evaporation (mm d-1), Ei is the interception loss (mm d-1), Es is the snow sublimation (mm d-1), S is the evaporative 

stress factor (-) and Ep is potential evaporation (mm d-1). 

The datasets are provided on a 0.250 by 0.250 regular grid. For more information on GLEAM, its different forcing variables 15 

and the satellite data used in the GLEAM_v3.0a and GLEAM_v3.0b datasets, the reader is referred to Miralles et al. (2011b) 

and  Martens et al. (2017). 

 

2.4.2 MOD16 

The MOD16 retrieval algorithm (Mu et al., 2007, 2011) is based on the Penman–Monteith framework (Monteith, 1965) with 20 

modifications to account for parameters not readily available from space (Cleugh et al., 2007).  Terrestrial evapotranspiration 

includes evaporation from wet and moist soil, evaporation from rain water intercepted by the canopy before it reaches the 

ground, the sublimation of water vapor from ice and snow and the transpiration through stomata on plant leaves and stems 

(Mu et al., 2011).  Mu et al. (2007) derived actual evaporation from potential evaporation data by using multipliers to halt soil 

evaporation and plant transpiration through transpiration flow that was limited by water stress and low temperatures and a 25 

complementary relationship which defines land-atmospheric interactions from relative humidity and vapour pressure deficit 

(Mu et al., 2007). Mu et al. (2011) apply the Penman-Monteith (P-M) equation (Eq. 3)  to calculate PET on a global scale by 

using variables and parameters needed from VIS/NIR remote sensing (land cover, LAI, albedo, FPAR) and from daily 

meteorological reanalysis data from NASA’s global modeling and assimilation office (radiation, Tair, pressure, relative 

humidity;). In principle, the surface resistance (rs) parameter in the P-M equation accounts for any direct effect on 30 

evapotranspiration due to limitations in available water.  The way rs is derived in the MOD16 evapotranspiration scheme only 

considers an indirect effect via a non-linear dependency of rs with the water vapor pressure deficit (VPD) in the atmosphere. 
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VPD under daytime conditions often represents a proxy for soil moisture conditions and therefore rs.  MOD16 AET is described 

in detail by Mu et al. (2007, 2011). 

 

2.4.3 ESA CCI soil moisture 

The European Space Agency Climate Change Initiative soil moisture data was generated by merging various available active 5 

and passive microwave based soil moisture data sets (Gruber et al., 2017; Wagner et al., 2012). The combined product used is 

ESA CCI SM v3.2 that was released in 2017 and was generated by blending passive and active microwave soil moisture 

retrieval generated by C- band scatterometers (ERS-1/2 AMS WS (TU Wien/WARP 5.5) scatterometer, ERS-2 AMI WS (TU 

Wien/WARPS5.4) scatterometer, MetOp-A + B ASCAT (H –SAF H109/H110/WARP 5.6) scatterometer) and multi-

frequency radiometers data (from SMMR, SSM/I, TMI, WinSat (all VUA/NASA LPRM v5); AMSR-E, AMSR2, SMOS (all 10 

VanderSat LPRM v6)) (Dorigo et al., 2017). The blending scheme of this product used a weighted average of measurements 

from all sensors that are available at a certain point in time to compute the merged soil moisture estimate (Dorigo et al., 2017). 

Since all input datasets used in generating the data have different dynamic ranges, they are rescaled through CDF-matching 

into a common climatology. Specifically, the soil moisture retrievals from multi-frequency radiometers products (SMMR, 

SSM/I, TMI, and AMSR-E) were rescaled and merged on a pixel basis (Liu et al., 2012). ESA CCI SM v3.2 data is available 15 

at a daily resolution from 1978 to 2015, at a spatial resolution of 0.250 and representing the upper soil depth from 0.5-2 cm. 

For more detail information on ESA CCI SM, the reader is referred to Wagner et al. (2012), Liu et al. (2012), Dorigo et al. 

(2014), Gruber et al. (2017), and Dorigo et al. (2017). The ESA CCI SM has been evaluated in West Africa using in-situ soil 

moisture data (Dorigo et al., 2014).  

 20 

2.5 SWAT calibration, validation and uncertainty analysis 

A multi-objective calibration and validation of SWAT simulated AET using satellite derived AET from GLEAM_v3.0a and 

MOD16 was implemented in SWAT-CUP (Abbaspour, 2015).  SWAT-CUP is a package used to carry out sensitivity analysis, 

calibration and validation of the SWAT model. SUFI-2 (Abbaspour et al., 2004)  is one of the programs available in SWAT-

CUP that  is a multi-site, semi-automated, inverse modelling procedure used for calibrating parameters. SUFI-2 is based on a 25 

stochastic procedure for drawing independent parameter sets using Latin Hypercube sampling (LHS).  In this paper, we 

followed the split-sample test as presented by Klemes (1986) and Gan et al. (1997), using a model calibration and validation 

approach that consists of equally splitting the available data, when the record is sufficiently long, to represent different climatic 

conditions i.e. wet, moderate, and dry years in both periods. An initial pre-selection of  parameters based on literature research 

(Bicknell et al., 1997; Wang et al., 2006; Rafiei Emam et al., 2016; Ha et al., 2018; Lopez Lopez et al., 2017) was undertaken 30 

to choose the most sensitive parameters to AET, and making sure that each of the hydrological processes (runoff, evaporation, 

interception, transpiration and percolation) are represented in the 50 parameters of the global sensitivity analysis. The initial 
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parameter ranges were based on  Neitsch et al.(2002, 2005, 2011). The global sensitivity analysis based on multiple regression 

method (Abbaspour, 2015) was carried out in which parameter sensitivities are determined by numerous rounds of LHS to 

obtain the most sensitive parameters by examining the resulting p-value and the t-stat value. The p-value determines the 

significance of the sensitivity (a value close to zero has more significance) and the t-stat provides a measure of parameter 

sensitivity (a larger absolute value is more sensitive). Based on the sensitivity analysis, 11 of the most sensitive parameters 5 

were selected and altered during calibration process using SUFI-2. The ranking and the calibrated values of the 11 parameters 

for each of the six calibration procedures are listed in Table 2.  The equations written in SWAT theoretical documentation 

(Neitsch et al. (2011)) showing were the selected 11 sensitive parameters appear are presented in Appendix C. 

In this study, the first three calibrations/validations GS1, GS2 and GS3 use the AET from GLEAM_v3.0a for SWAT 

calibration (1989-2000) and validation (2001-2012). To compare SWAT simulated AET in each subbasin to the 10 

GLEAM_v3.0a and GLEAM_v3.0b AET pixel values and compute their NSE, R2, PBIAS, KGE for each subbasin, a NetCDF 

raster layer was created in ArcGIS to view how many pixels of GLEAM covered each of Ogun River subbasin polygon (Fig. 

