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Point by point reply to reviewers 
*Note: The page and line numbers correspond to the revised manuscript “hess-2016-424-manuscript-
version2.pdf”. 
 
 
Response to Referee #1 
 
General concern: 
Anonymous Referee # 1 pointed out the “inherently hypothetical” character of the moisture 
redistribution section of our paper, as we ourselves noted in the manuscript (P12, L20). The question of 
how real-world lateral redistribution fluxes might compare to the optimal fluxes that are calculated in 
our analysis is of course interesting, as the referee notes.  However, for the reasons that we state in the 
paper, actual rates of lateral redistribution in the real world remain highly speculative.  Thus we see no 
practical way to determine whether "landscapes naturally organise themselves to generate an optimal 
flux or not", as the referee puts it.  We see no reason to argue that they do so, or that they should.  In 
any event, as the reviewer notes, these questions are outside the scope of the current paper. 
 
 
Specific comments 
- The Beven (1995) paper is a useful treatment of the sub-grid closure problem in hydrology and is added 
to the manuscript (page 2, L16-19). 
 
- Method of moments: there appear to be different understandings of this term, so to avoid any 
confusion, we instead use the more technical terminology: second-order, second-moment error 
propagation (page 5, L8-9). 
 
- Harmonic difference: here we knowingly coined a phrase, modeled after the well known harmonic 
average (that is, the reciprocal of the average of reciprocals).  However we removed it in the interests of 
simplicity (page 9, L16). 
 
- Use of color in figures: HESS prints figures in color so this should not present a problem. 
 
 
Technical correction: 
- P/PET as aridity index: the use of "aridity index" to describe P/PET has been standard terminology in the 
hydrology and atmospheric science communities ever since UNEP (1992).  We agree that this ratio is 
more properly characterized as a humidity index, as high values of P/PET characterize conditions of high 
humidity, not high aridity.  Nonetheless, the term "aridity index" is more widely used than "humidity 
index" to describe P/PET. 
 
- Reference and citation formatting issues: we evidently had some difficulties with our bibliographic 

software.  These glitches are fixed (page 2, L21; page 17, L12). 
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Response to Referee #2 
 
General comment 
We thank the Referee # 2, Michael Roderick for his comments on the manuscript. 
 
Specific comments 
- PET in Budyko framework:  
In our manuscript we use PET as a generic descriptor of atmospheric evaporative demand, independent 
of how it is quantified. However, as Michael Roderick suggests, it is noteworthy to mention that PET 
could be estimated in many different ways, and to mention that Budyko estimated PET from net 
radiation (page 3, L24). 
 
- Temporal averaging error, Lim and Roderick, 2015, Gerrits et al. 2009: 
We appreciate Prof. Roderick's mention of these two papers, and it is interesting to see how the same 
logic holds true using different ET models. Lim and Roderick, 2014 is now mentioned in the manuscript 
(page 13, L2-3).   
 
 

Response to Referee #3 
 
General comment 
We thank Referee # 3, for her/his comments on the manuscript. 
 
Specific comments 
- First concern 
We share the reviewer's concern about redistribution assumptions. In the manuscript we have tried to 
be very clear (page 12, L20-27) that our analysis of redistribution effects is inherently hypothetical; it is a 
"what if" analysis, not a prediction of how much redistribution will actually occur.  The manuscript 
presents examples showing why, in the real world, the redistribution may not occur in the ways that we 
assumed it would, and we clearly emphasize that estimating the potential effects of lateral redistribution 
on ET in real-world cases are beyond the scope of this paper.   
 
The reviewer's first point is that lateral movement is constrained by P-ET; that is, that only water that is 
"left over" after evaporative losses is available for redistribution.  Many hydrologists will naturally adopt 
this as a starting assumption, or even as a simple statement of fact.  But in reality all hydrological 
partitioning results from a competition between ET and gravitational drainage (to deep groundwater or 
streams), and it is not clear that ET always wins, or that ET's demands are always filled first, particularly 
when precipitation is seasonal or episodic.  Precipitation that drains to great depth, or to streams, before 
it can be transpired becomes unavailable for evapotranspiration.  Thus although it is conventional to 
think of Q+GW (discharge and net groundwater recharge) as being constrained by P-ET, it is more 
physically accurate to say that ET, Q, and GW are all constrained by water availability, which in turn is 
constrained by mass balance (P-ET-Q-GW).   
 
Our analysis of redistribution effects assumes that lateral transfers will reduce the available water at the 
source location by the same amount that they increase it at the receiving location (page 12, L11-14). We 
make this assumption because it is the most conservative, in the sense that it minimizes the net effect of 
a given amount lateral redistribution on average evapotranspiration. 
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On page 12, line 13, we discuss the case that the reviewer mentions: if the redistributed water were 
assumed to come only from surplus that is "left over" after evapotranspiration, the available water (and 
thus ET) in the source location would not be reduced while the available water (and thus ET) in the 
receiving location would be increased. As we point out in the manuscript, that scenario would lead to 
larger redistribution effects on average ET.  
 
The reviewer also points out that lateral subsurface flows are likely to be captured by streams and thus 
unavailable for evapotranspiration at other locations.  Of course we agree, but we have carefully defined 
"lateral redistribution", for the purposes of our paper, not as all lateral subsurface flow (regardless of its 
ultimate fate), but rather as water that does become available for ET elsewhere (either as groundwater 
flow, or as streamflow that re-infiltrates into valley aquifers).  This is obviously only a fraction of all 
groundwater flow, as the reviewer points out. 
 
 
- Second concern 
We agree that there is not a simple analogy between averaging over spatial heterogeneity and averaging 
over temporal heterogeneity, for the simple reason that the Budyko approach only makes sense over 
time scales for which storage changes can be ignored. This is mentioned in the text in page 13, L3-7.  
 

 

  



4 
 

List of all relevant changes made in the manuscript 

 

- Page 2, L16-19 

- Page 2, L21 

- Page2, L30 

- Page 3, L24 

- Page 4, L8-9 

- Page 9, L16 

- Page 13, L2-3 

- Page 17, L10-11; L16-17 

- Page 18, L32-33 

- Page 19, L3-4 

- Page 22, L10 
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Abstract. Most earth system models are based on grid-averaged soil columns that do not communicate with one another, and 

that average over considerable sub-grid heterogeneity in land surface properties, precipitation (P), and potential 10 

evapotranspiration (PET).  These models also typically ignore topographically driven lateral redistribution of water (either as 

groundwater or surface flows), both within and between model grid cells.  Here we present a first attempt to quantify the effects 

of spatial heterogeneity and lateral redistribution on grid-cell-averaged evapotranspiration (ET) as seen from the atmosphere 

over heterogeneous landscapes.  Our approach uses Budyko curves, as a simple model of ET as a function of atmospheric 

forcing by P and PET.  From these Budyko curves, we derive a simple sub-grid closure relation that quantifies how spatial 15 

heterogeneity affects average ET as seen from the atmosphere.  We show that averaging over sub-grid heterogeneity in P and 

PET, as typical earth system models do, leads to overestimates of average ET.  For a sample high-relief grid cell in the 

Himalaya, this overestimation bias is shown to be roughly 12 %; for adjacent lower-relief grid cells it is substantially smaller.  

