Articles | Volume 19, issue 10
https://doi.org/10.5194/hess-19-4293-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-4293-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Effects of changes in moisture source and the upstream rainout on stable isotopes in precipitation – a case study in Nanjing, eastern China
Y. Tang
Key Laboratory of Coast and Island development of Ministry of Education, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
H. Pang
CORRESPONDING AUTHOR
Key Laboratory of Coast and Island development of Ministry of Education, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
Collaborative Innovation Center of Climate Change, Jiangsu Province, China
W. Zhang
Key Laboratory of Coast and Island development of Ministry of Education, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
Y. Li
Key Laboratory of Coast and Island development of Ministry of Education, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
S. Wu
Key Laboratory of Coast and Island development of Ministry of Education, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
Geology Department, University of Dayton, Ohio 45469-2364, USA
S. Hou
CORRESPONDING AUTHOR
Key Laboratory of Coast and Island development of Ministry of Education, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
Collaborative Innovation Center of Climate Change, Jiangsu Province, China
Related authors
No articles found.
Di Wang, Camille Risi, Lide Tian, Di Yang, Gabriel Bowen, Siteng Fan, Yang Su, Hongxi Pang, and Laurent Li
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-151, https://doi.org/10.5194/amt-2024-151, 2024
Preprint under review for AMT
Short summary
Short summary
We developed and validated a theoretical model for water vapor diffusion through sampling bags. This model accurately reconstructs the initial isotopic composition of the vapor samples. When applied to upper troposphere samples, the corrected data aligned closely with IASI satellite observations, enhancing the accuracy of drone-based measurements.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Yetang Wang, Xueying Zhang, Wentao Ning, Matthew A. Lazzara, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Paolo Grigioni, Petra Heil, Elizabeth R. Thomas, David Mikolajczyk, Lee J. Welhouse, Linda M. Keller, Zhaosheng Zhai, Yuqi Sun, and Shugui Hou
Earth Syst. Sci. Data, 15, 411–429, https://doi.org/10.5194/essd-15-411-2023, https://doi.org/10.5194/essd-15-411-2023, 2023
Short summary
Short summary
Here we construct a new database of Antarctic automatic weather station (AWS) meteorological records, which is quality-controlled by restrictive criteria. This dataset compiled all available Antarctic AWS observations, and its resolutions are 3-hourly, daily and monthly, which is very useful for quantifying spatiotemporal variability in weather conditions. Furthermore, this compilation will be used to estimate the performance of the regional climate models or meteorological reanalysis products.
Jiajia Wang, Hongxi Pang, Shuangye Wu, Spruce W. Schoenemann, Ryu Uemura, Alexey Ekaykin, Martin Werner, Alexandre Cauquoin, Sentia Goursaud Oger, Summer Rupper, and Shugui Hou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-384, https://doi.org/10.5194/essd-2022-384, 2022
Revised manuscript not accepted
Short summary
Short summary
Stable water isotopic observations in surface snow over Antarctica provide a basis for validating isotopic models and interpreting Antarctic ice core records. This study presents a new compilation of Antarctic surface snow isotopic dataset based on published and unpublished sources. The database has a wide range of potential applications in studying spatial distribution of water isotopes, model validation, and reconstruction and interpretation of Antarctic ice core records.
Wangbin Zhang, Shugui Hou, Shuang-Ye Wu, Hongxi Pang, Sharon B. Sneed, Elena V. Korotkikh, Paul A. Mayewski, Theo M. Jenk, and Margit Schwikowski
The Cryosphere, 16, 1997–2008, https://doi.org/10.5194/tc-16-1997-2022, https://doi.org/10.5194/tc-16-1997-2022, 2022
Short summary
Short summary
This study proposes a quantitative method to reconstruct annual precipitation records at the millennial timescale from the Tibetan ice cores through combining annual layer identification based on LA-ICP-MS measurement with an ice flow model. The reliability of this method is assessed by comparing our results with other reconstructed and modeled precipitation series for the Tibetan Plateau. The assessment shows that the method has a promising performance.
Tao Xu, Hongxi Pang, Zhaojun Zhan, Wangbin Zhang, Huiwen Guo, Shuangye Wu, and Shugui Hou
Hydrol. Earth Syst. Sci., 26, 117–127, https://doi.org/10.5194/hess-26-117-2022, https://doi.org/10.5194/hess-26-117-2022, 2022
Short summary
Short summary
In this study, we presented stable isotopes in atmospheric water vapor and precipitation for five extreme winter precipitation events in Nanjing, southeastern China, from December 2018 to February 2019. Our results imply that multiple moisture sources and the rapid shift among them are important conditions for sustaining extreme precipitation events, especially in the relatively cold and dry winter.