D1).  GLEAM AET pixel value (daily resolution) was extracted for each subbasin by using “convert raster to points” and 

“Make NetCDF table view” tool in ArcGIS.  The extracted daily data was aggregated to monthly data for each subbasin for 

easy comparison with the monthly AET output from SWAT. We preferred and selected GLEAM_v3.0a AET for the 15 

calibration/validation because of its long-term availability that allows reasonably selection and splitting of calibration and 

validation periods, which are not substantially different in climatic condition i.e., wet, moderate, and dry years in both periods 

and which covers our SWAT simulation output period (1989-2012). GLEAM_v3.0a dataset spanning 24-year period 1989-

2012 was used because the SWAT simulation output was from 1989-2012. The splitting of calibration period (1989-2000) and 

validation period (2001-2012) for GLEAM_v3.0a AET followed the split-sample test as presented by Klemes (1986) and Gan 20 

et al. (1997).  

The last three calibration/validation MS4, MS5 and MS6 use the MOD16 AET for SWAT calibration (2000-2006) and 

validation (2007-2012). Considering MOD16 AET available time-series period, the splitting of calibration and validation 

period also followed the split sample test as presented by Klemes (1986).  Since MOD16 AET is a raster in geotiff format, to 

compare the AET pixel value to SWAT simulated monthly AET values for each subbasin, an area-weighted averaging scheme 25 

was performed in ArcGIS to create aggregated monthly time-series of MODIS AET for each subbasin (Fig. D2).  

The three model runs were calibrated (GS1 through MS6) by adjusting the 11 most sensitive parameters found in SUFI-2. In 

the calibration of SWAT with the AET from GLEAM a sample size of 1000 was chosen for the first iteration and a sample 

size of 500 for the second iteration, resulting in 1500 simulations. In the calibration of SWAT with AET from MOD16 a 

sample size of 1000 was chosen for two iterations of LHS, resulting in 2000 simulations. The validation process involved 30 

running the model using parameter values that were determined during the calibration process and comparing the SWAT AET 

simulations to satellite based AET data.  

In this study, we do not consider runoff-measured data for an independent validation because it is not available for the study 

basin and this is the main reason we considered AET derived from satellite products as an alternative option for the SWAT 
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model calibration and validation. We believe using available AET products (GLEAM & MOD16), that have been tested in the 

past in various calibration and validation studies undertaken by a number of scientists (Roy et al., 2017, Herman et al., 2017, 

Lopez Lopez et al., 2017, Ha et al., 2018, Pomeon et al., 2018) is one solution in setting up a hydrological model that will be 

used as a decision support tool in such a data scarce region. 

The three SWAT model run calibrated and validated using GLEAM and MOD16 AET (GS1 through MS6) were evaluated 5 

with four objective functions, in which their mathematical formulations are presented in Appendix A. It should be noted again 

that the AET in the GLEAM and MOD16 products does not stem from measured data obtained from eddy covariance 

instruments, but instead are based on global earth observation products (satellite).  

Presently, the general hydrologic model performance ratings for recommended statistics (NSE, PBIAS, R2) performed at a 

monthly time and mentioned by Moriasi et al. (2007, 2015) are mostly relevant for runoff, sediment and nutrients. For this 10 

study, the literature was searched on model evaluation methods for hydrologic model calibration using satellite or non-satellite 

derived evapotranspiration. The reviewed literature (Djman, 2016; Samadi et al., 2017; Lopez Lopez et al., 2017; Ha et al., 

2018) showed that these studies also set their performance ratings for recommended statistics (NSE, PBIAS and, R2) based on 

Moriasi et al. (2007, 2015) guidelines. In this study, we followed Lopez Lopez et al. (2017) and others to base our performance 

rating criteria for judging the SWAT model performance (GS1 to MS6)  by using Nash-Sutcliffe efficiency (NSE, (Nash and 15 

Sutcliffe, 1970)), Kling-Gupta efficiency (KGE,(Gupta et al., 2009)), the percent bias (PBIAS) and the coefficient of 

determination (R2). NSE ranges from ─∞ to 1, where NSE > 0.5 indicates a good agreement (Moriasi et al., 2007, 2015) 

between simulated and satellite based evapotranspiration and NSE of 1 being the optimal value.  R2   ranges from 0 to 1 with 

higher values indicating less error variance and 1 being the optimal value. KGE ranges from -∞ to 1, where KGE of 1 is the 

optimal value.  PBIAS ranges from ─ ∞ to ∞, where low magnitude values indicate better simulation. The optimum value of 20 

PBIAS is 0. In this paper, NSE is the selected objective function that was optimised during the calibration process.  

The  recommended statistics for a monthly time step  based on Kouchi et al.( 2017) and Moriasi et al.( 2007, 2015), states that  

NSE>0.50, R2>0.60, KGE≥0.50 and PBIAS ≤ ±25% are the required satisfactory threshold. SUFI-2 was also used for the 

uncertainty analysis of the AET modelling process. In this step, the procedure depicts the 95% prediction uncertainty (95PPU) 

of the model compared with satellite based AET. The 95PPU was estimated at the 2.5% and 97.5% levels of the cumulative 25 

distribution of the AET simulated output variable derived through LHS. The uncertainties were quantified by two indices 

referred to as P-factor and R-factor (Abbaspour et al., 2004). The P-factor represents the percentage of observed data plus its 

error bracketed by the 95% predictive uncertainty (95PPU) band and varies from 0 to 1. Where 1 indicates a 100% bracketing 

of the observed data within model simulations. While the R- factor is the ratio of the average width of the 95PPU and the 

standard deviation of the observed variable, this value ranges between 0 and infinity. These two indices were also used to 30 

judge the strength of the calibration and validation in which the ideal situation would be to account for 100% of the satellite 

AET data in the 95PPU while at the same time have an R-factor close to 0.  
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2.6 SWAT Model Verification  

In some modelling studies (EPA, 2013; Faramarzi et al., 2017), the term model verification is used to refer to the examination 

of the numerical technique and computer code to ascertain that it truly represents the conceptual model and that there are no 

inherent numerical problems with obtaining a solution. In this study, to further examine the accuracy of the calibrated SWAT 

model, a verification of the simulated variables was carried out by: (i) a graphical comparison of calibrated SWAT simulated 5 

AET to GLEAM_v3.0b AET time-series (2003-2012). We considered GLEAM_v3.0b dataset for the verification of SWAT 

simulated AET because there are no ground truth AET data in the study area and, because of its different forcing variable, 

which categorizes it as an independent dataset not considered in the calibration and validation,; and (ii) assessment of the long-

term average annual and average monthly water balances at the outlet of the watershed. The long-term average monthly and 

annual water balance assessment was based on SWAT simulated output with only precipitation and temperature as measured 10 

input data.  The SWAT water balance equations used for the assessment are: 

𝑊𝑌𝐿𝐷 = 𝑆𝑈𝑅𝑄 + 𝐿𝐴𝑇_𝑄 + 𝐺𝑊_𝑄 − 𝑄_𝑇𝐿𝑂𝑆𝑆                (7) 

𝑃𝑅𝐸𝐶𝐼𝑃 = 𝑊𝑌𝐿𝐷 + 𝐴𝐸𝑇 + ∆𝑆𝑊 + 𝑃𝐸𝑅𝐶 − 𝐺𝑊_𝑄                  (8) 

Where PRECIP (mm) is the observed precipitation; AET (mm) is the actual evapotranspiration; WYLD (mm)is the net amount 

of water that leaves the subbasin and contributes to stream flow in the reach; SURQ (mm) is the surface runoff contribution to 15 

stream flow; GW_Q (mm) is the groundwater contribution to stream flow; ΔSW(mm) is the change in soil water content; 

PERC(mm) is the water percolating past the root zone; LAT_Q (mm) is the lateral flow contribution to stream flow and 

Q_TLOSS (mm) is the transmission loss. The soil water content for both monthly and annual output is the average soil water 

content for the time period. Hence, the initial soil water content is the average for the time period of 25 years.  