We use a similar approach to derive sub-grid closure relations that quantify how lateral redistribution of water could alter 

average ET as seen from the atmosphere. We derive expressions for the maximum possible effect of lateral redistribution on 20 

average ET, and the amount of lateral redistribution required to achieve this effect, using only estimates of P and PET in 

possible source and recipient locations as inputs.  We show that where the aridity index P/PET increases with altitude, 

gravitationally driven lateral redistribution will increase average ET (and models that overlook lateral redistribution will 

underestimate average ET).  Conversely, where the aridity index P/PET decreases with altitude, gravitationally driven lateral 

redistribution will decrease average ET.  The effects of both sub-grid heterogeneity and lateral redistribution will be most 25 

pronounced where P is inversely correlated with PET across the landscape.  Our analysis provides first-order estimates of the 

magnitudes of these sub-grid effects, as a guide for more detailed modeling and analysis. 
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1 Introduction 

The atmosphere integrates the fluxes of water, energy, and trace gases that it receives from the spatially heterogeneous 

landscape beneath it.  Earth system models typically account for this spatial heterogeneity, and the atmosphere's integration of 

it, only at scales larger than their relatively coarse grid resolution.  Accounting for the considerable heterogeneity of the Earth's 

surface at smaller scales, and its consequences for fluxes from the surface to the atmosphere, is a major challenge in Earth 5 

system modeling.  

The grid resolution in earth system models is typically translated directly onto the Earth's surface, which is modeled as columns 

that are vertically disaggregated into soil layers at scales of centimeters or meters, but are horizontally averaged at the 1° by 

1° (roughly 100 km by 100 km) scale of the overlying atmospheric model (Fig. 1).  At this scale, individual ridges and valleys 

disappear, and even major mountain ranges and basins can become indistinct.  Likewise, much of the variability in the surface 10 

climatology of the landscape and its consequences for land-atmosphere interactions are lost.   

This loss of detail in land surface properties has important implications for water fluxes in Earth system models.  Given that 

ET may depend nonlinearly on both water availability and atmospheric water demand, which are both spatially variable at 

scales far below typical model grid scales, the average ET over a heterogeneous landscape may differ substantially from model 

ET estimates derived from spatially averaged land surface properties.  The potential importance of this issue has motivated 15 

research into methods for capturing sub-grid-scale properties and processes within Earth system models.  For example, Beven 

(1995) discussed the scale-dependence of hydrological models and the pitfalls of using effective parameters to reproduce the 

areal averages of sub-grid fluxes, especially where water availability strongly influences the vapor flux. These aggregation 

problems arise from the non-linearity of the governing processes, together with the spatial heterogeneity of the system.     

Nesting higher-resolution regional models within global models represents an obvious, but computationally demanding, 20 

approach to treating sub-grid scale heterogeneity.  As described by Klink (, 1995), two broad classes of aggregation schemes 

have been proposed to incorporate sub-grid heterogeneity while keeping computational costs manageable.  In "averaged" 

surface schemes, the surface properties are averaged over each grid cell and the average is applied directly in the model.  In 

"mosaic" schemes, by contrast, individual grid cells are partitioned into several surface types, the model is run for each surface 

type separately, and the fluxes from each surface type are area-weighted to determine the average fluxes for the grid cell. 25 

Numerous modeling studies over the past two decades have shown that, in comparison to mosaic schemes and nested high-

resolution models, averaged surface schemes tend to overestimate evapotranspiration and sensible heat flux (e.g., Klink, 1995; 

Giorgi and Avissar, 1997; Essery et al., 2003; Teluguntala et al., 2011; Ershadi et al., 2013).  Studies with nested high-

resolution models demonstrate that this overestimation bias is largest where topographic effects play a major role (Giorgi and 

Avissar, 1997; Pope and Stratton, 2002; Boyle and Klein, 2010; Bacmeister et al., 2014).  30 

Another potential source of bias in Earth system models arises from their neglect of surface and subsurface flows within and 

between grid cells.  Current Earth system models calculate infiltration and vertical transport of water in each soil column, but 

the water that reaches the bottom of the column is either stored as groundwater or simply disappears, reappearing later in the 
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ocean.  In real-world landscapes, by contrast, significant volumes of water are transported laterally, either via groundwater 

flow or by rivers flowing from mountains into valleys and potentially redistributing their water to valley ecosystems by 

infiltration into valley aquifers. These lateral redistribution processes supply water for evapotranspiration in groundwater-

dependent ecosystems in the dry season (Fan and Miguez-Macho, 2010). Several case studies in the Amazon (Christoffersen 

et al., 2014), central Argentina (Contreras et al., 2011; Jobbágy et al., 2011) and other groundwater-dependent ecosystems 5 

(Eamus et al., 2015) demonstrate how water supply can govern the seasonality and magnitude of evapotranspiration in those 

regions.  However, the potential effects of these lateral redistribution processes on grid-scale ET, as viewed from the 

atmosphere, are missing from current Earth system models, and the resulting biases in modeled water fluxes are unknown.   

The Earth system modeling community has recognized the need to determine how sub-grid heterogeneity and lateral 

redistribution affect grid-scale evapotranspiration rates as viewed from the atmosphere, and to develop schemes that can 10 

efficiently account for these effects in land surface models (Clark et al., 2015). A recent high-resolution modeling study for 

the continental US (Maxwell and Condon, 2016) concluded that lateral redistribution could substantially alter the partitioning 

of ET between transpiration and bare-soil evaporation, but the net effect on the combined ET flux remains unclear. The studies 

outlined above illustrate the potential effects of spatial heterogeneity and lateral redistribution, but we currently lack a general 

framework for estimating the resulting biases in calculated evapotranspiration rates.  Here we present a first attempt to fill this 15 

knowledge gap, using an analysis based on Budyko curves as simple semi-empirical estimators of ET.  This analysis yields 

first-order estimates of the potential effects of sub-grid heterogeneity and subsurface lateral redistribution on ET fluxes from 

heterogeneous landscapes, as seen from the atmosphere. 

 2 A Budyko framework for estimating terrestrial water partitioning 

The simplest widely used approach for estimating evapotranspiration rates from the land surface is the Budyko framework 20 

(Turc, 1954; Mezentsev, 1955; Pike, 1964; Budyko, 1974; Fu, 1981; Milly, 1993; Zhang et al., 2001; Yang et al., 2007). 

Budyko showed empirically that under steady-state conditions in catchments without significant groundwater inputs, losses or 

storage changes, the long-term annual average evapotranspiration (ET) rate is functionally related to both the supply of 

moisture from the atmosphere (precipitation, P) and net irradiance (available energy) as an estimator of the evaporative demand 

for water by the atmosphere (potential evapotranspiration, PET). Under arid conditions (that is, when P is much smaller than 25 

PET), ET converges toward P, implying that ET is limited by the available supply of water (Fig. 2, water limit line). 

Alternatively, under humid conditions (that is, when P is much greater than PET), ET is limited by atmospheric demand and 

E converges toward PET (Fig. 2, energy limit line).  Budyko's original work showed, and decades of studies have confirmed, 

that under the long-term steady-state assumptions outlined above, hydrological systems typically operate close to either the 

energy or water constraints. 30 

Several studies have explored how natural systems may violate the assumptions of the Budyko approach.  Net inputs or losses 

of groundwater, as well as long-term changes in soil moisture and groundwater storage, have been shown to alter the water 
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balance sufficiently that measurements of P and ET can produce points that fall far from the energy and water constraints in 

Fig. 2.  However, these apparent violations of the Budyko approach can be corrected if the precipitation term P is replaced by 

an effective precipitation that accounts for root zone water storage changes and net inputs or losses of groundwater (Zhang et 

al., 2001; Zhang et al., 2008; O'Grady et al., 2011; Istanbulluoglu et al., 2012; Wang, 2012; Chen et al., 2013; Troch et al., 

2013; Du et al., 2016).   5 

The Budyko framework can be expressed in two different non-dimensional sets of axes, depending on whether one wishes to 

focus on the effects of changing water supply (P) or atmospheric water demand (PET).  If one seeks to analyze the effects of 

changing PET under a fixed P, it is most intuitive to non-dimensionalize both axes by P, as shown in Fig. 2a.  In this coordinate 

space, translation along the horizontal axis represents a change in PET.   