Yetang Wang, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Shugui Hou, and Cunde Xiao
Earth Syst. Sci. Data, 13, 3057–3074, https://doi.org/10.5194/essd-13-3057-2021, https://doi.org/10.5194/essd-13-3057-2021, 2021
Short summary
Short summary
Accurate observation of surface mass balance (SMB) under climate change is essential for the reliable present and future assessment of Antarctic contribution to global sea level. This study presents a new quality-controlled dataset of Antarctic SMB observations at different temporal resolutions and is the first ice-sheet-scale compilation of multiple types of measurements. The dataset can be widely applied to climate model validation, remote sensing retrievals, and data assimilation.
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021, https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Short summary
We present ages for two new ice cores reaching bedrock, from the Zangser Kangri (ZK) glacier in the northwestern Tibetan Plateau and the Shulenanshan (SLNS) glacier in the western Qilian Mountains. We estimated bottom ages of 8.90±0.57/0.56 ka and 7.46±1.46/1.79 ka for the ZK and SLNS ice core respectively, constraining the time range accessible by Tibetan ice cores to the Holocene.
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021, https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Short summary
The interpretation of the ice-core-preserved signal requires a precise chronology. Radiocarbon (14C) dating of the water-insoluble organic carbon (WIOC) fraction has become an important dating tool. However, this method is restricted by the low concentration in the ice. In this work, we report first 14C dating results using the dissolved organic carbon (DOC) fraction. The resulting ages are comparable in both fractions, but by using the DOC fraction the required ice mass can be reduced.
Shugui Hou, Wangbin Zhang, Hongxi Pang, Shuang-Ye Wu, Theo M. Jenk, Margit Schwikowski, and Yetang Wang
The Cryosphere, 13, 1743–1752, https://doi.org/10.5194/tc-13-1743-2019, https://doi.org/10.5194/tc-13-1743-2019, 2019
Short summary
Short summary
The apparent discrepancy between the Holocene δ18O records of the Guliya and the Chongce ice cores may be attributed to a possible misinterpretation of the Guliya ice core chronology.
Shugui Hou, Theo M. Jenk, Wangbin Zhang, Chaomin Wang, Shuangye Wu, Yetang Wang, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 12, 2341–2348, https://doi.org/10.5194/tc-12-2341-2018, https://doi.org/10.5194/tc-12-2341-2018, 2018
Short summary
Short summary
We present multiple lines of evidence indicating that the Chongce ice cores drilled from the northwestern Tibetan Plateau reaches back only to the early Holocene. This result is at least, 1 order of magnitude younger than the nearby Guliya ice core (~30 km away from the Chongce ice core drilling site) but similar to other Tibetan ice cores. Thus it is necessary to explore multiple dating techniques to confirm the age ranges of the Tibetan ice cores.
Zhu Zhang, Shugui Hou, and Shuangwen Yi
The Cryosphere, 12, 163–168, https://doi.org/10.5194/tc-12-163-2018, https://doi.org/10.5194/tc-12-163-2018, 2018
Short summary
Short summary
We provide the first luminescence dating of the basal sediment of the Chongce ice cap in the western Kunlun Mountains on the north-western Tibetan Plateau (TP), which gives an upper constraint for the age of the bottom ice at the drilling site. The age is more than 1 order of magnitude younger than the previously suggested age of the basal ice of the nearby Guliya ice cap (~ 40 km away from the Chongce ice cap). This work provides an important step towards better understanding the TP ice cores.
Shuang-Ye Wu and Shugui Hou
The Cryosphere, 11, 707–722, https://doi.org/10.5194/tc-11-707-2017, https://doi.org/10.5194/tc-11-707-2017, 2017
Short summary
Short summary
The primary productivity in the Southern Ocean (SO) is limited by the amount of iron available for biological activities. Recent studies show that icebergs could be a main source of iron to the SO. Based on remote sensing data, our study shows that iceberg presence is associated with elevated levels of ocean productivity, particularly in iron-deficient regions. This impact could serve as a negative feedback to the climate system.