 20 

2.7 SWAT soil moisture validation 

Soil moisture is a key driver for runoff, evaporation and infiltration processes in a catchment. The ESA CCI SM v3.2 was used 

for validation because it has a similar spatial resolution to the satellite-based AET products used for model calibration, the 

available time period (1978 -2015) fits the period of interest, and the product has achieved reasonable accuracy when evaluated 

at various sites in West Africa  (Dorigo et al., 2014). The SWAT simulated soil moisture was validated using SUFI-2 against 25 

ESA CCI SM v3.2 for each of the Ogun River subbasins using 500 simulations in one iteration from the period of 2001 to 

2012. The R2 statistics was computed between SWAT simulated soil moisture and ESA CCCI SM v3.2 for each pixel (Fig. 

E1) using the same approach described for GLEAM extraction in section 2.5. The ESA CCI SM product provides volumetric 

moisture in the shallow soil depth (0.5-2 cm) whereas SWAT provides plant available soil moisture for the total soil layer (0-

200 cm), therefore a direct comparison was not possible. Hence, the proportion of the variance was considered to be an 30 

important criteria for evaluating the dynamics of soil moisture simulated, rather than evaluating the absolute values (Fig. 14). 

https://www.sciencedirect.com/science/article/pii/S0034425714002727?via%3Dihub#bb0120
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3. Results 

The results of global sensitivity analysis revealed that the SCS runoff curve number (CN2.mgt) is the most sensitive parameter 

to SWAT simulations of AET for all the six calibrations (Table 2).  The sensitivity ranking of the remaining 10 parameters 

varies significantly.  

 5 

Table 2 

 

Figure 3 show the performance of the uncalibrated SWAT (RGS1, RGS2, RGS3, RMS4, RMS5, and RSM6), which represent 

the reference runs. Results indicate that the uncalibrated SWAT model underestimated AET (positive PBIAS) and has a high 

percentage deviation from the GLEAM and MOD16 AET. The NSE, KGE, PBIAS and R2 all depict a low model performance. 10 

Interestingly, the reference runs with MOD16 tend to have higher R2 compared to reference runs with GLEAM. The results 

from all the six-reference runs justify the need to further improve the SWAT model performance.  

 

Fig. 3 

 15 

In this paper, only the spatial representations of the SWAT_HG with the highest (GS1) and the lowest (MS6) model 

performance are included for the purpose of showing the two extreme results obtained (Fig. 4, Fig. 5, Fig. 6 and Fig. 7).  The 

calibration/validation results for GS1 show a model performance of NSE>0.50, KGE>0.50, R2 >0.6 in more than half of the 

53 subbasins and a PBIAS < ±15% in all of the 53 subbasins (Fig.4 and Fig 5). The calibration/validation results for MS6 

(Fig.6 and Fig.7) show the lowest model performance.  20 

 

 

Fig.4 

Fig 5 

 25 

 

Fig.6 

Fig.7 

 

The remaining calibration/validation results of GS2, GS3, MS4, MS5 (Fig. S1, Fig S2, Fig S3, Fig, S4, Fig S5, Fig S6, Fig S7 30 

and Fig S8) show a lower model performance to GS1.  

Figure 8 and 9 summarize the model performance results of the SWAT model runs when calibrated/validated with 

GLEAM_v3.0a (GS1, GS2 and GS3) and MOD16 AET (MS4, MS5 and MS6). Overall, results indicate that the 
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calibration/validation of GS1 (Fig.8 and Fig.9) exhibits a model performance superior to the remaining two model runs for 

AET simulation (through GS1 to MS6) judging by the four objective functions except for the validation period, where a lower 

NSE (average value of 0.45) was obtained (GS1, Fig. 9).  NSE>0.50 was achieved in 32 out of 53 subbasins during the model 

validation (GS1), meaning that, more than half of the 53 subbasin have a satisfactory model performance, therefore the average 

NSE value of 0.45 obtained can be considered acceptable.  5 

 

Fig.8 

Fig.9 

3.1 Uncertainty analysis of SWAT model  

The SWAT model performance results of the SWAT-HG when calibrated/validated with the AET from GLEAM_v3.0a (GS1) 10 

proved to be the most efficient of the three model runs (through GS1 to MS6), therefore, it was used to further predict the 

uncertainty associated with the AET simulations for each of the 53 subbasins to map error sources. In the calibration period, 

the values of the P-factor obtained were between 0.50 and 0.90 and the values of the R-factor were between 1.40 and 2.4.  In 

the validation period, the values of P-factor were between 0.6 and 0.88, and that of the R-factor were between 1.43 and 2.5. 

The P-factor values revealed that more than half of the earth observation derived AET plus its error are bracketed by the 95% 15 

predictive uncertainty. The predictive uncertainties were adequate in the 53 subbasins and had a satisfactory performance for 

monthly AET simulations using the Hargreaves equation, though the R-factor was quite large in all the 53 subbasins, indicating 

large model uncertainties. Extracts of the monthly calibration/validation results showing the 95% prediction uncertainty 

intervals along with the satellite based AET (GLEAM_v3.0a) are presented in Fig.10.  

 20 

Fig.10 

3.2 Model verification result 

It was found that the AET from GLEAM_v3.0b was bracketed within the 95 percent uncertainty prediction (Fig. 10). The 

long-term average monthly water balance assessment performed at the outlet of the watershed shows a seasonal fluctuation 

which agrees with previous water balance studies conducted at the outlet of the of the study area located in Abeokuta 25 

(Ufoegbune et al., 2011; Eruola et al., 2012; Ufoegbune et al., 2012; Sobowale and Oyedepo, 2013), namely: (i) the study area 

is characterized by bimodal rainfall pattern, (ii) the AET increases in February from 55 mm to 76 mm as the wet season 

approaches and decreases in October from 72 mm to 54 mm in November as the dry season approaches (Ufoegbune et al., 

2011), (iii) rainfall commences in March (66 mm) and is plentiful in June (165 mm) and September (167 mm), (iv) in August 

there is a decrease in precipitation to 96 mm  and a decrease in AET to 94 mm, the dry spell often experienced in August is 30 

termed “August break” (Ufoegbune et al., 2011), (iii) The dry period extends from November to March, the months of low 
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rainfall, AET, and soil moisture values (Ufoegbune et al., 2011), (v) with moderate rain in March soil water increases from 83 

mm to 200 mm in July (Ufoegbune et al., 2011), (vi)  as dry season commences, the soil water gradually declines.  

