Articles | Volume 18, issue 10
https://doi.org/10.5194/hess-18-4169-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-4169-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Development and testing of a large, transportable rainfall simulator for plot-scale runoff and parameter estimation
T. G. Wilson
Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
C. Cortis
Dipartimento di Ingegneria Civile, Ambientale e Architettura, Università di Cagliari, Cagliari, Italy
N. Montaldo
Dipartimento di Ingegneria Civile, Ambientale e Architettura, Università di Cagliari, Cagliari, Italy
J. D. Albertson
Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
Related subject area
Subject: Hillslope hydrology | Techniques and Approaches: Instruments and observation techniques
Mixed-cultivation grasslands enhance runoff generation and reduce soil loss in the restoration of degraded alpine hillsides
Assessment of plot-scale sediment transport on young moraines in the Swiss Alps using a fluorescent sand tracer
Subsurface flow paths in a chronosequence of calcareous soils: impact of soil age and rainfall intensities on preferential flow occurrence
Evaporation, infiltration and storage of soil water in different vegetation zones in the Qilian Mountains: a stable isotope perspective
Groundwater fluctuations during a debris flow event in western Norway – triggered by rain and snowmelt
Satellite rainfall products outperform ground observations for landslide prediction in India
Characterising hillslope–stream connectivity with a joint event analysis of stream and groundwater levels
Structural and functional control of surface-patch to hillslope runoff and sediment connectivity in Mediterranean dry reclaimed slope systems
Distinct stores and the routing of water in the deep critical zone of a snow-dominated volcanic catchment
Hydrological trade-offs due to different land covers and land uses in the Brazilian Cerrado
A sprinkling experiment to quantify celerity–velocity differences at the hillslope scale
Impacts of a capillary barrier on infiltration and subsurface stormflow in layered slope deposits monitored with 3-D ERT and hydrometric measurements
Form and function in hillslope hydrology: characterization of subsurface flow based on response observations
Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures
Identification of runoff formation with two dyes in a mid-latitude mountain headwater
Multiple runoff processes and multiple thresholds control agricultural runoff generation
Factors influencing stream baseflow transit times in tropical montane watersheds
Effects of a deep-rooted crop and soil amended with charcoal on spatial and temporal runoff patterns in a degrading tropical highland watershed
The water balance components of undisturbed tropical woodlands in the Brazilian cerrado
Erosion processes in black marl soils at the millimetre scale: preliminary insights from an analogous model
Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements
True colors – experimental identification of hydrological processes at a hillslope prone to slide
Assessment of shallow subsurface characterisation with non-invasive geophysical methods at the intermediate hill-slope scale
Macropore flow of old water revisited: experimental insights from a tile-drained hillslope
Hillslope characteristics as controls of subsurface flow variability
Fluorescent particle tracers in surface hydrology: a proof of concept in a semi-natural hillslope
Soil-water dynamics and unsaturated storage during snowmelt following wildfire
Use of the 3-D scanner in mapping and monitoring the dynamic degradation of soils: case study of the Cucuteni-Baiceni Gully on the Moldavian Plateau (Romania)
A porewater-based stable isotope approach for the investigation of subsurface hydrological processes
Subsurface lateral flow from hillslope and its contribution to nitrate loading in streams through an agricultural catchment during subtropical rainstorm events
The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia
Surface and subsurface flow effect on permanent gully formation and upland erosion near Lake Tana in the northern highlands of Ethiopia
The benefits of gravimeter observations for modelling water storage changes at the field scale
Shallow soil moisture – ground thaw interactions and controls – Part 1: Spatiotemporal patterns and correlations over a subarctic landscape
Shallow soil moisture – ground thaw interactions and controls – Part 2: Influences of water and energy fluxes
Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains
Yulei Ma, Yifan Liu, Jesús Rodrigo-Comino, Manuel López-Vicente, and Gao-Lin Wu
Hydrol. Earth Syst. Sci., 28, 3947–3961, https://doi.org/10.5194/hess-28-3947-2024, https://doi.org/10.5194/hess-28-3947-2024, 2024
Short summary
Short summary
Runoff and sediment reduction benefits of hillside mixed grasslands were examined. Cultivated grasslands effectively increased runoff and decreased sediment along ages. Runoff was the dominant factor affecting the soil erosion modulus on alpine hillsides. This implies that protective measures should be prioritized during the initial planting stage of cultivated grasslands on degraded alpine hillsides.
