Articles | Volume 18, issue 12
https://doi.org/10.5194/hess-18-4791-2014
https://doi.org/10.5194/hess-18-4791-2014
Research article
 | 
03 Dec 2014
Research article |  | 03 Dec 2014

High-resolution land surface modeling utilizing remote sensing parameters and the Noah UCM: a case study in the Los Angeles Basin

P. Vahmani and T. S. Hogue

Related authors

Machine Learning in Stream/River Water Temperature Modelling: a review and metrics for evaluation
Claudia Rebecca Corona and Terri Sue Hogue
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-256,https://doi.org/10.5194/hess-2024-256, 2024
Preprint under review for HESS
Short summary
Implications of model selection: a comparison of publicly available, conterminous US-extent hydrologic component estimates
Samuel Saxe, William Farmer, Jessica Driscoll, and Terri S. Hogue
Hydrol. Earth Syst. Sci., 25, 1529–1568, https://doi.org/10.5194/hess-25-1529-2021,https://doi.org/10.5194/hess-25-1529-2021, 2021
Short summary
Characterization and evaluation of controls on post-fire streamflow response across western US watersheds
Samuel Saxe, Terri S. Hogue, and Lauren Hay
Hydrol. Earth Syst. Sci., 22, 1221–1237, https://doi.org/10.5194/hess-22-1221-2018,https://doi.org/10.5194/hess-22-1221-2018, 2018
Short summary
Application of MODIS snow cover products: wildfire impacts on snow and melt in the Sierra Nevada
P. D. Micheletty, A. M. Kinoshita, and T. S. Hogue
Hydrol. Earth Syst. Sci., 18, 4601–4615, https://doi.org/10.5194/hess-18-4601-2014,https://doi.org/10.5194/hess-18-4601-2014, 2014
A framework for evaluating regional hydrologic sensitivity to climate change using archetypal watershed modeling
S. R. Lopez, T. S. Hogue, and E. D. Stein
Hydrol. Earth Syst. Sci., 17, 3077–3094, https://doi.org/10.5194/hess-17-3077-2013,https://doi.org/10.5194/hess-17-3077-2013, 2013

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Remote Sensing and GIS
Modelling hourly evapotranspiration in urban environments with SCOPE using open remote sensing and meteorological data
Alby Duarte Rocha, Stenka Vulova, Christiaan van der Tol, Michael Förster, and Birgit Kleinschmit
Hydrol. Earth Syst. Sci., 26, 1111–1129, https://doi.org/10.5194/hess-26-1111-2022,https://doi.org/10.5194/hess-26-1111-2022, 2022
Short summary
Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas
João P. Leitão, Matthew Moy de Vitry, Andreas Scheidegger, and Jörg Rieckermann
Hydrol. Earth Syst. Sci., 20, 1637–1653, https://doi.org/10.5194/hess-20-1637-2016,https://doi.org/10.5194/hess-20-1637-2016, 2016
Short summary
High-quality observation of surface imperviousness for urban runoff modelling using UAV imagery
P. Tokarczyk, J. P. Leitao, J. Rieckermann, K. Schindler, and F. Blumensaat
Hydrol. Earth Syst. Sci., 19, 4215–4228, https://doi.org/10.5194/hess-19-4215-2015,https://doi.org/10.5194/hess-19-4215-2015, 2015
Short summary

Cited articles

Arnfield, A. J.: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island, Int. J. Climatol., 23, 1–26, https://doi.org/10.1002/joc.859, 2003.
Artis, D. A. and Carnahan, W. H.: Survey of emissivity variability in thermography of urban areas, Remote Sens. Environ., 12, 313–329, 1982.
Bauer, M. E., Loeffelholz, B., and Wilson, B.: Estimating and mapping impervious surface area by regression analysis of Landsat imagery, Remote Sensing of Impervious Surfaces, 3–20, Boca Raton, Florida: CRC Press, 2007.
Bornstein, R.: Urban climate models: Nature, limitations, and applications, Meteorol. Atmos. Phys., 38, 185–194, 1987.
Burian, S. J., Stetson, S. W., Han, W., Ching, J., and Byun, D.: High resolution dataset of urban canopy parameters for Houston, Texas, Preprint proceedings, Fifth Symposium on the Urban Environment, Vancouver, BC, Canada, 23–26 August, Am. Meteorol. Soc.: Boston, MA, 2004.
Download