The differences in the long term mean monthly water balance values obtained in the past studies conducted within the 

catchment are due to the variation in duration of years considered. Also, Eruola et al. (2012) revealed the two peak rainfalls in 

July and September agree with the current study, while Ufoegbune et al. (2011) showed the two peak rainfall to be in  the 5 

month of June and September. All these previous studies and the current study water balance results are in the same range. 

Figure 12 shows the seasonal fluctuation of the SWAT estimated water balance components at the outlet of watershed, located 

in Abeokuta town. Our results show, the average long-term annual water balance estimated by SWAT to be within a reasonable 

percentage error of closure of ±15% (Table 3).  

 10 

Table 3 

Fig. 11 

Fig. 12 

3.3 SWAT soil moisture validation result 

Only the spatial representation of the SWAT_HG with the highest AET calibration model result was validated against the ESA 15 

CCI SM. Overall, the average R2 value obtained for the Ogun River Basin is 0.76 (Fig. 13). The results show 88.6% of the 

basin has R2 > 0.60 and 11.3% of the basin has R2 <0 .60. The graphical representation of the soil moisture dynamics from the 

highest and the lowest R2 results obtained are presented in Fig. 14.  

4. Discussion 

The global sensitivity analysis revealed that for the three SWAT model set-up calibrations (GS1 to MS6), the same 11 SWAT 20 

hydrologic parameters governing AET were sensitive (Table 2). When different PET equations were tested in SWAT, different 

simulated AET values were obtained and the overall sensitivity ranking of the parameters varied significantly. Since 

parameters represent processes, the significant variation in the sensitivity ranking of the parameters implies that the impact of 

the selected PET methods in simulating the AET in the study area is relatively high. The SCS runoff curve number for moisture 

condition II (CN2.mgt), which is one of the parameters that controls the overland processes and is a function of the soil 25 

permeability, landuse and antecedent soil water was used to determine the surface runoff generation in the basin. The CN2.mgt 

is found to be the most sensitive parameter of the three model runs (through GS1 to MS6), indicating that it is also the dominant 

parameter controlling the AET processes in SWAT for the Ogun River Basin (Table 2). The soil evaporation compensation 

coefficient (ESCO.hru) controls soil evaporation and depends on soil characteristics. As the value of ESCO is reduced, more 

water is extracted from the lower layers to meet evaporative demand. ESCO is the second most sensitive parameter for GS1, 30 

with a very low value of 0.02, but for other runs (GS2 to MS6), the sensitivity ranking varies. The maximum canopy storage 
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(CANMAX.hru) accounts for the amount of water that can be trapped in the canopy when fully developed and affects 

infiltration, surface runoff, and evapotranspiration processes. It was more sensitive when the model was calibrated with 

GLEAM than when the model was calibrated with MOD16 AET. The soil bulk density (SOL_BD. sol) defines the relative 

amounts of pore space and its overall sensitivity ranking is between 2 and 4 (GS1 through MS6). It was more sensitive when 

SWAT was calibrated with MOD16 than when SWAT was calibrated with GLEAM AET. The baseflow alpha factor 5 

(ALPHA_BF.gw) is the index of groundwater flow response to changes in recharge influences the baseflow simulation and its 

sensitivity varies (GS1 to MS6). The saturated hydraulic conductivity (SOL_K.sol) determines the shallow sub-surface flow 

and groundwater recharge and it affects the surface runoff response. In order to correctly account for volume of water lost to 

evaporation from the two reservoirs (Oyan dam and Ikere George dam), the evaporation coefficient (EVRSV.res) was 

calibrated. Interestingly, we observed that GS1, GS3 and MS6 have higher EVRSV.res values that agree with the expected 10 

values in such a humid tropical region compared to EVRSV.res values obtained from GS2, MS4 and MS5. It is observed that 

GS1 tends to have the highest (4.7) maximum stomatal conductance (GSI.plant.dat) that denotes the maximum conductance 

of a leaf when the canopy resistance term is modified to reflect the impact of high vapour pressure deficit, during the 

calibration.  The MS4 has the highest value (0.99) of initial soil water storage expressed as a fraction of field capacity water 

content (FFCB). The MS4 also obtained the highest value (0.95) of plant uptake compensation factor (EPCO.hru), meaning 15 

that the calibration procedure makes  the model allows for more of the water uptake demand to be met by lower layers in the 

soil, and as EPCO approaches 0 (GS3 with the value 0.07).  The soil available storage capacity (SOL_AWC.sol) values for 

GS1 to MS6 were allowed to vary by a factor of 0.8 to 0.96, meaning there is an increase in SOL_AWC for the soil in the 

model set-up for Ogun River Basin. 

Assessing the model performance with the objective function and their satisfactory threshold values used in this study, the 20 

calibration/validation with the AET from GLEAM_v3.0a showed an overall satisfactory SWAT model performance when the 

Hargreaves PET equation was used in SWAT to simulate AET (GS1), compared to the other model calibration results (GS2 

to MS6). The calibration/validation with the AET from MOD16 yielded a lower SWAT model performance regardless which 

of the three PET equations was tested in SWAT.  

Using the guidelines in Moriasi et al. (2007, 2015) and Kouchi et al. (2017) for evaluating the SWAT model performance at a 25 

monthly time-step, the PBIAS values showed a satisfactory model performance (PBIAS≤±25) in the six 

calibrations/validations of the three SWAT model runs (Fig. 8 and Fig.9). The positive PBIAS obtained in the 

calibration/validation of the three SWAT model run using the AET from MOD16 (MS4, MS5 and MS6) indicated a tendency 

for the SWAT model to underestimate monthly AET at the Ogun River Basin. An intuitive reason for this may be due to 

transient water stress occurring in the basin, however, transient water stress is not the main challenge in the study area, which 30 

is located in the humid region of southwestern Nigeria with a mean Aridity Index of 0.75 (for the period 1989-2012). The 

careful consideration of equal wet and dry years in the calibration and validation years has accounted for similar climatic 

conditions in both periods.  
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The positive PBIAS obtained using MOD16 for calibrating agrees with previous studies conducted at a site in tropical region. 