Our analysis, by contrast, focuses on how changes in water availability affect ET under a fixed PET.  For such questions, it is 10 

most intuitive to non-dimensionalize the coordinate axes by PET, as shown in Fig. 2b.  In this coordinate space, translation 

left or right along the horizontal axis represents changes in water availability.  Thus, this coordinate space is better suited to 

our analysis. 

Table 1 presents several alternative empirical equations that have been proposed for "Budyko curves" relating ET to P and 

PET.  Our analysis will be based on the Turc-Mezentsev equation (Eq. 1 in Table 1), because it is the most widely used of the 15 

alternatives shown here.  However, the differences among these formulas are unimportant for the analysis presented below.   

Here we use Budyko curves as simple models for how ET is controlled by the supply of available moisture (as represented by 

P) and evaporative demand (as represented by PET).  We could have used more complex ecohydrological models to estimate 

ET instead, at the cost of increased complexity and reduced transparency.  However, any such models must obey the same 

energy and water constraints that shape the behavior of catchments in the Budyko framework, so we would not expect their 20 

behavior to deviate greatly from the Budyko curves that are analyzed here.  Thus the Budyko curves that we analyze here can 

be considered as approximations to the behavior of these more complex models.  They also have an important advantage for 

our purposes, namely that they specify ET as an explicit function of its main drivers P and PET, allowing us to derive general 

analytical results that might otherwise be difficult to infer from sets of simulation results. 

3 Effects of sub-grid heterogeneity on ET in a Budyko framework 25 

The water and energy constraints that limit ET imply that ET is an intrinsically nonlinear function of P and PET.  Under arid 

conditions (with P<<PET), ET will increase almost linearly with P, but as conditions become more humid and the supply of 

moisture exceeds the energy available to evaporate it (P>>PET), the energy constraint will hold ET nearly constant as P 

increases.  Conversely, under humid conditions, ET will scale almost linearly with evaporative demand (as expressed by PET), 

but as conditions become more arid and the supply of moisture becomes limiting, ET will be constrained by P and will become 30 

largely independent of PET. 
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As shown in Fig. 3, the nonlinear behavior of ET as a function of P and PET is also reflected in Budyko curves, particularly 

near the transition between humid and arid conditions (P/PET close to 1).  This nonlinear behavior has important implications 

for estimates of average ET in heterogeneous landscapes.  

As Fig. 3 illustrates, the average of a nonlinear function with heterogeneous inputs will not, in general, be equal to the value 

of that function evaluated at the average of the input values.  That is, the average of the function will not be the function of the 5 

average inputs (e.g., Rastetter et al., 1992; Giorgi and Avissar, 1997).  One can visually see that the resulting heterogeneity 

bias will depend on how strongly curved the function is, and how widely its inputs are scattered.  This intuitive concept can 

be expressed mathematically by using the Method of Moments comparing the value of the function, and the mean of its second-

order Taylor expansion around the same point, to estimate the heterogeneity bias (e.g., Kirchner et al., 1993Ang and Tang, 

1975). 10 

We begin by re-stating Eq. (1) from Table 1 as an explicit function of P and PET, 

 

𝐸𝑇 = 𝑓(𝑃, 𝑃𝐸𝑇) =
𝑃
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𝑃

𝑃𝐸𝑇
)𝑛 + 1)

1 𝑛⁄
.      (5) 

 

For a function of two variables, a second-order, second-moment expansion leads directly to the following approximation for 15 

the mean of the function, in terms of the function's value at the mean of its inputs: 
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where the derivatives are understood to be evaluated at �̅�and 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ .  Evaluating the necessary derivatives using Eq. (5) directly 20 

yields the following expression for the average ET, 
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where the second term represents the heterogeneity bias (that is, the difference between the average of the function and the 25 

function of the average).  The relative magnitude of this bias can be derived by combining Eqs. (7) and (5), yielding 
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From Eq. (8) one can directly see that the heterogeneity bias will depend on the variances of P and PET, as well as their 

covariance (all nondimensionalized by their means).  One can see that the heterogeneity bias will generally be positive (that 

is, estimates based on �̅� and 𝑃𝐸𝑇̅̅ ̅̅ ̅̅  will overestimate 𝐸𝑇̅̅ ̅̅ ), because the covariance term in Eq. (8) will be less than the variance 

terms.  One can also see that, all else equal, a negative correlation between P and PET will amplify the heterogeneity bias 5 

(because, in terms of the Budyko plot, this will lead to greater scatter in P/PET).  Furthermore, one can see that the relative 

heterogeneity bias will be greatest when the term in curly brackets in Eq. (8) will be as small as possible, which will occur at 

�̅� 𝑃𝐸𝑇̅̅ ̅̅ ̅̅⁄ = 1 (the point of maximum curvature in the Budyko curve).  Finally, from Eq. (8) one can see that at higher values of 

n, the peak heterogeneity bias will be greater (due to the n+1 term), but will be more tightly focused around �̅� 𝑃𝐸𝑇̅̅ ̅̅ ̅̅⁄ = 1 (due 

to the powers of n/2). 10 

To estimate the heterogeneity bias that could result from grid-scale averaging in Earth system models, we applied the analysis 

outlined above to a 1° by 1° grid cell spanning the Himalayan Front in west Bhutan (Fig. 4a).  This grid cell spans a sharp 

north-south topographic gradient, with altitudes ranging between ~500 m and ~6500 m.  Within this grid cell, we compiled 

30-arc-second values of P (WorldClim, Hijmans et al., 2005) and PET (MODIS, Mu et al., 2007) to examine the finer-scale 

climatic drivers of variations in ET.  Because 30 arc-seconds is approximately 1 km, we will refer to these as 1-km values for 15 

simplicity.  One-kilometer P and PET, as well as 1-km values of ET estimated from these P and PET data using the Budyko 

curve (Eq. 5), vary strongly in this 1° by 1° grid cell, as shown in Figs. 4b, c, and d.  The averages of these P, PET, and ET 

values over the 1° by 1° grid cell will plot as the yellow circle in Fig. 4e, lying well below the Budyko curve of the individual 

1-km ET estimates.  If instead we estimated the average ET for the grid cell from its average P and PET, we would obtain the 

orange circle on the Budyko curve, corresponding to an 11.8 % overestimate of the true average of the 1-km ET values. 20 

We repeated the same procedure to estimate the averaging bias in the 8 grid cells surrounding the one analyzed above (Fig. 

5a).  A comparison of these 9 grid cells shows that the averaging error is largest (around 13 %) when the variability in the 

aridity index (AI=P/PET), driven in turn by topographic variability, is largest (Fig. 5b,c,d).   

4 Lateral redistribution by surface and subsurface flow, and its effects on average ET in a Budyko framework 

Consider, as a thought experiment, an arid valley surrounded by high mountains.  Evapotranspiration in the valley may depend 25 

not only on local precipitation in the valley, but also on precipitation that falls in the mountains and reaches the valley either 

by groundwater flow or by streamflow that re-infiltrates into valley aquifers.  The lateral transfer of water from the mountains 

to the valley could clearly increase evapotranspiration rates in the valley by making more water available for vegetation, but 

could simultaneously make less water available for transpiration in the mountains.  Will the net effect of this lateral transfer 

be to increase, or decrease, average ET as seen from the atmosphere?   30 

The mountains, the valley, and the lateral transfer between them will all be invisible at the grid scale of typical Earth system 

models.  But the simple scenario described above suggests that lateral transport could alter the average ET over a model grid 
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cell that incorporated both the mountains and the valley.  What properties of the landscape will control the sign and the 

magnitude of the net effect on average ET?  Here we extend the Budyko analysis presented above to estimate the potential 

effects of lateral redistribution on average ET as seen from the atmosphere. 