Fabian Maier, Florian Lustenberger, and Ilja van Meerveld
Hydrol. Earth Syst. Sci., 27, 4609–4635, https://doi.org/10.5194/hess-27-4609-2023, https://doi.org/10.5194/hess-27-4609-2023, 2023
Short summary
Short summary
We used a fluorescent sand tracer with afterglow in combination with sprinkling experiments to visualize and determine the movement of sediments on natural hillslopes. We compared the observed transport patterns with the characteristics of the hillslopes. Results show that the fluorescent sand can be used to monitor sediment redistribution on the soil surface and that infiltration on older hillslopes decreased sediment transport due to more developed vegetation cover and root systems.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci., 26, 4953–4974, https://doi.org/10.5194/hess-26-4953-2022, https://doi.org/10.5194/hess-26-4953-2022, 2022
Short summary
Short summary
Analyzing the impact of soil age and rainfall intensity on vertical subsurface flow paths in calcareous soils, with a special focus on preferential flow occurrence, shows how water flow paths are linked to the organization of evolving landscapes. The observed increase in preferential flow occurrence with increasing moraine age provides important but rare data for a proper representation of hydrological processes within the feedback cycle of the hydro-pedo-geomorphological system.
Guofeng Zhu, Leilei Yong, Xi Zhao, Yuwei Liu, Zhuanxia Zhang, Yuanxiao Xu, Zhigang Sun, Liyuan Sang, and Lei Wang
Hydrol. Earth Syst. Sci., 26, 3771–3784, https://doi.org/10.5194/hess-26-3771-2022, https://doi.org/10.5194/hess-26-3771-2022, 2022
Short summary
Short summary
In arid areas, the processes of water storage have not been fully understood in different vegetation zones in mountainous areas. This study monitored the stable isotopes in the precipitation and soil water of the Xiying River Basin. In the four vegetation zones, soil water evaporation intensities were mountain grassland > deciduous forest > coniferous forest > alpine meadow, and soil water storage capacity was alpine meadow > deciduous forest > coniferous forest > mountain grassland.
Stein Bondevik and Asgeir Sorteberg
Hydrol. Earth Syst. Sci., 25, 4147–4158, https://doi.org/10.5194/hess-25-4147-2021, https://doi.org/10.5194/hess-25-4147-2021, 2021
Short summary
Short summary
Pore pressure is important for the trigger of debris slides and flows. But how, exactly, does the pore pressure vary just before a slide happens? We drilled and installed a piezometer 1.6 m below the ground in a hillslope susceptible to debris flows in western Norway and measured pore pressure and water temperature through the years 2010–2013. We found the largest anomaly in our groundwater data during the storm named Hilde in November in 2013, when a debris flow happened in this slope.
Maria Teresa Brunetti, Massimo Melillo, Stefano Luigi Gariano, Luca Ciabatta, Luca Brocca, Giriraj Amarnath, and Silvia Peruccacci
Hydrol. Earth Syst. Sci., 25, 3267–3279, https://doi.org/10.5194/hess-25-3267-2021, https://doi.org/10.5194/hess-25-3267-2021, 2021
Short summary
Short summary
Satellite and rain gauge data are tested to predict landslides in India, where the annual toll of human lives and loss of property urgently demands the implementation of strategies to prevent geo-hydrological instability. For this purpose, we calculated empirical rainfall thresholds for landslide initiation. The validation of thresholds showed that satellite-based rainfall data perform better than ground-based data, and the best performance is obtained with an hourly temporal resolution.
Daniel Beiter, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 5713–5744, https://doi.org/10.5194/hess-24-5713-2020, https://doi.org/10.5194/hess-24-5713-2020, 2020
Short summary
Short summary
We investigated the interactions between streams and their adjacent hillslopes in terms of water flow. It could be revealed that soil structure has a strong influence on how hillslopes connect to the streams, while the groundwater table tells us a lot about when the two connect. This observation could be used to improve models that try to predict whether or not hillslopes are in a state where a rain event will be likely to produce a flood in the stream.
Mariano Moreno-de-las-Heras, Luis Merino-Martín, Patricia M. Saco, Tíscar Espigares, Francesc Gallart, and José M. Nicolau
Hydrol. Earth Syst. Sci., 24, 2855–2872, https://doi.org/10.5194/hess-24-2855-2020, https://doi.org/10.5194/hess-24-2855-2020, 2020
Short summary
Short summary
This study shifts from present discussions of the connectivity theory to the practical application of the connectivity concept for the analysis of runoff and sediment dynamics in Mediterranean dry slope systems. Overall, our results provide evidence for the feasibility of using the connectivity concept to understand how the spatial distribution of vegetation and micro-topography (including rills) interact with rainfall dynamics to generate spatially continuous runoff and sediment fluxes.