Yetang Wang, Shugui Hou, Wenling An, Hongxi Pang, and Yaping Liu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-165, https://doi.org/10.5194/tc-2016-165, 2016
Revised manuscript has not been submitted
Short summary
Short summary
This study further confirms "Pamir–Karakoram–Western-Kunlun-Mountain (northwestern Tibetan Plateau) Glacier Anomaly". Slight glacier reduction over the northwestern Tibetan Plateau may result from more accumulation from increased precipitation in winter which to great extent protects it from mass reductions under climate warming during 1961–2000. Warming slowdown since 2000 happening at this region may further mitigate glacier mass reduction.
W. An, S. Hou, W. Zhang, Y. Wang, Y. Liu, S. Wu, and H. Pang
Clim. Past, 12, 201–211, https://doi.org/10.5194/cp-12-201-2016, https://doi.org/10.5194/cp-12-201-2016, 2016
Short summary
Short summary
This paper presents the δ18O result of an ice core recovered from Mt. Zangser Kangri (ZK), a remote area on the northern Tibetan Plateau (TP). We combined the δ18O series of ZK and three other nearby Tibetan ice cores to reconstruct a regional temperature history of 1951–2008, which captured the continuous rapid warming since 1970, even during the global warming hiatus period. It implied that temperature change could have behaved differently at high elevations.
H. Pang, S. Hou, S. Kaspari, and P. A. Mayewski
The Cryosphere, 8, 289–301, https://doi.org/10.5194/tc-8-289-2014, https://doi.org/10.5194/tc-8-289-2014, 2014
S. Hou, J. Chappellaz, D. Raynaud, V. Masson-Delmotte, J. Jouzel, P. Bousquet, and D. Hauglustaine
Clim. Past, 9, 2549–2554, https://doi.org/10.5194/cp-9-2549-2013, https://doi.org/10.5194/cp-9-2549-2013, 2013
Related subject area
Subject: Global hydrology | Techniques and Approaches: Instruments and observation techniques
Wetting and drying trends in the land–atmosphere reservoir of large basins around the world
HESS Opinions: Towards a common vision for the future of hydrological observatories
Evaluation of reanalysis soil moisture products using cosmic ray neutron sensor observations across the globe
Evaporation enhancement drives the European water-budget deficit during multi-year droughts
Combining passive and active distributed temperature sensing measurements to locate and quantify groundwater discharge variability into a headwater stream
Technical note: Evaluation and bias correction of an observation-based global runoff dataset using streamflow observations from small tropical catchments in the Philippines
Hydrology and water resources management in ancient India
Terrestrial water loss at night: global relevance from observations and climate models
Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling
SMOS brightness temperature assimilation into the Community Land Model
SMOS near-real-time soil moisture product: processor overview and first validation results
Estimating annual water storage variations in medium-scale (2000–10 000 km2) basins using microwave-based soil moisture retrievals
Recent trends and variability in river discharge across northern Canada
The "Prediflood" database of historical floods in Catalonia (NE Iberian Peninsula) AD 1035–2013, and its potential applications in flood analysis
Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation
Geodynamical processes in the channel connecting the two lobes of the Large Aral Sea
Juan F. Salazar, Ruben D. Molina, Jorge I. Zuluaga, and Jesus D. Gomez-Velez
Hydrol. Earth Syst. Sci., 28, 2919–2947, https://doi.org/10.5194/hess-28-2919-2024, https://doi.org/10.5194/hess-28-2919-2024, 2024
Short summary
Short summary
Global change is altering river basins and their discharge worldwide. We introduce the land–atmosphere reservoir (LAR) concept to investigate these changes in six of the world's largest basins. We found that low-latitude basins (Amazon, Paraná, and Congo) are getting wetter, whereas high-latitude basins (Mississippi, Ob, and Yenisei) are drying. If this continues, these long-term trends will disrupt the discharge regime and compromise the sustainability of these basins with widespread impacts.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
Yanchen Zheng, Gemma Coxon, Ross Woods, Daniel Power, Miguel Angel Rico-Ramirez, David McJannet, Rafael Rosolem, Jianzhu Li, and Ping Feng
Hydrol. Earth Syst. Sci., 28, 1999–2022, https://doi.org/10.5194/hess-28-1999-2024, https://doi.org/10.5194/hess-28-1999-2024, 2024
Short summary
Short summary
Reanalysis soil moisture products are a vital basis for hydrological and environmental research. Previous product evaluation is limited by the scale difference (point and grid scale). This paper adopts cosmic ray neutron sensor observations, a novel technique that provides root-zone soil moisture at field scale. In this paper, global harmonized CRNS observations were used to assess products. ERA5-Land, SMAPL4, CFSv2, CRA40 and GLEAM show better performance than MERRA2, GLDAS-Noah and JRA55.
