Articles | Volume 20, issue 11
https://doi.org/10.5194/hess-20-4655-2016
https://doi.org/10.5194/hess-20-4655-2016
Research article
 | 
22 Nov 2016
Research article |  | 22 Nov 2016

Towards simplification of hydrologic modeling: identification of dominant processes

Steven L. Markstrom, Lauren E. Hay, and Martyn P. Clark

Related authors

Parameter regionalization of a monthly water balance model for the conterminous United States
Andrew R. Bock, Lauren E. Hay, Gregory J. McCabe, Steven L. Markstrom, and R. Dwight Atkinson
Hydrol. Earth Syst. Sci., 20, 2861–2876, https://doi.org/10.5194/hess-20-2861-2016,https://doi.org/10.5194/hess-20-2861-2016, 2016
Short summary
mizuRoute version 1: a river network routing tool for a continental domain water resources applications
Naoki Mizukami, Martyn P. Clark, Kevin Sampson, Bart Nijssen, Yixin Mao, Hilary McMillan, Roland J. Viger, Steve L. Markstrom, Lauren E. Hay, Ross Woods, Jeffrey R. Arnold, and Levi D. Brekke
Geosci. Model Dev., 9, 2223–2238, https://doi.org/10.5194/gmd-9-2223-2016,https://doi.org/10.5194/gmd-9-2223-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Merits and limits of SWAT-GL: application in contrasting glaciated catchments
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025,https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary
Hydrological regime index for non-perennial rivers
Pablo Fernando Dornes and Rocío Noelia Comas
Hydrol. Earth Syst. Sci., 29, 2901–2923, https://doi.org/10.5194/hess-29-2901-2025,https://doi.org/10.5194/hess-29-2901-2025, 2025
Short summary
Assessing the adequacy of traditional hydrological models for climate change impact studies: a case for long short-term memory (LSTM) neural networks
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
Hydrol. Earth Syst. Sci., 29, 2811–2836, https://doi.org/10.5194/hess-29-2811-2025,https://doi.org/10.5194/hess-29-2811-2025, 2025
Short summary
Assessing the value of high-resolution data and parameter transferability across temporal scales in hydrological modeling: a case study in northern China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2633–2654, https://doi.org/10.5194/hess-29-2633-2025,https://doi.org/10.5194/hess-29-2633-2025, 2025
Short summary
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary

Cited articles

Ali, G., Tetzlaff, D., Soulsby, C., McDonnell, J. and Capell, R.: A comparison of similarity indices for catchment classification using a cross-regional dataset, Adv. Water Resour., 40, 11–22, https://doi.org/10.1016/j.advwatres.2012.01.008, 2012.
Amorocho, J. and Hart, W. E.: A critique of current methods in hydrologic systems investigation, Trans. Am. Geophys. Un., 45, 307–321, 1964.
Archfield, S. A., Kennen, J. G., Carlisle, D. M., and Wolock, D. M.: An objective and parsimonious approach for classifying nature flow regimes at a continental scale, River Res. Appl., 30, 1166–1183, 2014.
Battaglin, W. A., Hay, L. E., and Markstrom, S. L.: Simulating the potential effects of climate change in two Colorado Basins and at two Colorado ski areas, Earth Interact., 15, 1–23, 2011.
Beven, K: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.
Download
Short summary
Results of this study indicate that it is possible to identify the influence of different hydrologic processes when simulating with a distributed-parameter hydrology model on the basis of parameter sensitivity analysis. Identification of these processes allows the modeler to focus on the more important aspects of the model input and output, which can simplify all facets of the hydrologic modeling application.
Share