Our first step is to re-define the aridity index in the Budyko framework to take account of water that becomes available for 

evapotranspiration either through local precipitation or through net lateral transfer.  In taking this step, we are implicitly 5 

assuming that all water supplied to the ecosystem, from any source, is equally available for evapotranspiration.  We introduce 

the term available water (AW), defined as  

 

𝐴𝑊 = 𝑃 + 𝑛𝑒𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟        ,       (9) 

 10 

where net transfer represents the net influx of groundwater and re-infiltrating streamflow.  Substituting available water for 

precipitation in the Turc-Mezentsev formula for the Budyko curve (Eq. 5), we obtain 

𝐸𝑇 =
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)
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1
𝑛⁄
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((
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𝑛
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1
𝑛⁄

        ,       (10) 

 

where AW is available water and, as before, ET is actual evapotranspiration, P, is precipitation, PET is potential evaporation, 15 

and n (dimensionless) is a catchment‐specific parameter that modifies the partitioning of P between E and Q.  Our approach 

follows the lead of several other investigators (Istanbulluoglu et al., 2012; Wang, 2012; Chen et al., 2013; Du et al., 2016) who 

have expanded the "precipitation" term to account for other sources of water in addition to precipitation per se.  This approach 

assumes that lateral transfer alters only the available water at the two locations, and not their PET's. 

4.1 Two-column model and lateral transfer in Budyko space: graphical interpretation of the concept 20 

To continue the thought experiment outlined above, the mountain and valley environments described above could be 

represented by two columns of a land surface model, as shown in Fig. 6.  Column 1 (the mountains, say) is a "source" column 

for lateral transfer of available water to Column 2 (the valley, say), which can be considered as a "recipient" column for this 

available water.  In the example shown in Fig. 6, Column 1 has higher P and/or lower PET than Column 2.  Laterally 

transferring water from Column 1 to Column 2 will increase the water available for evapotranspiration (and thus ET itself) in 25 

Column 2, and will reduce them in Column 1.  But will the increase in ET in Column 2 outweigh the decrease in ET in Column 

1?  That is, will the average ET as seen from the atmosphere increase or decrease, and by how much? 

We can graphically illustrate the effects of lateral redistribution between the two columns in the Budyko framework as shown 

in Fig. 6b.  The average ET of Column 1 and Column 2 will always lie on the line connecting the corresponding points on the 

Budyko plot (and thus below the Budyko curve itself).  As Fig. 6b shows, if we laterally transfer water from a more humid 30 

column to a more arid column, the corresponding points on the Budyko plot must move closer together, and the resulting 
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average ET must move upward.  Conversely, if we laterally transfer water from a more arid column to a more humid one, the 

corresponding points on the Budyko plot must move farther apart, and the average ET must decrease. 

Because lateral transfer will necessarily be driven by gravity (and thus "source" locations will always lie above "recipient" 

locations), the analysis shown in Fig. 6b leads directly to a simple general rule: wherever higher locations are more humid, 

one should expect lateral redistribution to result in a net increase in ET, and conversely, wherever higher locations are more 5 

arid, lateral redistribution should result in a net decrease in ET. 

As one can see from the graphical analysis shown in Figs. 6 and 7, the magnitude of the net ET effect will depend primarily 

on the amount of lateral redistribution (how far the points move along the Budyko curve) and on the degree of curvature 

between them (and thus the angle between the trajectories of the individual points).  As shown in Fig. 7, if both locations are 

humid (and thus energy-limited) or both locations are arid (and thus water-limited), lateral transfer from one site to the other 10 

will have only a minimal effect on the average ET.  If both sites are energy limited (and remain energy-limited), neither will 

respond strongly to a change in the amount of water available for evapotranspiration.  If both sites are water limited (and 

remain water-limited), they will be almost equally sensitive to changes in available water; thus the increases in available water 

and ET at one site will be nearly offset by the corresponding reductions at the other site.  But if one site is water-limited and 

the other is energy-limited, then the responses of the two sites to changes in available water will be markedly different, and 15 

lateral transfer from one to the other could substantially affect the average ET over the two sites. 

We emphasize that the analysis presented here is hypothetical.  We are not asserting that lateral transfer actually occurs between 

the two columns, or even that it can occur between them, let alone what the magnitude of that lateral transfer is.  Instead, we 

are asking the hypothetical question: if water flows from one column to the other, how much would we expect the average ET 

to change, for each mm yr-1 of water that is lost from one column and gained by the other? 20 

4.2 Quantifying the effect of lateral transfer on average ET 

We can make a first-order estimate of the net effect on ET using the Budyko curve as a simple model of ET rates.  An illustrative 

calculation, for an extreme hypothetical case, is shown in Fig. 8.  Column 1 is humid, with 2000 mm yr-1 of annual precipitation 

and a PET of 1000 mm yr-1 (AI of 2.0), and Column 2 is arid, with 300 mm yr-1of annual precipitation and a PET of 2000 

mm yr-1 (AI of 0.15).  As Fig. 8b shows, laterally transferring 200 mm yr-1 from Column 1 to Column 2 would increase average 25 

ET by about 85 mm yr-1, or 14 %. 

We can generalize from this specific example by using Eq. (10) to calculate the average ET as a function of the amount of 

available water that is transferred from one column to the other, 

 

𝐸𝑇𝑎𝑣𝑔 = 0.5 (
(𝑃1 − 𝑥) × 𝑃𝐸𝑇1

((𝑃1 − 𝑥)𝑛 + 𝑃𝐸𝑇1
𝑛)

1
𝑛

+
(𝑃2 + 𝑥) × 𝑃𝐸𝑇2

((𝑃2 + 𝑥)𝑛 + 𝑃𝐸𝑇2
𝑛)

1
𝑛

)     ,     (11)         30 
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where x represents the net transfer from one column to the other.  Fig. 9 depicts how the average ET and the AW/PET and 

ET/PET ratios of the two sites change with lateral transfer. The average ET of the two columns increases with increasing net 

transfer (x) up to a point, and then decreases for higher values of x. One can see from Fig. 9 that average ET reaches its 

maximum when x equalizes AW/PET (and thus ET/PET) at the two sites (note that this does not imply that either AW or PET 

are necessarily the same at the two sites). 5 

We can verify this intuitive result by differentiating Eq. (11) by x: 

 

𝑑𝐸𝑇𝑎𝑣𝑔

𝑑𝑥
=

1

((
𝑃2 + 𝑥
𝑃𝐸𝑇2

)
𝑛

+ 1)
1+1

𝑛⁄
−

1

((
𝑃1 − 𝑥
𝑃𝐸𝑇1

)
𝑛

+ 1)
1+1

𝑛⁄
        .   (12) 

 

At the maximum ETavg, 𝑑𝐸𝑇𝑎𝑣𝑔 𝑑𝑥⁄  must equal zero, which can only occur if xopt, the ET-maximizing rate of lateral transfer, 10 

is such that the two terms in Eq. (12) are equal, implying that: 

 