Christian Massari, Francesco Avanzi, Giulia Bruno, Simone Gabellani, Daniele Penna, and Stefania Camici
Hydrol. Earth Syst. Sci., 26, 1527–1543, https://doi.org/10.5194/hess-26-1527-2022, https://doi.org/10.5194/hess-26-1527-2022, 2022
Short summary
Short summary
Droughts are a creeping disaster, meaning that their onset, duration and recovery are challenging to monitor and forecast. Here, we provide further evidence of an additional challenge of droughts, i.e. the fact that the deficit in water supply during droughts is generally much more than expected based on the observed decline in precipitation. At a European scale we explain this with enhanced evapotranspiration, sustained by higher atmospheric demand for moisture during such dry periods.
Nataline Simon, Olivier Bour, Mikaël Faucheux, Nicolas Lavenant, Hugo Le Lay, Ophélie Fovet, Zahra Thomas, and Laurent Longuevergne
Hydrol. Earth Syst. Sci., 26, 1459–1479, https://doi.org/10.5194/hess-26-1459-2022, https://doi.org/10.5194/hess-26-1459-2022, 2022
Short summary
Short summary
Groundwater discharge into streams plays a major role in the preservation of stream ecosystems. There were two complementary methods, both based on the use of the distributed temperature sensing technology, applied in a headwater catchment. Measurements allowed us to characterize the spatial and temporal patterns of groundwater discharge and quantify groundwater inflows into the stream, opening very promising perspectives for a novel characterization of the groundwater–stream interface.
Daniel E. Ibarra, Carlos Primo C. David, and Pamela Louise M. Tolentino
Hydrol. Earth Syst. Sci., 25, 2805–2820, https://doi.org/10.5194/hess-25-2805-2021, https://doi.org/10.5194/hess-25-2805-2021, 2021
Short summary
Short summary
We evaluate a recently published global product of monthly runoff using streamflow data from small tropical catchments in the Philippines. Using monthly runoff observations from catchments, we tested for correlation and prediction. We demonstrate the potential utility of this product in assessing trends in regional-scale runoff, as well as look at the correlation of phenomenon such as the El Niño–Southern Oscillation on streamflow in this wet but drought-prone archipelago.
Pushpendra Kumar Singh, Pankaj Dey, Sharad Kumar Jain, and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 24, 4691–4707, https://doi.org/10.5194/hess-24-4691-2020, https://doi.org/10.5194/hess-24-4691-2020, 2020
Short summary
Short summary
Like in all ancient civilisations, the need to manage water propelled the growth of hydrological science in ancient India also. In this paper, we provide some fascinating glimpses into the hydrological, hydraulic, and related engineering knowledge that existed in ancient India, as discussed in contemporary literature and recent explorations and findings. Many interesting dimensions of early scientific endeavours emerge as we investigate deeper into ancient texts, including Indian mythology.
Ryan S. Padrón, Lukas Gudmundsson, Dominik Michel, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 24, 793–807, https://doi.org/10.5194/hess-24-793-2020, https://doi.org/10.5194/hess-24-793-2020, 2020
Short summary
Short summary
We focus on the net exchange of water between land and air via evapotranspiration and dew during the night. We provide, for the first time, an overview of the magnitude and variability of this flux across the globe from observations and climate models. Nocturnal water loss from land is 7 % of total evapotranspiration on average and can be greater than 15 % locally. Our results highlight the relevance of this often overlooked flux, with implications for water resources and climate studies.
Hylke E. Beck, Noemi Vergopolan, Ming Pan, Vincenzo Levizzani, Albert I. J. M. van Dijk, Graham P. Weedon, Luca Brocca, Florian Pappenberger, George J. Huffman, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, https://doi.org/10.5194/hess-21-6201-2017, 2017
Short summary
Short summary
This study represents the most comprehensive global-scale precipitation dataset evaluation to date. We evaluated 13 uncorrected precipitation datasets using precipitation observations from 76 086 gauges, and 9 gauge-corrected ones using hydrological modeling for 9053 catchments. Our results highlight large differences in estimation accuracy, and hence, the importance of precipitation dataset selection in both research and operational applications.
Dominik Rains, Xujun Han, Hans Lievens, Carsten Montzka, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 21, 5929–5951, https://doi.org/10.5194/hess-21-5929-2017, https://doi.org/10.5194/hess-21-5929-2017, 2017
Short summary
Short summary
We have assimilated 6 years of satellite-observed passive microwave data into a state-of-the-art land surface model to improve surface soil moisture as well as root-zone soil moisture simulations. Long-term assimilation effects/biases are identified, and they are especially dependent on model perturbations, applied to simulate model uncertainty. The implications are put into context of using such assimilation-improved data for classifying extremes within hydrological monitoring systems.