Alissa White, Bryan Moravec, Jennifer McIntosh, Yaniv Olshansky, Ben Paras, R. Andres Sanchez, Ty P. A. Ferré, Thomas Meixner, and Jon Chorover
Hydrol. Earth Syst. Sci., 23, 4661–4683, https://doi.org/10.5194/hess-23-4661-2019, https://doi.org/10.5194/hess-23-4661-2019, 2019
Short summary
Short summary
This paper examines the influence of the subsurface structure on water routing, water residence times, and the hydrologic response of distinct groundwater stores and further investigates their contribution to streamflow. We conclude that deep groundwater from the fractured aquifer system, rather than shallow groundwater, is the dominant source of streamflow, which highlights the need to better characterize the deep subsurface of mountain systems using interdisciplinary studies such as this one.
Jamil A. A. Anache, Edson Wendland, Lívia M. P. Rosalem, Cristian Youlton, and Paulo T. S. Oliveira
Hydrol. Earth Syst. Sci., 23, 1263–1279, https://doi.org/10.5194/hess-23-1263-2019, https://doi.org/10.5194/hess-23-1263-2019, 2019
Short summary
Short summary
We assessed the water balance over 5 years in different land uses typical of the Brazilian Cerrado: tropical woodland, bare land, pasture and sugarcane. Land uses may affect hillslope hydrology and cause trade-offs; the woodland consumes the soil water storage along the dry season, while the agricultural LCLU (pasture and sugarcane) reduces the water consumption in either season, and the aquifer recharge rates may be reduced in forested areas due to increased water demand by the vegetation.
Willem J. van Verseveld, Holly R. Barnard, Chris B. Graham, Jeffrey J. McDonnell, J. Renée Brooks, and Markus Weiler
Hydrol. Earth Syst. Sci., 21, 5891–5910, https://doi.org/10.5194/hess-21-5891-2017, https://doi.org/10.5194/hess-21-5891-2017, 2017
Short summary
Short summary
How stream water responds immediately to a rainfall or snow event, while the average time it takes water to travel through the hillslope can be years or decades and is poorly understood. We assessed this difference by combining a 24-day sprinkler experiment (a tracer was applied at the start) with a process-based hydrologic model. Immobile soil water, deep groundwater contribution and soil depth variability explained this difference at our hillslope site.
Rico Hübner, Thomas Günther, Katja Heller, Ursula Noell, and Arno Kleber
Hydrol. Earth Syst. Sci., 21, 5181–5199, https://doi.org/10.5194/hess-21-5181-2017, https://doi.org/10.5194/hess-21-5181-2017, 2017
Short summary
Short summary
In our study, we used a spatially and temporally high resolved 3-D ERT in addition to matric potential measurements to monitor the infiltration and subsurface water flow on a hillslope with layered slope deposits. We derived some interesting findings about the capillary barrier effect as a main driving factor for the activation of different flow pathways. Thus, the maintenance or breakdown of a capillary barrier has a decisive influence on the precipitation runoff response of of the catchment.
Lisa Angermann, Conrad Jackisch, Niklas Allroggen, Matthias Sprenger, Erwin Zehe, Jens Tronicke, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, https://doi.org/10.5194/hess-21-3727-2017, 2017
Short summary
Short summary
This study investigates the temporal dynamics and response velocities of lateral preferential flow at the hillslope. The results are compared to catchment response behavior to infer the large-scale implications of the observed processes. A large portion of mobile water flows through preferential flow paths in the structured soils, causing an immediate discharge response. The study presents a methodological approach to cover the spatial and temporal domain of these highly heterogeneous processes.
Conrad Jackisch, Lisa Angermann, Niklas Allroggen, Matthias Sprenger, Theresa Blume, Jens Tronicke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, https://doi.org/10.5194/hess-21-3749-2017, 2017
Short summary
Short summary
Rapid subsurface flow in structured soils facilitates fast vertical and lateral redistribution of event water. We present its in situ exploration through local measurements and irrigation experiments. Special emphasis is given to a coherent combination of hydrological and geophysical methods. The study highlights that form and function operate as conjugated pairs. Dynamic imaging through time-lapse GPR was key to observing both and to identifying hydrologically relevant structures.
