Articles | Volume 22, issue 8
https://doi.org/10.5194/hess-22-4565-2018
https://doi.org/10.5194/hess-22-4565-2018
Research article
 | 
29 Aug 2018
Research article |  | 29 Aug 2018

Incremental model breakdown to assess the multi-hypotheses problem

Florian U. Jehn, Lutz Breuer, Tobias Houska, Konrad Bestian, and Philipp Kraft

Related authors

The State of Global Catastrophic Risk Research: A Bibliometric Review
Florian Ulrich Jehn, John-Oliver Engler, Constantin W. Arnscheidt, Magdalena Wache, Ekaterina Ilin, Laura Cook, Lalitha S. Sundaram, Frederic Hanusch, and Luke Kemp
EGUsphere, https://doi.org/10.31223/X52X4V,https://doi.org/10.31223/X52X4V, 2024
Short summary
Using hydrological and climatic catchment clusters to explore drivers of catchment behavior
Florian U. Jehn, Konrad Bestian, Lutz Breuer, Philipp Kraft, and Tobias Houska
Hydrol. Earth Syst. Sci., 24, 1081–1100, https://doi.org/10.5194/hess-24-1081-2020,https://doi.org/10.5194/hess-24-1081-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025,https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025,https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025,https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary

Cited articles

Ambroise, B.: Variable “active” versus “contributing” areas or periods: a necessary distinction, Hydrol. Process., 18, 1149–1155, https://doi.org/10.1002/hyp.5536, 2004. 
Bai, Y., Wagener, T., and Reed, P.: A top-down framework for watershed model evaluation and selection under uncertainty, Environ. Modell. Softw., 24, 901–916, https://doi.org/10.1016/j.envsoft.2008.12.012, 2009. 
Bergström, S.: Principles and Confidence in Hydrological Modelling, Hydrol. Res., 22, 123–136, https://doi.org/10.2166/nh.1991.0009, 1991. 
Bergström, S. and Graham, L. P.: On the scale problem in hydrological modelling, J. Hydrol., 211, 253–265, https://doi.org/10.1016/S0022-1694(98)00248-0, 1998. 
Beven, K.: Towards integrated environmental models of everywhere: uncertainty, data and modelling as a learning process, Hydrol. Earth Syst. Sci., 11, 460–467, https://doi.org/10.5194/hess-11-460-2007, 2007. 
Download
Short summary
By realizing that hydrological models are not one single hypothesis, but an assemblage of many hypotheses, new ways to scrutinize hydrological models are needed. Up until now, studies concentrate on comparing existing models or built models incrementally. This approach here tries to tackle the problem the other way around. We construct a complex model, containing all processes important for the catchment, and deconstruct it step by step to understand the influence of single processes.
Share