Nemesio J. Rodríguez-Fernández, Joaquin Muñoz Sabater, Philippe Richaume, Patricia de Rosnay, Yann H. Kerr, Clement Albergel, Matthias Drusch, and Susanne Mecklenburg
Hydrol. Earth Syst. Sci., 21, 5201–5216, https://doi.org/10.5194/hess-21-5201-2017, https://doi.org/10.5194/hess-21-5201-2017, 2017
Short summary
Short summary
The new SMOS satellite near-real-time (NRT) soil moisture (SM) product based on a neural network is presented. The NRT SM product has been evaluated with respect to the SMOS Level 2 product and against a large number of in situ measurements showing performances similar to those of the Level 2 product but it is available in less than 3.5 h after sensing. The new product is distributed by the European Space Agency and the European Organisation for the Exploitation of Meteorological Satellites.
Wade T. Crow, Eunjin Han, Dongryeol Ryu, Christopher R. Hain, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 21, 1849–1862, https://doi.org/10.5194/hess-21-1849-2017, https://doi.org/10.5194/hess-21-1849-2017, 2017
Short summary
Short summary
Terrestrial water storage is defined as the total volume of water stored within the land surface and sub-surface and is a key variable for tracking long-term variability in the global water cycle. Currently, annual variations in terrestrial water storage can only be measured at extremely coarse spatial resolutions (> 200 000 km2) using gravity-based remote sensing. Here we provide evidence that microwave-based remote sensing of soil moisture can be applied to enhance this resolution.
Stephen J. Déry, Tricia A. Stadnyk, Matthew K. MacDonald, and Bunu Gauli-Sharma
Hydrol. Earth Syst. Sci., 20, 4801–4818, https://doi.org/10.5194/hess-20-4801-2016, https://doi.org/10.5194/hess-20-4801-2016, 2016
Short summary
Short summary
This manuscript focuses on observed changes to the hydrology of 42 rivers in northern Canada draining one-half of its land mass over the period 1964–2013. Statistical and trend analyses are presented for the 42 individual rivers, 6 regional drainage basins, and collectively for all of northern Canada. A main finding is the reversal of a statistically significant decline in the first half of the study period to a statistically significant 18.1 % incline in river discharge across northern Canada.
M. Barriendos, J. L. Ruiz-Bellet, J. Tuset, J. Mazón, J. C. Balasch, D. Pino, and J. L. Ayala
Hydrol. Earth Syst. Sci., 18, 4807–4823, https://doi.org/10.5194/hess-18-4807-2014, https://doi.org/10.5194/hess-18-4807-2014, 2014
Short summary
Short summary
This paper shows an interdisciplinary effort for a common methodology on flood risk analysis: hydraullics, hydrology, climatology and meteorology. Most basic problems of work with historical information are faced. Firsts results of data collection on historical floods for Catalonia (Ne Spain) are showed for period AD 1035-2014.
L. Seoane, G. Ramillien, F. Frappart, and M. Leblanc
Hydrol. Earth Syst. Sci., 17, 4925–4939, https://doi.org/10.5194/hess-17-4925-2013, https://doi.org/10.5194/hess-17-4925-2013, 2013
E. Roget, P. Zavialov, V. Khan, and M. A. Muñiz
Hydrol. Earth Syst. Sci., 13, 2265–2271, https://doi.org/10.5194/hess-13-2265-2009, https://doi.org/10.5194/hess-13-2265-2009, 2009
Cited articles
Ananthakrishnan, R., Pathan, J. M., and Aralikatti, S. S.: On the northward advance of the ITCZ and the onset of the southwest monsoon rains over the southeast Bay of Bengal, Int. J. Climatol., 1,153–165, 1981.
Araguás-Araguás, L., Froehlich, K., and Rozanski, K.: Stable isotope composition of precipitation over southeast Asia, J. Geophys. Res., 103, 28721–28742, 1998.
Bershaw, J., Penny, S. M., and Garzione, C. N.: Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: implications for estimates of paleoelevation and paleoclimate, J. Geophys. Res., 117, D02110, https://doi.org/10.1029/2011JD016132, 2012.