Ruhoff et al. (2013) validated MOD16 AET using ground-based measurements of energy fluxes obtained from eddy covariance 

sites installed in tropical sites in the Rio Grande basin, Brazil from a hydrological model (MGB-IPH) at both local and regional 

scales and found that at the natural savannah vegetation site, the annual AET estimate derived by the MOD16 algorithm was 

19% higher than the measured amount. Ruhoff et al. (2013) found that misclassification of land use and land cover was 5 

identified as the largest contributor to the error from the MOD16 algorithm. Ramoelo et al. (2014) validated MOD16 using 

data from two eddy covariance flux towers installed in a savannah and woodland ecosystem within the Kruger National Park, 

South Africa and found that one flux tower results showed inconsistent comparisons with MOD16 AET and the other site 

achieved a poor comparison with MOD16 ET. In their study, they found that, the inconsistent comparison of MOD16 and flux 

tower-based AET can be attributed to the parameterization of the Penman-Monteith model, flux tower measurement errors, 10 

and flux tower footprint vs MODIS pixel. Also, Trambauer et al. (2014) compared different evaporation products in Africa 

and found that MOD16 evaporation does not show a good agreement with other products in most part of Africa, while other 

evaporation datasets (GLEAM, ECMWF reanalysis ERA-LAND and PCR-GLOBWB hydrological model simulated AET) 

are more consistent. From our results, we found that when the SWAT model was calibrated with MOD16 AET, the SWAT 

simulations tend to underestimate AET.  15 

The satisfactory SWAT model GS1 performance was achieved for all objective functions, except for the average NSE value 

of 0.45 in the validation period, however NSE values >0.50 were obtained in 60% of the subbasins. The KGE result revealed 

the SWAT-HG model validation (GS1) to be satisfactory (Fig 9). Also, the low PBIAS result of -0.02% and 0.45% (GS1, Fig 

8 and Fig 9) corresponded to a performance rating “very good” indicating predictive capability of accurate model simulation. 

The better SWAT model performance in GS1 is attributed to the selection of the Hargreaves equation, which is based on 20 

available observed precipitation and maximum and minimum temperature to obtained AET, while the Penman-Monteith and 

the Priestly-Taylor equations are driven by simulated variables (wind speed, relative humidity and solar radiation) in this study. 

Also the complex water balance model algorithm of GLEAM takes into account soil-water balance, bare-soil evaporation and 

open water evaporation, evaporative stress factor and rainfall interception, all of which  assist in simulating the dynamic 

hydrological components, especially the AET. 25 

The differences in GLEAM and MOD16 products are due to their input and forcing data (Trambauer et al. 2014). Our results 

agree with another study in which AET from GLEAM performed satisfactorily for the calibration of a large-scale hydrological 

model set up in Morocco (Lopez Lopez et al., 2017). The 95% predictive uncertainty of the highest SWAT model performance 

(GS1) was quantified, and the 95% predictive uncertainty bracketed most of the satellite based AET, although the R-factor 

was quite large in all of the subbasins signifying a large model uncertainty which can be ascribed to the uncertainty in satellite 30 

derived AET, the forcing climate data, the conceptual model and the model parameters. The 95PPU are the combined outcome 

of the uncertainties, these uncertainty sources are not separately evaluated in SUFI-2 but attributed as a total model uncertainty 

to the parameters which are visualized through the simulated model output ranges. A first verification of the SWAT model run 

with the best model performance (GS1) was carried out using GLEAM_v3.0b as an independent dataset and found the results 
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to be bracketed within the 95PPU of GS1 (Fig. 11). The second verification of the SWAT model structure with the best model 

performance (GS1) was carried out by assessing the output of SWAT water balance components (Table 3 and Fig. 12). The 

results obtained from the long-term mean monthly water balance agrees with the previous water balance studies conducted 

within the study area. The differences in the water balance components values of the past and the current study are due to 

variation in the length of years considered. The average long-term annual of the water balance at the outlet of the study area 5 

shows a satisfactory percentage error of closure of ±15% (Table 3).  

At a monthly-time step, the dynamics of the SWAT simulated soil moisture (mm) for the whole soil profile compared to the 

ESA CCI SM (%) in the upper few centimetres of the soil profile fit very well in most of the basin. The lowest R2 of 0.45 

obtained in  subbasin 44 of Ogun River Basin (Fig. 14) also corresponded to the lowest result (R2 = 0.28) obtained in subbasin 

44 when the model was validated with AET from GLEAM_v3.0a (Fig. 10). Nevertheless, the high overall average soil moisture 10 

validation R2 obtained agrees with a previous study that validated a hydrological model with ESA CCI SM in West Africa 

(Pomeon et al. 2018). The multi-calibration and validation results show the SWAT model to perform satisfactorily in the study 

area. 

5. Conclusion 

This study examined an alternative method to calibrate/validate the SWAT eco-hydrological model using available satellite-15 

based AET products for the data-sparse Ogun River Basin in southwestern Nigeria. The approach opens up a new direction 

for calibration/validation of hydrological models in ungauged basins. Due to the different retrieval algorithms of both the 

satellite-based AET and SWAT simulated AET, two global evaporation products ((GLEAM and MOD16) were used to 

calibrate the three SWAT simulated AET on a monthly time scale. The use of Hargreaves, Priestley-Taylor and Penman-

Monteith equations in SWAT cause the different AET values obtained. Six different calibrations were implemented with the 20 

global AET products with the aim to obtain a high performing model for Ogun-River Basin. Overall, the results are promising, 

and show that global satellite-based AET data can be used as an alternative method to calibrate/validate the SWAT model in 

a tropical sparsely-gauged basin. Specifically, when SWAT model was used with the Hargreaves PET equation and was 

calibrated using the GLEAM_v3.0a AET product, the highest model performance was obtained with an acceptable predictive 

uncertainty.  25 

Statistical analysis of the model performance shows that global AET datasets used for the calibration were significantly 

different from each other, which was expected because of their different retrieval algorithms. Our findings suggest that the 

SWAT model run using the Hargreaves equation can be used as a potential decision support tool for further studies and 

predictions on basin hydrology in the Ogun River Basin. 

There is still a need for further research on: (i) improving the model calibration performance in those subbasins where the 30 

performances are unsatisfactory and (ii) validation of other simulated variable (e.g. stream flow) of the calibrated SWAT model 

using observed datasets when these are available.   
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The results from this research contribute to a better understanding of the ease and suitability of using freely available satellite 

based AET datasets for model calibration in a tropical ungauged basins where  the main limitation of setting-up hydrological 

models for discharge simulations is the lack of measured streamflow data. Furthermore, a new contribution of this study is the 

better understanding of calibration of the three different estimated AET in SWAT to derive the model with the best goodness 

of fit and a satisfactory predictive capability.  5 

We recommend testing the three PET equations in SWAT to simulate AET whenever SWAT calibration is carried out with 

any satellite-based AET products and to independently validate other water balance components.  The work presented here is 

a first step in the hydrological modelling study that will set the basis for future modelling applications within the study basin. 
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Table 1. Description and sources of input data used to configure SWAT model for the Ogun River Basin 5 

 

Data type Description/Resolution Sources 

Topography 30m Resolution, Digital Elevation Model  
1 arc-second global coverage  

  

Shuttle Radar Topography Mission  

(SRTM, 2015) 

https://lta.cr.usgs.gov/SRTM1Arc 

 
Soil 250m Resolution, soil property maps of  

Africa  

 

Soil property maps of Africa (Hengl et al., 2015) 

http://www.isric.org/projects/soil-property-

maps-africa-250-m-resolution 

 
Landuse 300m Resolution, landuse classification 

Year 2010  

European Space Agency global land cover map 

(ESA CCI LC, 2014) 

https://www.esa-landcover-

cci.org/?q=node/158 

 
Weather Daily precipitation, max. and min. temperature 

(1984-2012) 

