Articles | Volume 19, issue 7
https://doi.org/10.5194/hess-19-3217-2015
https://doi.org/10.5194/hess-19-3217-2015
Research article
 | 
24 Jul 2015
Research article |  | 24 Jul 2015

Impacts of climate change on temperature, precipitation and hydrology in Finland – studies using bias corrected Regional Climate Model data

T. Olsson, J. Jakkila, N. Veijalainen, L. Backman, J. Kaurola, and B. Vehviläinen

Related authors

Sea-effect snowfall in the Baltic Sea area in 1998–2018 derived from convection-permitting climate model data
Meri Virman, Taru Olsson, Petter Lind, and Kirsti Jylhä
EGUsphere, https://doi.org/10.5194/egusphere-2025-3663,https://doi.org/10.5194/egusphere-2025-3663, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Natural hazards and extreme events in the Baltic Sea region
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022,https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Statistics of sea-effect snowfall along the Finnish coastline based on regional climate model data
Taru Olsson, Anna Luomaranta, Kirsti Jylhä, Julia Jeworrek, Tuuli Perttula, Christian Dieterich, Lichuan Wu, Anna Rutgersson, and Antti Mäkelä
Adv. Sci. Res., 17, 87–104, https://doi.org/10.5194/asr-17-87-2020,https://doi.org/10.5194/asr-17-87-2020, 2020
Short summary
Impacts of climate change on extreme floods in Finland – studies using bias corrected Regional Climate Model data
Noora Veijalainen, Juho Jakkila, Taru Olsson, Leif Backman, Bertel Vehviläinen, and Jussi Kaurola
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-602,https://doi.org/10.5194/hess-2017-602, 2017
Revised manuscript not accepted
Short summary
Intense sea-effect snowfall case on the western coast of Finland
Taru Olsson, Tuuli Perttula, Kirsti Jylhä, and Anna Luomaranta
Adv. Sci. Res., 14, 231–239, https://doi.org/10.5194/asr-14-231-2017,https://doi.org/10.5194/asr-14-231-2017, 2017
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Predicting snow cover and frozen ground impacts on large basin runoff: developing appropriate model complexity
Nan Wu, Ke Zhang, Amir Naghibi, Hossein Hashemi, Zhongrui Ning, Qinuo Zhang, Xuejun Yi, Haijun Wang, Wei Liu, Wei Gao, and Jerker Jarsjö
Hydrol. Earth Syst. Sci., 29, 3703–3725, https://doi.org/10.5194/hess-29-3703-2025,https://doi.org/10.5194/hess-29-3703-2025, 2025
Short summary
A distributed hybrid physics–AI framework for learning corrections of internal hydrological fluxes and enhancing high-resolution regionalized flood modeling
Ngo Nghi Truyen Huynh, Pierre-André Garambois, Benjamin Renard, François Colleoni, Jérôme Monnier, and Hélène Roux
Hydrol. Earth Syst. Sci., 29, 3589–3613, https://doi.org/10.5194/hess-29-3589-2025,https://doi.org/10.5194/hess-29-3589-2025, 2025
Short summary
Adaptation of root zone storage capacity to climate change and its effects on future streamflow in Alpine catchments: towards non-stationary model parameters
Magali Ponds, Sarah Hanus, Harry Zekollari, Marie-Claire ten Veldhuis, Gerrit Schoups, Roland Kaitna, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 3545–3568, https://doi.org/10.5194/hess-29-3545-2025,https://doi.org/10.5194/hess-29-3545-2025, 2025
Short summary
Finding process-behavioural parameterisations of a hydrological model using a multi-step process-based calibration and evaluation scheme
Moritz M. Heuer, Hadysa Mohajerani, and Markus C. Casper
Hydrol. Earth Syst. Sci., 29, 3503–3525, https://doi.org/10.5194/hess-29-3503-2025,https://doi.org/10.5194/hess-29-3503-2025, 2025
Short summary
Merits and limits of SWAT-GL: application in contrasting glaciated catchments
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025,https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary

Cited articles

Andréasson, J., Bergström, S., Carlsson, B., Graham, L., and Lindström, G.: Hydrological change – climate change impact simulations for Sweden, Ambio, 33, 228–234, 2004.
Beldring, S., Engen-Skaugen, T., Førland, E., and Roald, L.: Climate change impacts on hydrological processes in Norway based on two methods for transferring RCM results to meteorological station sites, Tellus A, 60, 439–450, 2008.
Bergström, S.: Development and application of a conceptual runoff model for Scandinavian catchments, SMHI, Norrköping, Report RHO No. 7, 134 pp., 1976.
Castro, M., Gallardo, C., Jylhä, K., and Tuomenvirta, H.: The use of a climate-type classification for assessing climate change effects in Europe from an Ensemble of nine regional climate models, Climatic Change, 81, 329–341, https://doi.org/10.1007/s10584-006-9224-1, 2007.
Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P.: On the need for bias correction of regional climate change projections of temperature and precipitation, Geophys. Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694, 2008.
Download
Short summary
With most scenarios the DBS method used preserves the temperature and precipitation trends of the uncorrected RCM data and produces more realistic projections for mean annual and seasonal changes in discharges than the uncorrected RCM data in Finland. However, if the biases in the mean or the standard deviation of the uncorrected temperatures are large, significant biases after DBS adjustment may remain or temperature trends may change, increasing the uncertainty of climate change projections.
Share