(
𝑃1 − 𝑥𝑜𝑝𝑡

𝑃𝐸𝑇1

)
𝑛

+ 1 = (
𝑃2 + 𝑥𝑜𝑝𝑡

𝑃𝐸𝑇2

)
𝑛

+ 1 →   
𝑃1 − 𝑥𝑜𝑝𝑡

𝑃𝐸𝑇1

=
𝑃2 + 𝑥𝑜𝑝𝑡

𝑃𝐸𝑇2

 =
𝑃1 + 𝑃2

𝑃𝐸𝑇1 + 𝑃𝐸𝑇2

      ,    (13) 

 

which shows directly that 𝐴𝑊 𝑃𝐸𝑇 = (𝑃 ± 𝑥𝑜𝑝𝑡) 𝑃𝐸𝑇⁄⁄  in the two columns must be equal, confirming the intuitive result 15 

from Fig. 9.  One can solve Solving Eq. (13) to show thatfor xopt leads towill be the harmonic difference between P1 and P2, 

weighted by the reciprocals of the corresponding PET's: 

 

𝑥𝑜𝑝𝑡 =
𝑃1𝑃𝐸𝑇2 − 𝑃2𝑃𝐸𝑇1

𝑃𝐸𝑇1 + 𝑃𝐸𝑇2

=

𝑃1
𝑃𝐸𝑇1

⁄ −
𝑃2

𝑃𝐸𝑇2
⁄

1
𝑃𝐸𝑇1

⁄ + 1
𝑃𝐸𝑇2

⁄
       .     (14) 

 20 

The key result here (namely that ET is maximized when lateral transfer equalizes the ratio 𝐴𝑊 𝑃𝐸𝑇⁄  in the columns) is not 

restricted to two columns, and is not specific to the particular curve that we have analyzed here.  Instead, it can be shown to 

be true for any downward-curving function on a Budyko plot, and for any number of interacting columns; for details see the 

Appendix.  

The dimensionless quantity 𝑑𝐸𝑇𝑎𝑣𝑔 𝑑𝑥⁄  (Eq. 12) expresses the change in average ET per unit of lateral redistribution.  One 25 

quantity of particular interest could be the relative change in ET resulting from the first unit of lateral transfer, which can be 

obtained directly from Eq. (12) with 𝑥 = 0: 
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𝑑𝐸𝑇𝑎𝑣𝑔

𝑑𝑥
|

𝑎𝑡 𝑥=0
=

1

((
𝑃2

𝑃𝐸𝑇2
)

𝑛

+ 1)
1+1

𝑛⁄
−

1

((
𝑃1

𝑃𝐸𝑇1
)

𝑛

+ 1)
1+1

𝑛⁄
      .      (15) 

 

This dimensionless number depends only on the aridity indices P/PET at the two sites, and could be used as a screening tool 

to find regions where lateral redistribution could potentially be most consequential.   

Another benchmark for the potential importance of lateral transfer is the maximum possible average ET rate, if lateral transfer 5 

took place at its optimal value xopt.  This quantity can be calculated by substituting the optimal transfer rate xopt (Eq. 14) into 

our modified Budyko formula (Eq. 11): 

 

𝐸𝑇𝑜𝑝𝑡 =

𝑃1 + 𝑃2

2

((
𝑃1 + 𝑃2

𝑃𝐸𝑇1 + 𝑃𝐸𝑇2
)

𝑛

+ 1)

1
𝑛⁄

         .    (16) 

 10 

Equation 16 shows that the optimal rate of ET (including lateral redistribution) equals the Budyko curve estimate of ET at the 

average P and average PET.  As shown in the Appendix, this result is quite general, and does not depend on the specific 

Budyko curve equation that we have used here, nor on any specific number of columns.  It requires only that all of the columns 

are governed by the same downward-curving function in a coordinate space defined by ET/PET and P/PET. 

This result demonstrates an interesting connection with the analysis of heterogeneity bias presented above.  The maximum 15 

possible increase in ET from lateral redistribution exactly equals the heterogeneity bias calculated in the preceding section: 

both are equal to the ET function at the average P and PET (e.g., Eq. 16 in the case of two columns), minus the average of the 

ET's calculated for the individual columns using their individual P's and PET's.  That is, both are equal to "the function of the 

averages", minus "the average of the functions".  Putting the same point differently, the ET that an Earth system model 

calculates from average P and PET (the "function of the averages") is not just an overestimate of the true ET (as explained in 20 

Section 3 above), it is the highest possible ET under optimal redistribution of the available water. 

This observation simplifies the problem of estimating the maximum possible effect of lateral redistribution in heterogeneous 

terrain: one simply needs to compare the average of the ET's calculated for every pixel within some domain using those pixels' 

individual P's and PET's, and the ET calculated from the average P and average PET using the same Budyko curve.  

Alternatively, one can approximate these quantities from the means and variances of P and PET, using Eqs. (6-8). 25 

Of course, any of these estimates of the potential effects of lateral redistribution ignore many real-world constraints, such as 

topographic or lithologic barriers that could prevent lateral transfer between specific locations (e.g., water will not flow uphill).  

Thus this estimate should be considered as only a theoretical upper bound. 
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4.3 Real-world example of redistribution effects on estimated ET 

To illustrate the possible effects of lateral redistribution on average ET in the real world, we will take as an example of the 1° 

by 1° grid cell shown in the middle right of Fig. 4a and 5a, which lies at the foot of the Himalayan Front at 89-90° E, 26-27° 

N.  As before, we use 30-arc-second (~1 km) P, PET, and topographic data (from WorldClim, MODIS, and SRTM; (Hijmans 

et al., 2005; Mu et al., 2007; Jarvis et al., 2008) to represent the finer-scale heterogeneity within this grid cell. 5 

Figure 10 shows three locations that have been selected to illustrate the possible effects of lateral redistribution on average ET.  

Location 3 is close to sea level, whereas location 2 is at 300 m altitude and location 1 is at roughly 3000 m.  We analyzed the 

effects of a hypothetical redistribution of 500 mm yr-1 of water from location 1 to location 2, and from location 2 to location 

3.  

As Figure 11 shows, P and the aridity index increase dramatically from location 1 (at 3000 m) to location 2 (at 300 m); that is, 10 

the landscape becomes more humid as one moves downhill.  Using the rule of thumb developed above, one would expect that 

lateral transfer from location 1 to location 2 should result in a net decrease in average ET.  Figure 12a confirms that, as 

expected, lateral transfer would move the two points farther apart on the Budyko curve, resulting in a net decrease of 9.3 % in 

the average ET of the two locations.   

Conversely, as Figure 11 shows, as one moves downhill from location 2 to location 3, the landscape becomes more arid (the 15 

aridity index decreases); thus the rule of thumb outlined above predicts that downhill lateral transfer should result in a net 

increase in average ET.  This expectation is confirmed by Figure 12b; the two locations move closer together on the Budyko 

curve, resulting in a net 4 % increase in the average ET of the two locations. 

5 Summary and discussion 

The atmosphere mixes and integrates inputs from spatially heterogeneous landscapes. Earth system models average over 20 

significant landscape heterogeneity, which can lead to substantial biases in model results if the underlying equations are 

nonlinear.  Due to the mass and energy constraints that limit evapotranspiration rates, ET will be a nonlinear concave-

downward function of P and PET, whether expressed by Budyko curves or by other ET models. As a result, ET values 

calculated from averages of spatially varying P and PET will overestimate the average of the spatially variable ET (the function 

of the average will overestimate the average of the function).  25 

In Section 3 above we outlined an approach for estimating this heterogeneity bias, using Budyko curves as a simple empirical 

ET model.  One should keep in mind that Budyko curves are empirically calibrated to catchment-averaged precipitation and 

discharge (to calculate ET); thus they already average over the spatial heterogeneity within each calibration catchment.  This 

inherent spatial averaging should make Budyko curves smoother (less curved) than the point-scale relationships that determine 

ET as a function of P and PET.  In other words, the true mechanistic equations that drive point-scale ET may be much more 30 

sharply curved than Budyko curves (which already include significant averaging, and thus must plot inside the curve of the 
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raw point-scale data, if such data were available).  As a result, the effects of sub-grid heterogeneity and lateral redistribution 

could potentially be larger than what we have estimated here. 