Lukáš Vlček, Kristýna Falátková, and Philipp Schneider
Hydrol. Earth Syst. Sci., 21, 3025–3040, https://doi.org/10.5194/hess-21-3025-2017, https://doi.org/10.5194/hess-21-3025-2017, 2017
Short summary
Short summary
The role of mountain headwater area in hydrological cycle was investigated at two opposite hillslopes covered by mineral and organic soils. Similarities and differences in percolation and preferential flow paths between the hillslopes were identified by sprinkling experiments with Brilliant Blue and Fluorescein. The dye solutions infiltrated into the soil and continued either as lateral subsurface pipe flow (organic soil), or percolated vertically towards the bedrock (mineral soil).
Shabnam Saffarpour, Andrew W. Western, Russell Adams, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 20, 4525–4545, https://doi.org/10.5194/hess-20-4525-2016, https://doi.org/10.5194/hess-20-4525-2016, 2016
Short summary
Short summary
A variety of threshold mechanisms influence the transfer of rainfall to runoff from catchments. Some of these mechanisms depend on the occurrence of intense rainfall and others depend on the catchment being wet. This article first provides a framework for considering which mechanisms are important in different situations and then uses that framework to examine the behaviour of a catchment in Australia that exhibits a mix of both rainfall intensity and catchment wetness dependent thresholds.
Lyssette E. Muñoz-Villers, Daniel R. Geissert, Friso Holwerda, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 20, 1621–1635, https://doi.org/10.5194/hess-20-1621-2016, https://doi.org/10.5194/hess-20-1621-2016, 2016
Short summary
Short summary
This study provides an important first step towards a better understanding of the hydrology of tropical montane regions and the factors influencing baseflow mean transit times (MTT). Our MTT estimates ranged between 1.2 and 2.7 years, suggesting deep and long subsurface pathways contributing to sustain dry season flows. Our findings showed that topography and subsurface permeability are the key factors controlling baseflow MTTs. Longest MTTs were found in the cloud forest headwater catchments.
Haimanote K. Bayabil, Tigist Y. Tebebu, Cathelijne R. Stoof, and Tammo S. Steenhuis
Hydrol. Earth Syst. Sci., 20, 875–885, https://doi.org/10.5194/hess-20-875-2016, https://doi.org/10.5194/hess-20-875-2016, 2016
P. T. S. Oliveira, E. Wendland, M. A. Nearing, R. L. Scott, R. Rosolem, and H. R. da Rocha
Hydrol. Earth Syst. Sci., 19, 2899–2910, https://doi.org/10.5194/hess-19-2899-2015, https://doi.org/10.5194/hess-19-2899-2015, 2015
Short summary
Short summary
We determined the main components of the water balance for an undisturbed cerrado.
Evapotranspiration ranged from 1.91 to 2.60mm per day for the dry and wet seasons, respectively. Canopy interception ranged from 4 to 20% and stemflow values were approximately 1% of gross precipitation.
The average runoff coefficient was less than 1%, while cerrado deforestation has the potential to increase that amount up to 20-fold.
The water storage may be estimated by the difference between P and ET.
J. Bechet, J. Duc, M. Jaboyedoff, A. Loye, and N. Mathys
Hydrol. Earth Syst. Sci., 19, 1849–1855, https://doi.org/10.5194/hess-19-1849-2015, https://doi.org/10.5194/hess-19-1849-2015, 2015
Short summary
Short summary
High-resolution three-dimensional point clouds are used to analyse erosion processes at the millimetre scale. The processes analysed here play a role in the closure of cracks. We demonstrated how micro-scale infiltration can influence the degradation of soil surface by inducing downward mass movements that are not reversible. This development will aid in designing future experiments to analyse processes such as swelling, crack closure, micro-landslides, etc.