Nigerian Metrological Agency 

Reservoir  

outflow 

Reservoir daily discharge 

(Oyan:2007-2012) 

 

Ogun-Oshun River Basin Authority Nigeria 

 

Reservoir 

Water level 

Daily water level 

(Oyan:1984-2012) 

 

Ogun-Oshun River Basin Authority Nigeria 

 

Management 

practices 

Major crop management practices  Ogun state Agricultural Development Authority, 

Nigeria 

Oyo state Agricultural Development Authority, 

Nigeria 
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Table 2. Sensitivity rank and calibrated parameters with their optimal value of the three SWAT model run through the six calibrations  

  Rank (optimal value) 

SWAT Parameter Description GS1 GS2 GS3 MS4 MS5 MS6 

r__CN2.mgt SCS runoff curve number for soil 

moisture condition II 

1 (-0.01) 1 (-0.13) 1 (0.08) 1 (-0.48) 1 (-0.48) 1 (-0.47) 

v__ESCO.hru Soil evaporation compensation  

coefficient 

2 (0.02) 4 (0.20) 3 (0.20) 4 (0.23) 8 (0.33) 5 (0.50) 

v__CANMX.hru Maximum canopy storage 3 (6.96) 2 (0.61) 2 (3.86) 5 (82.11) 9 (33.9) 4 (15.6) 

r__SOL_BD,sol Moist bulk density  4 (-0.19) 3 (0.11) 4 (-0.20) 3 (-0.82) 3(-0.005) 2 (-0.07) 

v__ALPHA_BF.gw Baseflow alpha factor  5 (0.66) 5 (0.62) 7 (0.13) 6 (0.42) 6 (0.9) 8 (0.14) 

r__SOL_K.sol Saturated hydraulic conductivity  6 (0.23) 10 (-0.26) 8 (0.24) 10 (0.49) 10 (-0.19) 10 (0.26) 

v__EVRSV.res Lake evaporation coefficient 7 (0.59) 7 (0.55) 10 (0.62) 8 (0.22) 7 (0.23) 7 (0.74) 

v__GSI.plant.dat Maximum stomatal conductance  8 (4.7) 11 (1.66) 11 (3.4) 7 (2.34) 5 (1.9) 6 (0.34) 

v__FFCB.bsn Initial soil water storage expressed as a 

fraction of field capacity water content 

9 (0.59) 6 (0.82) 5 (0.15) 11 (0.99) 11 (0.4) 11 (0.83) 

v__EPCO.hru Plant uptake compensation factor 10 (0.47) 9 (0.61) 9 (0.07) 9 (0.95) 4 (0.88) 9 (0.47) 

r__SOL_AWC.sol Soil available water storage capacity  11 (0.8) 8 (0.92) 6 (0.77) 2 (0.96) 2 (0.89) 3 (0.93) 

 “v_” means a replacement (initial or existing parameter value is to be replaced by a given value); 

 “r_” means a relative change (initial or existing parameter value is multiplied by 1+ given value within the range) 

 5 
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Table 3.  Average annual water balance at the outlet of the watershed in Abeokuta Town based on SWAT simulated output 

Year PRECP 

(mm) 

AET 

(mm) 

SW 

(mm) 

PERC 

(mm) 

SURQ 

(mm) 

GW_Q 

(mm) 

WYLD 

(mm) 

LAT Q 

(mm) 

∆SW 

(mm) 

*Estimated 

PRECP 

Balance 

Year 

PBIAS 

(%) 

1989 1357 941 57 188 294 147 456 5 5 1442 -85 -6 

1990 1094 882 82 69 145 52 207 4 -25 1081 13 1 

1991 1161 881 54 117 228 84 321 4 27 1263 -101 -9 

1992 1066 806 57 113 177 86 274 4 -3 1104 -38 -4 

1993 1185 862 63 55 305 38 351 4 -5 1225 -41 -3 

1994 870 768 47 34 96 17 118 3 16 918 -48 -6 

1995 1166 858 55 116 225 83 317 4 -8 1200 -34 -3 

1996 1457 885 45 201 460 148 621 5 10 1569 -112 -8 

1997 1341 851 110 151 342 122 478 5 -65 1292 50 4 

1998 1107 767 81 124 290 93 394 4 29 1222 -114 -10 

1999 1515 900 100 223 458 183 656 5 -19 1577 -62 -4 

2000 1198 814 55 175 306 143 463 4 45 1355 -157 -13 

2001 841 738 35 27 108 12 128 3 20 900 -60 -7 

2002 1241 758 64 146 375 108 492 4 -29 1260 -19 -2 

2003 1456 845 56 216 488 177 681 5 8 1572 -117 -8 

2004 1156 922 44 90 186 69 265 4 12 1220 -64 -6 

2005 915 792 41 27 114 14 134 3 3 942 -27 -3 

2006 1153 804 46 128 263 94 365 4 -5 1198 -45 -4 

2007 1600 910 50 229 552 175 742 6 -4 1702 -103 -6 

2008 1395 832 55 221 416 174 605 5 -4 1480 -85 -6 

2009 1338 872 65 185 334 151 500 5 -10 1397 -59 -4 

2010 1609 928 91 232 519 189 722 6 -26 1667 -58 -4 

2011 1264 815 64 172 367 134 515 5 27 1395 -130 -10 

2012 1409 839 60 265 386 205 609 6 4 1512 -103 -7 

PRECIP: precipitation; AET: actual evapotranspiration; SW: soil water; PERC: percolation; SURQ: surface runoff; GW_Q: groundwater recharge; 

WYLD: water yield; LAT_Q: lateral flow; SW: change in soil moisture; * Estimated PRECP is WYLD+AET+∆S+PERC-GW_Q, expressed in 

mm. 
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Figure 1. The Ogun River Basin located in Nigeria showing the SWAT-delineated subbasins, weather stations and river network 

 

 Content may not reflect National Geographic's current map policy. Sources: National Geographic, Esri, DeLorme,
HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.
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Figure 2.  Schematic diagram showing the set-up of the SWAT model, the two global AET products, the resulting six SWAT reference runs, and calibration 

and validation procedures for the Ogun River Basin. 25 
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Figure 3. The plots of the performance results of the uncalibrated SWAT in simulating actual evapotranspiration. The values and 5 
the black dot symbol (“•”) depicts the average value of, R2, NSE, KGE and PBIAS obtained for each of the reference runs. 
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Figure 4. Performance metrics (NSE, KGE, R2, and PBIAS) of SWAT (SWAT_HG) when calibrated with GLEAM_v3.0a (GS1).  
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Figure 5. Performance metrics (NSE, KGE, R2, and PBIAS) of SWAT (SWAT_HG) when validated with GLEAM_v.3.0a (GS1) 
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Figure 6. Performance metrics (NSE, KGE, R2, and PBIAS) of SWAT (SWAT_P-M) when calibrated with MOD16 (MS6) 
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Figure 7. Performance metrics (NSE, KGE, R2, and PBIAS) result of SWAT (SWAT_P-M) when validated MOD16 (MS6) 
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Figure 8. The plots of the performance result of SWAT in simulating actual evapotranspiration. The values and the black dot symbol 5 
(“•”) depicts the average value of, R2, NSE, KGE and PBIAS obtained for each calibration. 
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Figure 9. The plots of the performance result of SWAT in simulating actual evapotranspiration. The values and the black dot symbol 