In Section 4, we explored the possibility that lateral transfers of water from one location to another could change the average 

ET as seen from the atmosphere.  Exploring this question requires a modified Budyko framework, in which one accounts for 

the water that is available for evapotranspiration (P + net transfer) rather than precipitation alone.  This is consistent with 5 

Budyko's original approach, which was based on mass balances in catchments with no long-term groundwater gains or losses 

(i.e., with no net transfer, and thus with the long-term supply of available water equal to precipitation).  Our analysis shows 

that in regions where the aridity index increases with altitude, lateral redistribution would transfer water from more humid 

uplands to more arid lowlands, resulting in a net increase in ET (points move closer together on the Budyko curve; Fig. 12b).  

Alternatively, in regions where the aridity index decreases with altitude, lateral transfer would redistribute water from more 10 

arid uplands to more humid lowlands, resulting in a net decrease in average ET (Fig. 12a).  We derived simple analytical 

formulas for estimating the marginal ET effect of a unit of lateral redistribution, as well as the maximum possible ET effect 

resulting from an optimal (i.e., ET-maximizing) amount of lateral redistribution.  Water transfers will most strongly affect 

average ET if the source (or recipient) location is energy-limited and the recipient (or source) location is water-limited.  

Our analysis of redistribution effects is based on the assumption that lateral transfers will reduce the available water at the 15 

source location by the same amount that they increase it at the receiving location.  Thus we are assuming that water that is 

redistributed becomes unavailable for evapotranspiration at the source location (for example, through rapid runoff to channels, 

or rapid infiltration to deep groundwater via preferential flowpaths).  Alternatively, if the redistributed water were assumed to 

come only from surplus that is "left over" after evapotranspiration, the available water (and thus ET) in the source location 

would not be reduced while the available water (and thus ET) in the receiving location would be increased.  Under that 20 

assumption, any redistribution would increase average ET, regardless of the climatic conditions in the source and receiving 

locations.  By assuming that available water is conserved (in the sense that whatever is gained in one location is lost from 

another), our analysis may underestimate the effect of redistribution on average ET. 

It bears emphasis that our analysis of the effect of lateral redistribution is inherently hypothetical.  By estimating the ET effect 

of a (hypothetical) transfer of water from one location to another, we are not implying that such a transfer would actually take 25 

place at the assumed rate (or would even occur at all) in the real world.  Perhaps in reality there is no flowpath connecting the 

two locations, for example, or perhaps its conductivity is very low, or perhaps the putative source location lies downhill from 

the putative recipient location.  Likewise, although there may be an aquifer connecting two locations, it may lie too deep below 

the rooting zone to have any significant impact on evapotranspiration rates.  Estimating the potential effects of lateral 

redistribution on ET in real-world cases (rather than hypothetical ones) will require careful attention to such matters, which 30 

are beyond the scope of this paper.   

The analysis that we have used to quantify the effects of spatial heterogeneity and redistribution could also be used to study 

the effects of temporal heterogeneity in water availability for evapotranspiration, and temporal redistribution by storage of 

groundwater between wet and dry seasons.  Temporal heterogeneity (e.g., seasonality) in water availability could substantially 
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affect average ET, particularly in climates that shift seasonally between water-limited and energy-limited conditions.  In such 

cases, ET estimates calculated from time-averaged P and PET will be higher than the average of individual ET estimates 

derived from daily or monthly values for available water and PET.  Similarly, temporal redistribution of available water 

between water-limited and energy-limited conditions (through, e.g., inter-seasonal groundwater storage) could substantially 

increase average ET.  The formulas and approaches we have outlined above could be straightforwardly applied to quantify 5 

these temporal heterogeneity and redistribution effects (for a similar approach to temporal upscaling in hydrological models, 

see Lim and Roderick, 2014).  If, however, one bases such an analysis on Budyko curves as an ET model, one should keep in 

mind that these empirical curves are based on long-term catchment mass balances, and thus they already average over seasonal 

and shorter-term variations in water availability and PET.  Thus Budyko curves may already be substantially smoother (less 

curved) than the short-term behavior that they average over.  As a result, any such analysis based on Budyko curves may 10 

underestimate the impact of temporal heterogeneity and redistribution on average ET. 

Our analysis does not explicitly account for how changes in ET may affect atmospheric humidity and thus PET.  This 

"complementarity" feedback between ET and PET is potentially important for mechanistic models of the evapotranspiration 

process, and could potentially change the magnitude (though not the sign) of the ET effects that we have estimated in this 

paper.  Any such changes should be small, however, because Budyko curves are empirical relationships derived from 15 

catchment mass balances, which already subsume any feedbacks between ET and PET that arise in the calibration catchments.  

The simplicity of the approach presented here is both a limitation and an advantage.  On the one hand, this simple approach 

necessarily overlooks, or implicitly subsumes, many mechanistic relationships that would be explicitly treated in more complex 

ecohydrological models.  On the other hand, it avoids the calibration issues and data constraints that may limit the applicability 

of these more complex models.  Our simple approach also has the advantage of transparency; as Figs. 3, 4e, 6, and 12 show, 20 

one can directly visualize how both spatial heterogeneity and lateral redistribution affect average ET, using a simple graphical 

framework.  This framework leads to relatively simple analytical expressions and rules of thumb that can be used to gauge 

where, and when, heterogeneity and lateral redistribution effects on ET are likely to be most important. 

An obvious next step is to use the framework developed here to make a first-order estimate of the likely effects of spatial 

heterogeneity and lateral redistribution on ET, as seen from the atmosphere at regional and continental scales.  The approach 25 

developed here is well suited to this task because it is simple and relatively general, and its data requirements are modest.  

Heterogeneity effects on ET can be estimated from the means, variances, and covariance of P and PET, and, as we have shown, 

the maximum hypothetical effect of lateral redistribution can be obtained directly from the same analysis.  Quantifying the 

likely real-world effects of lateral redistribution will be much more challenging, since it necessarily requires estimating the 

real-world magnitudes of these lateral redistribution fluxes.  Work on quantifying heterogeneity and redistribution effects on 30 

ET at regional and continental scales is currently underway and will be the focus of future papers.   

 

 

Appendix A: Generality of redistribution results 
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Here we demonstrate that the optimal redistribution results presented in Section 4.2 are also valid for any number of locations 

(not just two) and for any downward-curving ET function that can be plotted on the Budyko axes (not just Eq. 1, which was 

used to derive Eqs. 12-16 in Section 4.2). 