R. Hübner, K. Heller, T. Günther, and A. Kleber
Hydrol. Earth Syst. Sci., 19, 225–240, https://doi.org/10.5194/hess-19-225-2015, https://doi.org/10.5194/hess-19-225-2015, 2015
P. Schneider, S. Pool, L. Strouhal, and J. Seibert
Hydrol. Earth Syst. Sci., 18, 875–892, https://doi.org/10.5194/hess-18-875-2014, https://doi.org/10.5194/hess-18-875-2014, 2014
S. Popp, D. Altdorff, and P. Dietrich
Hydrol. Earth Syst. Sci., 17, 1297–1307, https://doi.org/10.5194/hess-17-1297-2013, https://doi.org/10.5194/hess-17-1297-2013, 2013
J. Klaus, E. Zehe, M. Elsner, C. Külls, and J. J. McDonnell
Hydrol. Earth Syst. Sci., 17, 103–118, https://doi.org/10.5194/hess-17-103-2013, https://doi.org/10.5194/hess-17-103-2013, 2013
S. Bachmair and M. Weiler
Hydrol. Earth Syst. Sci., 16, 3699–3715, https://doi.org/10.5194/hess-16-3699-2012, https://doi.org/10.5194/hess-16-3699-2012, 2012
F. Tauro, S. Grimaldi, A. Petroselli, M. C. Rulli, and M. Porfiri
Hydrol. Earth Syst. Sci., 16, 2973–2983, https://doi.org/10.5194/hess-16-2973-2012, https://doi.org/10.5194/hess-16-2973-2012, 2012
B. A. Ebel, E. S. Hinckley, and D. A. Martin
Hydrol. Earth Syst. Sci., 16, 1401–1417, https://doi.org/10.5194/hess-16-1401-2012, https://doi.org/10.5194/hess-16-1401-2012, 2012
G. Romanescu, V. Cotiuga, A. Asandulesei, and C. Stoleriu
Hydrol. Earth Syst. Sci., 16, 953–966, https://doi.org/10.5194/hess-16-953-2012, https://doi.org/10.5194/hess-16-953-2012, 2012
J. Garvelmann, C. Külls, and M. Weiler
Hydrol. Earth Syst. Sci., 16, 631–640, https://doi.org/10.5194/hess-16-631-2012, https://doi.org/10.5194/hess-16-631-2012, 2012
B. Zhang, J. L. Tang, Ch. Gao, and H. Zepp
Hydrol. Earth Syst. Sci., 15, 3153–3170, https://doi.org/10.5194/hess-15-3153-2011, https://doi.org/10.5194/hess-15-3153-2011, 2011
M. B. Defersha, S. Quraishi, and A. Melesse
Hydrol. Earth Syst. Sci., 15, 2367–2375, https://doi.org/10.5194/hess-15-2367-2011, https://doi.org/10.5194/hess-15-2367-2011, 2011
T. Y. Tebebu, A. Z. Abiy, A. D. Zegeye, H. E. Dahlke, Z. M. Easton, S. A. Tilahun, A. S. Collick, S. Kidnau, S. Moges, F. Dadgari, and T. S. Steenhuis
Hydrol. Earth Syst. Sci., 14, 2207–2217, https://doi.org/10.5194/hess-14-2207-2010, https://doi.org/10.5194/hess-14-2207-2010, 2010
B. Creutzfeldt, A. Güntner, S. Vorogushyn, and B. Merz
Hydrol. Earth Syst. Sci., 14, 1715–1730, https://doi.org/10.5194/hess-14-1715-2010, https://doi.org/10.5194/hess-14-1715-2010, 2010
X. J. Guan, C. J. Westbrook, and C. Spence
Hydrol. Earth Syst. Sci., 14, 1375–1386, https://doi.org/10.5194/hess-14-1375-2010, https://doi.org/10.5194/hess-14-1375-2010, 2010
X. J. Guan, C. Spence, and C. J. Westbrook
Hydrol. Earth Syst. Sci., 14, 1387–1400, https://doi.org/10.5194/hess-14-1387-2010, https://doi.org/10.5194/hess-14-1387-2010, 2010
E. Zehe, T. Graeff, M. Morgner, A. Bauer, and A. Bronstert
Hydrol. Earth Syst. Sci., 14, 873–889, https://doi.org/10.5194/hess-14-873-2010, https://doi.org/10.5194/hess-14-873-2010, 2010
Cited articles
Alberts, E., Nearing, M., Weltz, M., Risse, L., Pierson, F., Zhang, X., Laflen, J., and Simanton, J.: Soil component, Chap. 7, in: USDA Water Erosion Prediction Project (WEPP): Hillslope Profile and Watershed Model Documentation, edited by: Flanagan, D. C. and Nearing, M. A., NESRL Report No. 10, USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, IN, 1995.
Battany, M. C. and Grismer, M. E.: Development of a portable field rainfall simulator for use in hillside vineyard runoff and erosion studies, Hydrol. Process., 14, 1119–1129, 2000.
Bhardwaj, A. and Singh, R.: Development of a portable rainfall simulator infiltrometer for infiltration, runoff and erosion studies, Agr. Water Manage., 22, 235–248, 1992.
