Articles | Volume 21, issue 2
https://doi.org/10.5194/hess-21-1077-2017
https://doi.org/10.5194/hess-21-1077-2017
Research article
 | 
20 Feb 2017
Research article |  | 20 Feb 2017

Geostatistical upscaling of rain gauge data to support uncertainty analysis of lumped urban hydrological models

Manoranjan Muthusamy, Alma Schellart, Simon Tait, and Gerard B. M. Heuvelink

Related authors

BIS-4D: mapping soil properties and their uncertainties at 25 m resolution in the Netherlands
Anatol Helfenstein, Vera L. Mulder, Mirjam J. D. Hack-ten Broeke, Maarten van Doorn, Kees Teuling, Dennis J. J. Walvoort, and Gerard B. M. Heuvelink
Earth Syst. Sci. Data, 16, 2941–2970, https://doi.org/10.5194/essd-16-2941-2024,https://doi.org/10.5194/essd-16-2941-2024, 2024
Short summary
SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty
Laura Poggio, Luis M. de Sousa, Niels H. Batjes, Gerard B. M. Heuvelink, Bas Kempen, Eloi Ribeiro, and David Rossiter
SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021,https://doi.org/10.5194/soil-7-217-2021, 2021
Short summary
Multivariate autoregressive modelling and conditional simulation for temporal uncertainty analysis of an urban water system in Luxembourg
Jairo Arturo Torres-Matallana, Ulrich Leopold, and Gerard B. M. Heuvelink
Hydrol. Earth Syst. Sci., 25, 193–216, https://doi.org/10.5194/hess-25-193-2021,https://doi.org/10.5194/hess-25-193-2021, 2021
Short summary
Arctic soil development on a series of marine terraces on central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach
W. Marijn van der Meij, Arnaud J. A. M. Temme, Christian M. F. J. J. de Kleijn, Tony Reimann, Gerard B. M. Heuvelink, Zbigniew Zwoliński, Grzegorz Rachlewicz, Krzysztof Rymer, and Michael Sommer
SOIL, 2, 221–240, https://doi.org/10.5194/soil-2-221-2016,https://doi.org/10.5194/soil-2-221-2016, 2016
Short summary
Environmental change impacts on the C- and N-cycle of European forests: a model comparison study
D. R. Cameron, M. Van Oijen, C. Werner, K. Butterbach-Bahl, R. Grote, E. Haas, G. B. M. Heuvelink, R. Kiese, J. Kros, M. Kuhnert, A. Leip, G. J. Reinds, H. I. Reuter, M. J. Schelhaas, W. De Vries, and J. Yeluripati
Biogeosciences, 10, 1751–1773, https://doi.org/10.5194/bg-10-1751-2013,https://doi.org/10.5194/bg-10-1751-2013, 2013

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Uncertainty analysis
Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model
Simone Ulzega and Carlo Albert
Hydrol. Earth Syst. Sci., 27, 2935–2950, https://doi.org/10.5194/hess-27-2935-2023,https://doi.org/10.5194/hess-27-2935-2023, 2023
Short summary
All models are wrong, but are they useful? Assessing reliability across multiple sites to build trust in urban drainage modelling
Agnethe Nedergaard Pedersen, Annette Brink-Kjær, and Peter Steen Mikkelsen
Hydrol. Earth Syst. Sci., 26, 5879–5898, https://doi.org/10.5194/hess-26-5879-2022,https://doi.org/10.5194/hess-26-5879-2022, 2022
Short summary
Multivariate autoregressive modelling and conditional simulation for temporal uncertainty analysis of an urban water system in Luxembourg
Jairo Arturo Torres-Matallana, Ulrich Leopold, and Gerard B. M. Heuvelink
Hydrol. Earth Syst. Sci., 25, 193–216, https://doi.org/10.5194/hess-25-193-2021,https://doi.org/10.5194/hess-25-193-2021, 2021
Short summary
The potential of historical hydrology in Switzerland
Oliver Wetter
Hydrol. Earth Syst. Sci., 21, 5781–5803, https://doi.org/10.5194/hess-21-5781-2017,https://doi.org/10.5194/hess-21-5781-2017, 2017
Short summary
Improving uncertainty estimation in urban hydrological modeling by statistically describing bias
D. Del Giudice, M. Honti, A. Scheidegger, C. Albert, P. Reichert, and J. Rieckermann
Hydrol. Earth Syst. Sci., 17, 4209–4225, https://doi.org/10.5194/hess-17-4209-2013,https://doi.org/10.5194/hess-17-4209-2013, 2013

Cited articles

Berne, A., Delrieu, G., Creutin, J. D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004.
Bogner, K., Pappenberger, F., and Cloke, H. L.: Technical Note: The normal quantile transformation and its application in a flood forecasting system, Hydrol. Earth Syst. Sci., 16, 1085–1094, https://doi.org/10.5194/hess-16-1085-2012, 2012.
Chow, V. T.: Handbook of Applied Hydrology. A compendium of water-resources technology, McGraw-Hill, New York, 1964.
Ciach, G. J. and Krajewski, W. F.: Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma, Adv. Water Resour., 29, 1450–1463, https://doi.org/10.1016/j.advwatres.2005.11.003, 2006.
Dirks, K. N., Hay, J. E., Stow, C. D., and Harris, D.: High-resolution studies of rainfall on Norfolk Island Part II: Interpolation of rainfall data, J. Hydrol., 208, 187–193, https://doi.org/10.1016/S0022-1694(98)00155-3, 1998.
Download
Short summary
In this study we develop a method to estimate the spatially averaged rainfall intensity together with associated level of uncertainty using geostatistical upscaling. Rainfall data collected from a cluster of eight paired rain gauges in a small urban catchment are used in this study. Results show that the prediction uncertainty comes mainly from two sources: spatial variability of rainfall and measurement error. Results from this study can be used for uncertainty analyses of hydrologic modelling.