 

We begin by assuming a set of N locations i=1...N, each characterized by rates of precipitation Pi and potential 5 

evapotranspiration PETi.  In keeping with the analysis of Section 4, we assume that the rate of evapotranspiration at each 

location depends on its available water AWi, 

 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑊𝑎𝑡𝑒𝑟𝑖 = 𝐴𝑊𝑖 = 𝑃𝑖 ± 𝑛𝑒𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠       ,       (𝐴1) 

 10 

and specifically on the ratio of available water to PET, which we denote for future convenience as Ri, 

 

𝑅𝑖 =
𝐴𝑊𝑖

𝑃𝐸𝑇𝑖
         .       (𝐴2) 

 

We also assume that the evapotranspiration rates at all locations follow the same functional dependence on 15 

AWi/PETi, and that this functional relationship (denoted f) can be represented on Budyko-type axes, that is, 

 

𝐸𝑇𝑖

𝑃𝐸𝑇𝑖
= 𝑓 (

𝐴𝑊𝑖

𝑃𝐸𝑇𝑖
) = 𝑓(𝑅𝑖)     𝑜𝑟      𝐸𝑇𝑖 =  𝑃𝐸𝑇𝑖  𝑓(𝑅𝑖)   ,      (𝐴3) 

 

We impose no restrictions on the form of the function f, except that it must be downward-curving; that is, its second derivative 20 

must be negative everywhere.   

 

The first result to be demonstrated is: if moisture is redistributed among multiple locations, the highest possible average rate 

of ET will be achieved when all locations have the same ratio Ri=AWi/PETi (note that this does not require that the AWi or the 

PETi are the same).  We begin by assigning all the locations the same R value, which we denote Ropt (recognizing that its 25 

optimality is not yet proven).  We then show that any further redistribution of an amount of water y from any location j to any 

other location k (such that Rj<Ropt and Rk>Ropt) will necessarily lead to a decrease in overall ET.  The transfer of y from location 

j to location k implies that 

 

𝑅𝑗 = 𝑅𝑜𝑝𝑡 −
𝑦

𝑃𝐸𝑇𝑗
      ,     

𝑑𝑅𝑗

𝑑𝑦
=  −

1

𝑃𝐸𝑇𝑗
               (𝐴4) 30 
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and 

𝑅𝑘 = 𝑅𝑜𝑝𝑡 +
𝑦

𝑃𝐸𝑇𝑘
      ,     

𝑑𝑅𝑘

𝑑𝑦
=

1

𝑃𝐸𝑇𝑘
        .       (𝐴5) 

 

Taking the second-order Taylor expansion of Eq. (A3), one obtains for ETj: 

 5 

𝐸𝑇𝑗 = 𝑃𝐸𝑇𝑗 𝑓(𝑅𝑜𝑝𝑡) + 𝑃𝐸𝑇𝑗  
𝑑𝑓

𝑑𝑅
 
𝑑𝑅

𝑑𝑦
 𝑦 +

𝑃𝐸𝑇𝑗

2
 
𝑑2𝑓

𝑑𝑅2
 (

𝑑𝑅

𝑑𝑦
)

2

 𝑦2 + ⋯    

 

=  𝑃𝐸𝑇𝑗 𝑓(𝑅𝑜𝑝𝑡) + 𝑃𝐸𝑇𝑗  
𝑑𝑓

𝑑𝑅
 

−1

𝑃𝐸𝑇𝑗
 𝑦 +

𝑃𝐸𝑇𝑗

2
 
𝑑2𝑓

𝑑𝑅2
 (

−1

𝑃𝐸𝑇𝑗
)

2

 𝑦2 + ⋯ 

 

= 𝑃𝐸𝑇𝑗 𝑓(𝑅𝑜𝑝𝑡) − 𝑦 
𝑑𝑓

𝑑𝑅
 +

𝑦2

2𝑃𝐸𝑇𝑗
 
𝑑2𝑓

𝑑𝑅2
+  … (𝐴6) 10 

 

and similarly for ETk: 

 

𝐸𝑇𝑘 = 𝑃𝐸𝑇𝑘  𝑓(𝑅𝑜𝑝𝑡) + 𝑦 
𝑑𝑓

𝑑𝑅
 +

𝑦2

2𝑃𝐸𝑇𝑘
 
𝑑2𝑓

𝑑𝑅2
+ … (𝐴7) 

 15 

Thus the net change in total ET for locations j and k together is  

 

(𝐸𝑇𝑗 + 𝐸𝑇𝑘) − [𝑃𝐸𝑇𝑗 𝑓(𝑅𝑜𝑝𝑡) + 𝑃𝐸𝑇𝑘  𝑓(𝑅𝑜𝑝𝑡)] = 𝑦2 (
1

2𝑃𝐸𝑇𝑗
+

1

2𝑃𝐸𝑇𝑘
) 

𝑑2𝑓

𝑑𝑅2
+ … (𝐴8) 

 

Because the second derivative of f is always negative, the right-hand side of Eq. (A8) will likewise be negative, implying a net 20 

decrease in ET for locations j and k whenever y is not zero.  The stipulation that the second derivative of f is negative 

everywhere guarantees that any higher-order terms that have been omitted from the Taylor expansion must be too small to 

change the sign of the right-hand side of Eq. (A8). 

 

Thus the general result is demonstrated for the individual pair of locations j and k. Demonstrating that this result is true for this 25 

pair of locations is sufficient to prove the general case, since any pattern of water redistribution among any combination of 

locations is equivalent to a linear combination of such pairwise water transfers. 
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The second result to be demonstrated is that, for any Budyko-type function f and any combination of locations, the optimal 

rate of ET (including lateral redistribution among the locations) will equal the Budyko curve estimate at the average P and 

average PET.  For a set of locations i, Eq. (A3) implies an average ET of 

 5 

𝐸𝑇̅̅̅̅ =  𝑃𝐸𝑇𝑖  𝑓(𝑅𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   ,      (𝐴9) 

 

where overbars indicate averages over all locations.  As demonstrated above, under optimal redistribution each location will 

have Ri=Ropt, such that Eq. (A9) becomes 

 10 

𝐸𝑇̅̅̅̅
𝑜𝑝𝑡 = 𝑃𝐸𝑇̅̅ ̅̅ ̅̅   𝑓(𝑅𝑜𝑝𝑡)    .      (𝐴10) 

 

What remains to be proven is that 𝑅𝑜𝑝𝑡 = �̅�/𝑃𝐸𝑇̅̅ ̅̅ ̅̅  .  If we denote the net transfer of water into each location as zi (such that 

locations that have a net gain of available water have zi>0, and locations that have a net loss of available water have zi<0), for 

each location we can write 15 

 

𝑅𝑖 =
𝐴𝑊𝑖

𝑃𝐸𝑇𝑖
=

𝑃𝑖 + 𝑧𝑖

𝑃𝐸𝑇𝑖
    or    𝑅𝑖 𝑃𝐸𝑇𝑖 = 𝑃𝑖 + 𝑧𝑖       .       (𝐴11) 

 

Summing Eq. (A11) over all locations, noting that under any mass-conserving redistribution the zi's must sum to zero and 

under optimal redistribution Ri=Ropt everywhere, we directly obtain 20 

 

∑ 𝑅𝑖  𝑃𝐸𝑇𝑖 = 𝑅𝑜𝑝𝑡 ∑ 𝑃𝐸𝑇𝑖 = ∑ 𝑃𝑖 + 𝑧𝑖 = ∑ 𝑃𝑖         (𝐴12) 

 

and therefore  

 25 

𝑅𝑜𝑝𝑡 =
∑ 𝑃𝑖

∑ 𝑃𝐸𝑇𝑖
=  

�̅�

𝑃𝐸𝑇̅̅ ̅̅ ̅̅
       .       (𝐴13) 

 

Combining Eqs. (A10) and (A13), we have 

 



17 

 

𝐸𝑇̅̅̅̅
𝑜𝑝𝑡 = 𝑃𝐸𝑇̅̅ ̅̅ ̅̅   𝑓 (

�̅�

𝑃𝐸𝑇̅̅ ̅̅ ̅̅
)    ,      (𝐴14) 