(“•”) depicts the average value of, R2, NSE, KGE and PBIAS obtained for each validation. 
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Figure 10. Extracts of the monthly calibration and validation results (GSI) showing the 95% prediction uncertainty interval along 

with the best SWAT simulated actual evapotranspiration and the satellite based actual evapotranspiration (GLEAM-v3.0a). 
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Figure 11. SWAT model verification results showing the satellite based AET GLEAM_v3.0a used for the model 30 
calibration/validation, the best SWAT simulated actual evapotranspiration (GS1), and an independent GLEAM_v3.0b time series 

bracketed by 95% predictive uncertainty.  
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Figure 12. Seasonal fluctuation of water balance components at the outlet of the watershed located in Abeokuta Town 
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Figure 13. Performance metric (R2) of SWAT simulated soil moisture when validated with ESA CCI soil moisture v3.2 

 

 

 

Figure 14. Extracts of R2 result of SWAT  monthly simulated soil moisture validation against ESA CCI SM v3.2 and the graphical 25 
representation of SWAT SM 95% prediction uncertainty band.  
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Appendix A: Performance metrics and their equations 

 

Table A1. Table showing the performance metrics and their equations used to evaluate the model performance in this study. 

 5 

Criterion Mathematical equation Description 

R2 

𝑅2 =

(

 
∑ (𝑂𝑖 −𝑂)(𝑃𝑖 − 𝑃
𝑛
𝑖=1 )

√∑ (𝑂𝑖 − 𝑂)
𝑛
𝑖=1

2∑ (𝑛
𝑖=1 𝑃𝑖 − 𝑃)

2
)

 

2

 

The percent of variance explained by the 

model. It is a statistical measure of how 

close the data are to the fitted regression 

line. 

NSE 𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − 𝑂)
𝑛
𝑖=1

2  
Quantifies the relative magnitudes of the 

residual variance (noise) compared to the 

observed data variance 

KGE 𝐾𝐺𝐸 = 1 −√(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 The goodness of fit measure provides an 

analysis of the relative importance of 

different components (correlation, bias and 

variability) in hydrologic simulation. 

PBIAS 𝑃𝐵𝐼𝐴𝑆 = 100 𝑥
∑ (𝑛
𝑖=1 𝑂𝑖 − 𝑃𝑖)

∑ 𝑂𝑖
𝑛
𝑖=1

  The deviation of data being evaluated 

expressed in percentage. It measures the 

average tendency of the simulated data to 

be larger or smaller than the observation. 

Negative values indicate model 

overestimating (overprediction) and 

positive values indicate model 

underestimating (underprediction). 

Oi are satellite based AET values; Pi are simulated AET values; O are mean satellite based AET values; P are mean simulated AET 

values; r is the Pearson product correlation coefficient between satellite-based AET and the simulated AET, 𝛼 is the standard deviation 

of the simulated AET over the standard deviation of the satellite-based AET, and β is the ratio of the mean simulated AET to the 

satellite based AET. 
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Appendix B:  SWAT model calibrated parameters  

 

Table B1. Eleven parameters and their minimum and maximum range used in this study for the 1st iteration (1000 simulations) of 

all the six calibrations. 5 
 

Parameter name Minimum range Maximum range 

v__ESCO.hru  0.00 1.00 

v__EPCO.hru 0.00 1.00 

v__CANMX.hru 0.00 100.00 

v__GSI{2,4,5}.plant.dat 0.00 5.00 

 v__ALPHA_BF.gw  0.00 1.00 

v__EVRSV.res________17,50 0.00 1.00 

v__FFCB.bsn  0.00 1.00 

 r__CN2.mgt -0.25 0.85 

r__SOL_AWC().sol 0.23 0.95 

r__SOL_K().sol  -0.06 0.95 

r__SOL_BD().sol -0.41 0.95 
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Appendix C: Equations (taken from SWAT theoretical documentation (Neitsch et al., 2011)) showing the selected 11 most sensitive 

SWAT parameters used in this study 

 

Maximum stomata conductance 5 

The canopy resistance term is modified to reflect the impact of high vapor pressure deficit on leaf conductance when calculating 

actual evapotranspiration (Stockle et al., 1992). The adjusted leaf conductance in which parameter GSI appears is calculated 

in SWAT using equation C1 and C2: 

 

𝑔𝑒 = 𝑔𝑒,𝑚𝑥 × [1 − ∆𝑔𝑒,𝑑𝑐𝑙(𝑣𝑝𝑑 − 𝑣𝑝𝑑𝑡ℎ𝑟)]  𝑖𝑓 𝑣𝑝𝑑 > 𝑣𝑝𝑑𝑡ℎ𝑟            (C1) 10 

𝑔𝑒 = 𝑔𝑒,𝑚𝑥    𝑖𝑓 𝑣𝑝𝑑 ≤ 𝑣𝑝𝑑𝑡ℎ𝑟                           (C2)

  

Where  𝑔𝑒   is the conductance of a single leaf (m s-1);  𝑔𝑒,𝑚𝑥     is the parameter GS1 which is the maximum stomatal 

conductance of a single leaf ((m s-1); ∆𝑔𝑒,𝑑𝑐𝑙  is the rate of decline in leaf conductance per unit increase in vapor pressure 

deficit (m s-1  kPa-1), vpd is the vapor pressure deficit (kPa), and vpdthr is the threshold vapor pressure deficit above which a 15 

plant will exhibit reduced leaf conductance (kPa). The rate of decline in leaf conductance per unit increase in vapor pressure 

is calculated by solving equation C1.     

 

The SCS curve number for soil moisture condition II 

Three antecedent moisture conditions are defined by SCS curve number: I ˗dry (wilting point), II ˗average moisture, and III 20 

˗wet (field capacity). The SCS curve numbers II is calculated from either SCS moisture condition I or from SCS moisture III 

in equation C3 and C4: 

 

𝐶𝑁1 = 𝐶𝑁2 −
20×(100−𝐶𝑁2)

(100−𝐶𝑁2+𝑒𝑥𝑝[2.533−0.0636×(100−𝐶𝑁2)])
              (C3) 

 25 

𝐶𝑁3 = 𝐶𝑁2 × 𝑒𝑥𝑝[0.00673 × (100 − 𝐶𝑁2)]              (C4) 

 

Where CN1 is the moisture condition I curve number; CN2 is the moisture condition II curve number, and CN3 is the moisture 

condition III curve number. 

