Articles | Volume 20, issue 4
https://doi.org/10.5194/hess-20-1621-2016
https://doi.org/10.5194/hess-20-1621-2016
Research article
 | 
27 Apr 2016
Research article |  | 27 Apr 2016

Factors influencing stream baseflow transit times in tropical montane watersheds

Lyssette E. Muñoz-Villers, Daniel R. Geissert, Friso Holwerda, and Jeffrey J. McDonnell

Related authors

Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem
Lyssette Elena Muñoz-Villers, Josie Geris, María Susana Alvarado-Barrientos, Friso Holwerda, and Todd Dawson
Hydrol. Earth Syst. Sci., 24, 1649–1668, https://doi.org/10.5194/hess-24-1649-2020,https://doi.org/10.5194/hess-24-1649-2020, 2020
Short summary
Land use change effects on runoff generation in a humid tropical montane cloud forest region
L. E. Muñoz-Villers and J. J. McDonnell
Hydrol. Earth Syst. Sci., 17, 3543–3560, https://doi.org/10.5194/hess-17-3543-2013,https://doi.org/10.5194/hess-17-3543-2013, 2013

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Instruments and observation techniques
Mixed-cultivation grasslands enhance runoff generation and reduce soil loss in the restoration of degraded alpine hillsides
Yulei Ma, Yifan Liu, Jesús Rodrigo-Comino, Manuel López-Vicente, and Gao-Lin Wu
Hydrol. Earth Syst. Sci., 28, 3947–3961, https://doi.org/10.5194/hess-28-3947-2024,https://doi.org/10.5194/hess-28-3947-2024, 2024
Short summary
Assessment of plot-scale sediment transport on young moraines in the Swiss Alps using a fluorescent sand tracer
Fabian Maier, Florian Lustenberger, and Ilja van Meerveld
Hydrol. Earth Syst. Sci., 27, 4609–4635, https://doi.org/10.5194/hess-27-4609-2023,https://doi.org/10.5194/hess-27-4609-2023, 2023
Short summary
Subsurface flow paths in a chronosequence of calcareous soils: impact of soil age and rainfall intensities on preferential flow occurrence
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci., 26, 4953–4974, https://doi.org/10.5194/hess-26-4953-2022,https://doi.org/10.5194/hess-26-4953-2022, 2022
Short summary
Evaporation, infiltration and storage of soil water in different vegetation zones in the Qilian Mountains: a stable isotope perspective
Guofeng Zhu, Leilei Yong, Xi Zhao, Yuwei Liu, Zhuanxia Zhang, Yuanxiao Xu, Zhigang Sun, Liyuan Sang, and Lei Wang
Hydrol. Earth Syst. Sci., 26, 3771–3784, https://doi.org/10.5194/hess-26-3771-2022,https://doi.org/10.5194/hess-26-3771-2022, 2022
Short summary
Groundwater fluctuations during a debris flow event in western Norway – triggered by rain and snowmelt
Stein Bondevik and Asgeir Sorteberg
Hydrol. Earth Syst. Sci., 25, 4147–4158, https://doi.org/10.5194/hess-25-4147-2021,https://doi.org/10.5194/hess-25-4147-2021, 2021
Short summary

Cited articles

Asano, Y. and Uchida, T.: Flow path depth is the main controller of mean baseflow transit times in a mountainous catchment, Water Resour. Res., 48, W03512, https://doi.org/10.1029/2011WR010906, 2012.
Asner, G. P., Rudel, T. K., Aide, T. M., Defries, R., and Emerson, R.: A contemporary assessment of change in humid tropical forests, Conserv. Biol., 26, 1386–1395, 2009.
Boorman, D. B., Hollis, J. M., and Lilly, A.: Hydrology of soil types: a hydrologically-based classification of the soils of the United Kingdom, Inst. Hydrol., Wallingford, 26–37, 1995.
Brooks, J. R., Wigington, P. J., Phillips, D. L., Comeleo, R., and Coulombe, R.: Willamette River Basin surface water isoscape (δ18O and δ2H): temporal changes of source water within the river, Ecosphere, 3, 1–21, 2012.
Broxton, P. D., Troch, P. A., and Lyon, S. W.: On the role of aspect to quantify water transit times in small mountainous catchments, Water Resour. Res., 45, W08427, https://doi.org/10.1029/2008WR007438, 2009.
Download
Short summary
This study provides an important first step towards a better understanding of the hydrology of tropical montane regions and the factors influencing baseflow mean transit times (MTT). Our MTT estimates ranged between 1.2 and 2.7 years, suggesting deep and long subsurface pathways contributing to sustain dry season flows. Our findings showed that topography and subsurface permeability are the key factors controlling baseflow MTTs. Longest MTTs were found in the cloud forest headwater catchments.