Breitenbach, S. F. M., Adkins, J. F., Meyer, H., Marwan, N., Kumar, K. K., and Haug, G. H.: Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India, Earth. Planet. Sc. Lett., 292, 212–220, 2010.
Cai, Y. J., Tan, L. C., Cheng, H., An, Z. S. Edwards, R. L., Kelly, M. J., Kong, X. G., and Wang, X. F.: The variation of summer monsoon precipitation in central China since the last deglaciation, Earth Planet. Sc. Lett., 291, 21–31, 2010.
Cheng, H., Edwards, R. L., Broecker, W. S., Denton, G. H., Kong, X. G., Wang, Y. J., Zhang, R., and Wang, X. F.: Ice Age Terminations, Science, 326, 248–252, 2009.
Clemens, S. C., Prell, W. L., and Sun, Y.: Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: Reinterpreting cave speleothem δ18O, Paleoceanography, 25, PA4207, https://doi.org/10.1029/2010PA001926, 2010.
Conroy, J. L., Cobb, K. M., and Noone, D.: Comparison of precipitation isotope variability across the tropical Pacific in observations and SWING2 model simulations, J. Geophys. Res., 118, 5867–5892, 2013.
Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., Cardoso, A. O., Ferrari, J. A., Dias, P. L. S., and Viana Jr., O.: Insolation-driven changes in atmospheric circulation over the past 116000 years in subtropical Brazil, Nature, 434, 63–66, 2005.
Cruz, F. W., Vuille, M., Burns, S. J., Wang, X. F., Cheng, H., Werner, M., Edwards, R. L., Karmann, I., Auler, A. S., and Nguyen, H.: Orbitally driven east-west antiphasing of South American precipitation, Nat. Geosci., 2, 210–214, 2009.
Dansgarrd, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Dayem, K. E., Molnar, P., Battisti, D. S., and Roe, G. H.: Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia, Earth Planet. Sc. Lett., 295, 219–230, 2010.
Ding, A. J., Fu, C. B., Yang, X. Q., Sun, J. N., Zheng, L. F., Xie, Y. N., Herrmann, E., Nie, W., Petäjä, T., Kerminen, V.-M., and Kulmala, M.: Ozone and fine particle in the western Yangtze River Delta: an overview of 1 yr data at the SORPES station, Atmos. Chem. Phys., 13, 5813–5830, https://doi.org/10.5194/acp-13-5813-2013, 2013.
Ding, Y. H.: The variability of the Asian summer monsoon, J. Meteor. Soc. Jpn, 85B, 21–54, 2007.
Ding, Y. H., Liu, J. J., Sun, Y., Liu, Y. J., He, J. H., and Song. Y. F.: A Study of the Synoptic-Climatology of the Meiyu System in East Asia, Chinese Journal of Atmospheric Sciences (in Chinese), 31, 1082–1100, 2007.
Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D. X., Cai, Y. J., Zhang, M. L., Lin, Y. S., Qing, J. M., An, Z. S., and Revenaugh, J.: A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China, Earth Planet. Sc. Lett., 233, 71–86, 2005.
Gadgil, S.: The Indian monsoon and its variability, Annu. Rev. Earth Pl. Sc., 31, 429–467, 2003.
Gao, J., Delmotte, V. M., Risi, C., He, Y., and Yao, T. D.: What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam, Tellus, 65, 1–14, 2013.
Gu, G. J. and Zhang, C. D.: Cloud components of the Intertropical Convergence Zone, J. Geophys. Res., 107, 4565, https://doi.org/10.1029/2002JD002089, 2002.
Guo, Q.: Relationship between the variations of East Asian winter monsoon and temperature anomalies in China, Quarterly Journal of Applied Meteorology, 5, 218–225, 1994 (in Chinese with English abstract).
He, Y., Risi, C., Gao, J., Masson-Delmotte, V., Yao, T., Lai, C., Ding, Y., Worden, J., Frankenberg, C., Chepfer, H., and Cesana, G.: Impact of atmospheric convection on south Tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data, and atmospheric general circulation modeling, J. Geophys. Res.-Atmos., 120, 3852–3871, https://doi.org/10.1002/2014JD022180, 2015.
Hu, C. Y., Henderson, G. M., Huang, J. H., Xie, S. C., Sun, Y., and Johnson, K. R.: Quantification of Holocene Asian monsoon rainfall from spatially separated cave records, Earth Planet. Sc. Lett., 266, 221–232, 2008.
Kelly, M. J., Edwards, R. L., Cheng, H., Yuan, D. X., Cai, Y. J., Zhang, M. L., Lin, Y. S., and An, Z. S.: High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination II, Palaeogeogr. Palaeocl., 236, 20–38, 2006.