 

thus proving the second general proposition. 
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Tables: 

 

 

Equation Parameter Reference 

𝐸𝑇

𝑃𝐸𝑇
=

𝑃

𝑃𝐸𝑇
 

1

((
𝑃

𝑃𝐸𝑇
)𝑛 + 1)

1 𝑛⁄
  (1) 

n (dimensionless) 

modifies the 

partitioning of P 

between E and Q 

Bagrov, 1953; Turc, 1954; 

Mezentsev, 1955; Pike, 1964; 

Choudhury, 1999; Zhang et 

al., 2001; Milly and Dunne, 

2002; Yang et al., 2008 

𝐸𝑇

𝑃𝐸𝑇
=

𝑃

𝑃𝐸𝑇
+  1 − ((

𝑃

𝑃𝐸𝑇
)

𝜔

+ 1)

1 𝜔⁄

  (2) 

ω – similar to n, 

modifies the 

partitioning of P 

between E and Q 

Fu, 1981; Zhang et al., 2004; 

Yang et al., 2007 

𝐸𝑇

𝑃𝐸𝑇
=

𝑃
𝑃𝐸𝑇

+ 𝜔

1 +  𝜔 (
𝑃

𝑃𝐸𝑇)
−1

+
𝑃

𝑃𝐸𝑇

  (3) 

ω – coefficient of 

vegetation and 

water supply 

Zhang et al., 2001 

𝐸𝑇

𝑃𝐸𝑇
=

𝑃

𝑃𝐸𝑇
 

𝑒𝑥𝑝 [𝛾 (1 −
𝑃

𝑃𝐸𝑇
)]

−1

𝑒𝑥𝑝 [𝛾 (1 −
𝑃

𝑃𝐸𝑇
)] −

𝑃
𝑃𝐸𝑇

  (4) 

𝛾  – the ratio of 

soil water storage 

capacity to 

precipitation 

Milly, 1993; Porporato et al., 

2004 

Table 1. Alternative empirical equations for mean annual evaporation rate in Budyko framework: ET is mean annual 

evapotranspation, P is mean annual precipitation, PET is mean annual potential evapotranspiration (evaporative demand). 5 
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Figures: 

 

Figure 1. Sub-grid-scale surface heterogeneity and subsurface water redistribution are unrepresented in Earth System Models. At 

the 100 km by 100 km grid cell scale, large mountain ranges (such as the Swiss Alps) become indistict. 
 5 

 

 

Figure 2. Budyko framework and energy and water limit lines. The blue cloud is a smoothed scatterplot of the 30 arc-seconds 

resolution mean annual precipitation (P), evapotranspiration (ET), and potential evapotranspiration (PET) for continental Europe. 

ET and PET data are from MODIS (Mu et al., 2007), P dataset is from WorldClim (Hijmans et al., 2005). 10 
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  5 
 

Figure 3. Illustration of heterogeneity bias in Budyko curve (Eq. 5).  The true average (gray circle) of the ET values of locations 1 

and 2 (black dots) is less than the average ET that would be estimated from their average P/PET (open circle).  The size of the 

heterogeneity bias will be proportional to the curvature in the ET function and proportional to the variability in P and PET among 

the individual points (Eqs. 6-8). 10 
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Figure 4. One-kilometer topography (a: SRTM, (Jarvis et al., 2008) and annual mean climatology for a 1° by 1° grid cell spanning 

the Himalayan Front at 89-90° E, 27-28° N. Spatial patterns of 1-km resolution mean annual precipitation (b: WorldClim, (Hijmans 

et al., 2005), potential evapotranspiration (c: MODIS, (Mu et al., 2007), and (d) evapotranspiration (ET) calculated using the Budyko 

curve (Eq. 5).  (e) shows a random sample of 50 points from (b), (c), and (d), along with the average P, PET, and ET over the grid 5 
cell (yellow circle), and the ET value estimated from Eq. (5) for the same average P and PET (orange circle).  This ET estimate is 

921 mm yr-1, 11.8 % more than the average of the 1-km resolution ET estimates. 
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Figure 5. Heterogeneity bias in average ET for the 9 grid cells of the terrain shown in Fig. 4a (88-91° E, 26-29°N) calculated from 5 
high-resolution (1 km) spatial variation of mean annual P and PET in each grid cell (Eq. 7). "True" heterogeneity bias is estimated 

by averaging the ET predicted by the Budyko curve for each 1-km pixel, and comparing this average with the ET predicted from 

the same curve using the average P and PET in the corresponding grid cell.  "Approximate" heterogeneity bias is estimated from 

Eq.(8).  The % bias is highest in cells with large standard deviation in altitude and aridity index.  

 10 

 

 

 

 

                15 

Figure 6. a) A conceptual two-column model. b) Illustration of how the two points representing the two columns shift towards each 

other in Budyko space if water is transferred from the upper, wetter column to the lower, drier column. Open circles represent 

columns without lateral transfer and solid circles represent columns with lateral transfer. 

 

a) b) 
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 5 

Figure 7. Four conceptual cases in two-column model where column 1 is topographically always higher than column 2 (water always 

moves from column 1 to column 2). Open circles represent columns without lateral transfer and solid circles represent columns with 

lateral transfer. Depending on the columns’ wetness or dryness ( P and PET), lateral transfer can potentially a) increase average ET 

(the points representing column 1 and column 2 are pushed towards one another, spanning significant curvature in the ET function), 

b) decrease average ET (points are pushed away from one another, spanning significant curvature in the ET function), or (c and d) 10 
have little effect on average ET (the columns shift almost collinearly along the energy-limit or water-limit limbs of the curve).  
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Figure 8. Hypothetical numerical experiment with conceptual two-column model, a) no lateral transfer between columns b) 200 

mm yr-1 lateral transfer from column 1 (mountain) to column 2 (valley) increases average ET by 14 %. The magnitude of P 

(precipitation), PET (potential evapotranspiration), ET (actual evapotranspiration), and R (recharge) are hypothetical and D is 

drainage to deep groundwater or streamflow. 5 

 

 

 

 

 10 

Figure 9. Average ET is maximized for the rate of net transfer at which P/PET and ET/PET of the two hypothetical columns of Fig. 

8 cross one another. 
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Figure 10. Spatial patterns of altitude, precipitation (P), potential evapotranspiration (PET) and aridity index (P/PET) in 1° by 1° 

grid cell in Himalayas at 89-90° E, 26-27° N. There is a sharp gradient in P, PET, and altitude in this grid cell. The labeled points 1, 

2, and 3 correspond to the labeled points in Fig. 11. 

 5 

 

 

 

Figure 11. Variation of precipitation (P), potential evapotranspiration (PET), and aridity index (P/PET) with altitude in 1° by 1° 

grid cell of Himalayas in the extent of Fig. 4. (89-90° E, 26-27° N). P and PET for sites 1, 2 and 3 in Fig. 10 are marked in the graphs. 10 
Between locations 3 and 2, P and Aridity index increase and PET decreases with altitude. Between points 2 and 1, P and aridity 

index sharply decrease and PET slightly increases with altitude. 
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Figure 12. Budyko curve and increase or decrease of average ET when transfer of water from higher location to lower location is 

included. a) 500 mm yr-1 of transfer from site 1 (3000 m altitude, lower aridity index) to site 2 (300 m altitude, higher aridity index) 

decreases the average ET by 9.3 %. b) 500 mm yr-1 of transfer of water from location 2 (altitude 300 m, higher aridity index) to 

location 3 (altitude 10 m, lower aridity index) increases the average ET by 4 %.  5 
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