Articles | Volume 20, issue 11
Hydrol. Earth Syst. Sci., 20, 4655–4671, 2016
https://doi.org/10.5194/hess-20-4655-2016
Hydrol. Earth Syst. Sci., 20, 4655–4671, 2016
https://doi.org/10.5194/hess-20-4655-2016

Research article 22 Nov 2016

Research article | 22 Nov 2016

Towards simplification of hydrologic modeling: identification of dominant processes

Steven L. Markstrom et al.

Related authors

Parameter regionalization of a monthly water balance model for the conterminous United States
Andrew R. Bock, Lauren E. Hay, Gregory J. McCabe, Steven L. Markstrom, and R. Dwight Atkinson
Hydrol. Earth Syst. Sci., 20, 2861–2876, https://doi.org/10.5194/hess-20-2861-2016,https://doi.org/10.5194/hess-20-2861-2016, 2016
Short summary
mizuRoute version 1: a river network routing tool for a continental domain water resources applications
Naoki Mizukami, Martyn P. Clark, Kevin Sampson, Bart Nijssen, Yixin Mao, Hilary McMillan, Roland J. Viger, Steve L. Markstrom, Lauren E. Hay, Ross Woods, Jeffrey R. Arnold, and Levi D. Brekke
Geosci. Model Dev., 9, 2223–2238, https://doi.org/10.5194/gmd-9-2223-2016,https://doi.org/10.5194/gmd-9-2223-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Bending of the concentration discharge relationship can inform about in-stream nitrate removal
Joni Dehaspe, Fanny Sarrazin, Rohini Kumar, Jan H. Fleckenstein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 25, 6437–6463, https://doi.org/10.5194/hess-25-6437-2021,https://doi.org/10.5194/hess-25-6437-2021, 2021
Short summary
Quantifying the impacts of land cover change on hydrological responses in the Mahanadi river basin in India
Shaini Naha, Miguel Angel Rico-Ramirez, and Rafael Rosolem
Hydrol. Earth Syst. Sci., 25, 6339–6357, https://doi.org/10.5194/hess-25-6339-2021,https://doi.org/10.5194/hess-25-6339-2021, 2021
Short summary
Identification of the contributing area to river discharge during low-flow periods
Maxime Gillet, Corinne Le Gal La Salle, Pierre Alain Ayral, Somar Khaska, Philippe Martin, and Patrick Verdoux
Hydrol. Earth Syst. Sci., 25, 6261–6281, https://doi.org/10.5194/hess-25-6261-2021,https://doi.org/10.5194/hess-25-6261-2021, 2021
Short summary
Simulating sediment discharge at water treatment plants under different land use scenarios using cascade modelling with an expert-based erosion-runoff model and a deep neural network
Edouard Patault, Valentin Landemaine, Jérôme Ledun, Arnaud Soulignac, Matthieu Fournier, Jean-François Ouvry, Olivier Cerdan, and Benoit Laignel
Hydrol. Earth Syst. Sci., 25, 6223–6238, https://doi.org/10.5194/hess-25-6223-2021,https://doi.org/10.5194/hess-25-6223-2021, 2021
Short summary
In-stream Escherichia coli modeling using high-temporal-resolution data with deep learning and process-based models
Ather Abbas, Sangsoo Baek, Norbert Silvera, Bounsamay Soulileuth, Yakov Pachepsky, Olivier Ribolzi, Laurie Boithias, and Kyung Hwa Cho
Hydrol. Earth Syst. Sci., 25, 6185–6202, https://doi.org/10.5194/hess-25-6185-2021,https://doi.org/10.5194/hess-25-6185-2021, 2021
Short summary

Cited articles

Ali, G., Tetzlaff, D., Soulsby, C., McDonnell, J. and Capell, R.: A comparison of similarity indices for catchment classification using a cross-regional dataset, Adv. Water Resour., 40, 11–22, https://doi.org/10.1016/j.advwatres.2012.01.008, 2012.
Amorocho, J. and Hart, W. E.: A critique of current methods in hydrologic systems investigation, Trans. Am. Geophys. Un., 45, 307–321, 1964.
Archfield, S. A., Kennen, J. G., Carlisle, D. M., and Wolock, D. M.: An objective and parsimonious approach for classifying nature flow regimes at a continental scale, River Res. Appl., 30, 1166–1183, 2014.
Battaglin, W. A., Hay, L. E., and Markstrom, S. L.: Simulating the potential effects of climate change in two Colorado Basins and at two Colorado ski areas, Earth Interact., 15, 1–23, 2011.
Beven, K., Changing ideas in hydrology – The case of physically-based models, J. Hydrol., 105, 157–172, 1989.
Download
Short summary
Results of this study indicate that it is possible to identify the influence of different hydrologic processes when simulating with a distributed-parameter hydrology model on the basis of parameter sensitivity analysis. Identification of these processes allows the modeler to focus on the more important aspects of the model input and output, which can simplify all facets of the hydrologic modeling application.