Kurita, N.: Water isotopic variability in response to mesoscale convective system over the tropical ocean, J. Geophys. Res., 118, 10376–10390, 2013.
Kurita, N., Ichiyanagi, K., Matsumoto, J., Yamanaka, M. D., and Ohata, T.: The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions, J. Geochem. Explor., 102, 113–122, 2009.
Lawrence, J. R., Gedzelman, S. D., Dexheimer, D., Cho, H. K., Carrie, G. D., Gasparini, R., Anderson, C. R., Bowman, K. P., and Biggerstaff, M. I.: Stable isotopic composition of water vapor in the tropics, J. Geophys. Res., 109, D06115, https://doi.org/10.1029/2003JD004046, 2004.
Lekshmy, P. R., Midhum, M., Ramesh, R., and Jani, R. A.: 18O depletion in monsoon rain relates to large scale organized convection rather than the amount of rainfall, Scientific Reports, 4, 5661, https://doi.org/10.1038/srep05661, 2014.
Liu, J., Chen, J., Zhang, X., Li, Y., Rao, Z., and Chen, F.: Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records, Earth-Sci. Rev., 148, 194–208, 2015.
Liu, Q., Wang, P., Xu, X., Zhi, H., and Sun, X.: A group of circulation indices of Mongolia High and analysis of its relationship with simultaneous anomaly in the climate of China, J. Trop. Meteorol., 27, 889–898, 2011 (in Chinese with English abstract).
Moerman, J. W., Cobb, K. M., Adkins, J. F., Sodemann, H., Clark, B., and Tuen, A. A.: Diurnal to interannual rainfall variations in northern Borneo driven by regional hydrology, Earth. Planet. Sc. Lett., 369, 108–119, 2013.
Oh, T. H., Kwon, W. T., and Ryoo, S. B.: Review of the researches on Changma and future observational study (KORMEX), Adv. Atmos. Sci., 14, 207–222, 1997.
Pang, H., Hou, S., Kaspari, S., and Mayewski, P. A.: Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas, The Cryosphere, 8, 289–301, https://doi.org/10.5194/tc-8-289-2014, 2014.
Pang, H. X., He, Y. Q., Lu, A. G., Zhao, J. D., Ning, B. Y., Yuan, L. L., and Song, B.: Synoptic-scale variation of δ18O in summer monsoon rainfall at Lijiang, China, Chinese Sci. Bull., 51, 2897–2904, 2006.
Partin, J. W., Cobb, K. M., Adkins, J. F., Clark, B., and Fernandez, D. P.: Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum, Nature, 449, 452–455, 2007.
Paulsen, D. E., Li, H. C., and Ku, T. L.: Climate variability in central China over the last 1270 years revealed by high-resolution stalagmite records, Quaternary. Sci. Rev., 22, 691–701, 2003.
Pausata, F. S., Battisti, D. S., Nisancioglu, K. H., and Bitz, C. M.: Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event, Nat. Geosci., 4, 474–480, 2011.
Peng, T. R., Wang, C. H., Huang, C. C., Fei, L. Y., Chen, C. T. A., and Hwong, J. L.: Stable isotopic characteristic of Taiwan's precipitation: A case study of western Pacific monsoon region, Earth Planet. Sc. Lett., 289, 357–366, 2010.
Risi, C., Bony, S., Vimeux, F., and Jouzel, J.: Water-stable isotopes in the LMDZ4 general circulation model: Model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records, J. Geophy. Res., 115, D12118, https://doi.org/10.1029/2009JD013255, 2010.
Saito, N.: Quasi-stationary waves in mid-latitudes and Baiu in Japan, J. Meteorol. Soc. Jpn., 63, 983–995, 1995.
Sano, M., Xu, C. X., and Nakatsuka, T.: A 300-year Vietnam hydroclimate and ENSO variability record reconstructed from tree ring δ18O, J. Geophys. Res., 117, D12115, https://doi.org/10.1029/2012JD017749, 2012.
Simmonds, I., Bi, D., and Hope, P.: Atmospheric water vapor flux and its association with rainfall over China in summer, J. Climate, 12, 1353–1367, 1999.
Soderberg, K., Good, S. P., O'Connor, M., Wang, L., Ryan, K., and Caylor, K. K.: Using atmospheric trajectories to model the isotopic composition of rainfall in central Kenya, Ecosphere, 4, 1–18, 2013.