 30 

Maximum canopy storage 

The maximum amount of water that can be held in canopy storage varies from day to day as a function of the leaf area index 

in SWAT model and is estimated with equation C5 in which CANMX parameter appears: 

𝑐𝑎𝑛𝑑𝑎𝑦 = 𝑐𝑎𝑛𝑚𝑥 ×
𝐿𝐴𝐼

𝐿𝐴𝐼𝑚𝑥
                 (C5) 

Where canday is the maximum amount of water than can be trapped in the canopy on a given day (mm H20), canmx is the 35 

CANMAX parameter and is the maximum amount of water than can be trapped in the canopy when the canopy is fully 

developed (mm H20), LAI is the leaf area index for a given day, and LAImx is the maximum leaf area index for the plant. 

 

Bulk density 

Bulk density is calculated using equation C6: 40 

𝜌𝑏 =
𝑀𝑠

𝑉𝑇
                   (C6) 

Where 𝜌𝑏  is the bulk density (Mg m-3), Ms is the mass of solids (Mg) and VT is the total volume (m3). The total volume 

is calculated as:  
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𝑉𝑇 = 𝑉𝐴 + 𝑉𝑊 + 𝑉𝑆                 (C7) 

Where VA is the volume of air (m3), VW is the volume of water (m3), and VS is the volume of solids (m3). 

 

Soil available water storage capacity 

Soil available water storage capacity is calculated by subtracting the fraction of water present at permanent wilting point from 5 

that present at field capacity. 

𝐴𝑊𝐶 = 𝐹𝐶 −𝑊𝑃                 (C8) 

Where AWC is the plant available water content, FC is the water content at field capacity, and WP is the water content at 

permanent wilting point. 

 10 

Saturated hydraulic conductivity 

The equation in which the parameter saturated hydraulic conductivity (SOL_K) appears is given in C9: 

𝑇𝑇𝑝𝑒𝑟𝑐 =
𝑆𝐴𝑇𝑙𝑦−𝐹𝐶𝑙𝑦

𝐾𝑠𝑎𝑡
                 (C9) 

Where TTperc is the travel time for percolation (hrs), SATly is the amount of water in the soil layer when completely saturated 

(mm H20), FCly is the water content of the soil layer at field capacity (mm H20), and Ksat is the saturated hydraulic conductivity 15 

for the layer (mm h-1). 

 

Baseflow alpha factor  

The baseflow recession constant (Baseflow alpha factor) is αgw . The αgw is calculated using equation C10: 

𝛼𝑔𝑤 =
1

𝑁
× 𝑙𝑛 ⌊

𝑄𝑔𝑤,𝑁

𝑄𝑔𝑤,0
⌋               (C10) 20 

Where αgw is the ALPHA_BF parameter, N is the time lapsed since the start of the recession (days), Qgw,N is the groundwater 

flow on day N (mm H20), Qgw,0 is the groundwater flow at the of the start of the  recession (mm H20). 

 

Lake evaporation coefficient 

The equation in which the Reservoir evaporation coefficient (EVRSV.res) appears is shown in C11: 25 

𝑉𝑒𝑣𝑎𝑝 = 10 × 𝜂 × 𝐸0 × 𝑆𝐴               (C11) 

Where Vevap is the volume of water removed from the water body by evaporation during the day (m3 H20), η is an evaporation 

coefficient with a default value of 0.6 (EVRSV), E0 is the potential evapotranspiration for a given day (mm H20), and SA is 

the surface a rea of the water body (ha).  

 30 

Plant uptake compensation factor  

The equation in which plant uptake compensation factor (EPCO) appears (C13) is used to calculate the adjusted potential water 

uptake when the upper layers in the soil profile do not contain enough water to meet the potential water uptake (C12): 

𝑊𝑢𝑝,𝑙𝑦 = 𝑊𝑢𝑝,𝑧𝑙 − 𝐸𝑢𝑝,𝑧𝑢               (C12) 

Where  𝑊𝑢𝑝,𝑙𝑦  is the potential water uptake for layer ly ( mm H20),  𝑊𝑢𝑝,𝑧𝑙 is the potential water uptake for the profile to the 35 

lower boundary of the soil layer (mm H20), 𝐸𝑢𝑝,𝑧𝑢 is the potential water uptake for the  profile to the upper boundary of the 

soil layer (mm H20). 

𝑊𝑢𝑝,𝑙𝑦
′ = 𝑊𝑢𝑝,𝑙𝑦 +𝑊𝑑𝑒𝑚𝑎𝑛𝑑 × 𝑒𝑝𝑐𝑜             (C13) 

Where  𝑊𝑢𝑝,𝑙𝑦
′   is the adjusted potential water uptake for layer ly (mm H20), Wdemand is the water uptake demand not met by 

overlying soil layers (mm H20), and epco is the plant uptake compensation factor. 40 
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Soil evaporation compensation coefficient 

The modified equation of the amount of evaporative demand for a soil layer which is determined by taking the difference 

between the evaporative demands calculated at the upper and lower boundaries of the soil layer incorporate a coefficient called 5 

ESCO for depth distribution modification. The modified equation is: 

𝐸𝑠𝑜𝑖𝑙,𝑙𝑦 = 𝐸𝑠𝑜𝑖𝑙,𝑧𝑙 − 𝐸𝑠𝑜𝑖𝑙,𝑧𝑢 × 𝑒𝑠𝑐𝑜              (C14) 

Where 𝐸𝑠𝑜𝑖𝑙,𝑙𝑦  is the evaporative demand or layer ly (mm H20), 𝐸𝑠𝑜𝑖𝑙,𝑧𝑙 is the evaporative demand at the lower boundary of the 

soil layer (mm H20), 𝐸𝑠𝑜𝑖𝑙,𝑧𝑢  is the evaporative demand at the upper boundary of the soil (mm H20) and esco is the soil 

evaporative compensation coefficient. 10 

 

Initial soil water storage expressed a fraction of field capacity water content 

The estimation of field capacity water content is the equation in which the initial soil water storage expressed as a fraction of 

field capacity water content (FFCB) appears. The equation is C15: 

𝐹𝐶𝑙𝑦 = 𝑊𝑃𝑙𝑦 + 𝐴𝑊𝐶𝑙𝑦               (C15) 15 

Where 𝐹𝐶𝑙𝑦  is  the water content at field capacity expressed as a fraction of the total soil volume (FFCB), 𝑊𝑃𝑙𝑦  is the water 

content at wilting point expressed as a fraction of the total soil volume, and 𝐴𝑊𝐶𝑙𝑦 is the available water capacity of the soil 

layer expressed as a fraction of the total soil volume. 
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Appendix D: Ogun River Basin with  its 53 subbasins intersected by the satellite-based AET pixels 
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Figure D1.  Mean monthly actual evapotranspiration of GLEAM_v3.0a over the entire Ogun River Basin for 1989-2012.  
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Figure D2. Mean monthly actual evapotranspiration of MOD16 over the entire Ogun River Basin for 2000-2012.  45 
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Appendix E: Ogun River Basin with its 53 subbasins intersected by the ESA CCI soil moisture pixels 
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Figure E1. Mean monthly soil moisture of ESA CCI over the entire Ogun River Basin for 2001-2012.  
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