Tan, L. C., Cai, Y. J., Cheng, H., An, Z. S., and Edwards, R. L.: Summer monsoon precipitation variations in central China over the past 750 years derived from a high-resolution absoluted-dated stalagmite, Palaeogeogr. Palaeocl., 280, 432–439, 2009.
Tian, L., Masson-Delmotte, V., Stievenard, M., Yao, T., and Jouzel, J.: Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes, J. Geophys. Res., 106, 28081–28088, 2001.
Tierney, J. E., Russell, J. M., Huang, Y. S., Sinninghe Damsté, J. S., Hopmans, E. C., and Cohen, A. S.: Northern hemisphere controls on tropical southeast Africa climate during the past 60000 years, Science, 322, 252–255, 2008.
Tremoy, G., Vimeux, F., Mayaki, S., Souley, I., Cattani, O., Risi, C., Favreau, G., and Oi, M.: A 1-year long δ18O record of water vapor in Niamey (Niger) reveals insightful atmospheric processes at different timescales, Geophys. Res. Lett., 39, L08805, https://doi.org/10.1029/2012GL051298, 2012.
Vimeux, F., Tremoy, G., Risi, C., and Gallaire, R.: A strong control of the South American SeeSaw on the intra-seasonal variability of the isotopic composition of precipitation in the Bolinian Andes, Earth. Planet. Sc. Lett., 307, 47–58, 2011.
Vuille, M., Werner, M., Bradley, R. S., and Keimig, F.: Stable isotopes in precipitation in the Asian monsoon region, J. Geophys. Res., 110, D23108, https://doi.org/10.1029/2005JD006022, 2005.
Wang, B. and Xu, X. H.: Northern Hemisphere summer monsoon singularities and climatological intraseasonal oscillation, J. Climate, 10, 1171–1185, 1997.
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Chen, C. C., and Dorale, J. A.: A high-resolution absolute-dated Late Pleistocene Monsoon record from Hulu Cave, China, Science, 294, 2345–2348, 2001.
Wang, Y. J., Cheng, H., Edwards, R. L., Kong, X. G., Shao, X. H., Chen, S. T., Wu, J. Y., Jiang, X. Y., Wang, X. F., and An, Z. S.: Millennial-and orbital-scale changes in the East Asian Monsoon over the past 224,000 years, Nature, 451, 1090–1093, 2008.
Werner, M., Langebroek, P. M., Carlsen, T., Herold, M., and Lohmann, G.: Stable water isotopes in the ECHAM5 general circulation model: Toward high-resolution isotope modeling on a global scale, J. Geophy. Res., 116, D15109, https://doi.org/10.1029/2011JD015681, 2011.
Xie, L. H., Wei, G. J., Deng, W. F., and Zhao, X. L.: Daily δ18O and δD of precipitations from 2007 to 2009 in Guangzhou, South China: Implications for changes of moisture sources, J. Hydrol, 400, 477–489, 2011.
Yang, X. X., Yao, T. D., Yang, W. L., Xu, B. Q., He, Y., and Qu, D. M.: Isotopic signal of earlier summer monsoon onset in the Bay of Bengal, J. Climate, 25, 2509–2515, https://doi.org/10.1175/JCLI-D-11-00180.1, 2012.
Yuan, D. X., Cheng, H., Edwards, R. L., Dykoski, C. A., Kelly, M. J., Zhang, M. L., Qing, J. M., Lin, Y. S., Wang, Y. J., Wu, J. Y., Dorale, J. A., An, Z. S., and Cai, Y. J.: Timing, duration and transition of the last interglacial Asian monsoon, Science, 304, 575–578, 2004.
Zhang, P. Z., Cheng, H., Edwards, R. L., Chen, F. H., Wang, Y. J., Yang, X. L., Liu, J., Tan, M., Wang, X. F., Liu, J. H., An, C. L., Dai, Z. B., Zhou, J., Zhang, D. Z., Jia, J. H., Jin, L. Y., and Johnson, K. R.: A test of climate, sun, and culture relationships from an 1810-year Chinese cave record, Science, 322, 940–942, 2008.
Short summary
We examined the variability of daily stable isotopic composition in precipitation in Nanjing, eastern China. We found that both the upstream rainout effect on stable isotopes related to changes in the Asian summer monsoon and the temperature effect of precipitation stable isotopes associated with the Asian winter monsoon should be taken into account when interpreting the stable isotopic composition of speleothems in the Asian monsoon region.
We examined the variability of daily stable isotopic composition in precipitation in Nanjing,...