Bowyer-Bower, T. A. S.: Effects of rainfall intensity and antecedent moisture on the steady-state infiltration rate in a semi-arid region, Soil Use Manage., 9, 69–76, 1993.
Campbell, G. S.: A simple method for determining unsaturated conductivity from moisture retention data, Soil Sci., 117, 311–314, 1974.
Cerdà, A., Ibáñez, S., and Calvo, A.: Design and operation of a small and portable rainfall simulator for rugged terrain, Soil Technol., 11, 163–170, 1997.
Chow, T. L.: A low-cost tipping bucket flow meter for overland flow and subsurface stormflow studies, Can. J. Soil Sci., 56, 197–202, 1976.
Christiansen, J. F.: Irrigation by Sprinkling, California Agricultural Experiment Station Bulletin 670, University of California, Berkeley, CA, 1942.
Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic properties, Water Resour. Res., 14, 601–604, 1978.
Corona, R.: The role of vegetation on hydrological processes of Mediterranean ecosystems under water-limited conditions, Ph.D. thesis, Università di Cagliari, Cagliari, Italy, 2013.
Dingman, S. L.: Physical Hydrology, 2nd Edn., Prentice Hall, Upper Saddle River, NJ, 2004.
Dunne, T., Zhang, W., and Aubry, B. F.: Effects of rainfall, vegetation, and microtopography on infiltration and runoff, Water Resour. Res., 27, 2271–2285, 1991.
Eagleson, P. S.: Climate, soil, and vegetation: 3. A simplified model of soil moisture movement in the liquid phase, Water Resour. Res., 14, 722–730, 1978.
Esteves, M., Planchon, O., Lapetite, J., Silvera, N., and Cadet, P.: The "EMIRE" large rainfall simulator: design and field testing, Earth Surf. Proc. Land., 25, 681–690, 2000.
Fernandez-Galvez, J., Barahona, E., and Mingorance, M. D.: Measurement of infiltration in small field plots by a portable rainfall simulator: application to trace-element mobility, Water Air Soil Poll., 191, 257–264, 2008.
Fister, W., Iserloh, T., Ries, J. B., and Schmidt, R.-G.: A portable wind and rainfall simulator for in situ soil erosion measurements, Catena, 91, 72–84, 2012.
Foster, I. D. L., Fullen, M. A., Brandsma, R. T., and Chapman, A. S.: Drip-screen rainfall simulators for hydro- and pedo-geomorphological research: the Coventry experience, Earth Surf. Proc. Land., 25, 691–707, 2000.
García-Ruiz, J., Arnáez, J., Beguería, S., Seeger, M., Martí-Bono, C., Regüés, D., Lana-Renault, N., and White, S.: Runoff generation in an intensively disturbed, abandoned farmland catchment, Central Spanish Pyrenees, Catena, 59, 79–92, 2005.
Genxu, W., Guangsheng, L., and Chunjie, L.: Effects of changes in alpine grassland vegetation cover on hillslope hydrological processes in a permafrost watershed, J. Hydrol., 444–445, 22–33, 2012.
Grierson, I. T. and Oades, J. M.: A rainfall simulator for field studies of run-off and soil erosion, J. Agr. Eng. Res., 22, 37–44, 1977.
Kool, J. B., Parker, J. C., and van Genuchten, M. T.: Determining soil hydraulic properties from one-step outflow experiments by parameter estimation: I. Theory and numerical studies, Soil Sci. Soc. Am. J., 49, 1348–1354, 1985.
Lana-Renault, N., Latron, J., Karssenberg, D., Serrano-Muela, P., Regüés, D., and Bierkens, M. F. P.: Differences in stream flow in relation to changes in land cover: a comparative study in two sub-Mediterranean mountain catchments, J. Hydrol., 411, 366–378, 2011.
Langhans, C., Govers, G., Diels, J., Clymans, W., and Van den Putte, A.: Dependence of effective hydraulic conductivity on rainfall intensity: loamy agricultural soils, Hydrol. Process., 24, 2257–2268, 2010.
Lassabatere, L., Angulo-Jaramillo, R., Soria-Ugalde, J. M., Cuenca, R., Braud, I., and Haverkamp, R.: Beerkan estimation of soil transfer parameters through infiltration experiments – BEST, Soil Sci. Soc. Am. J., 70, 521–532, 2006.
Maetens, W., Vanmaercke, M., Poesen, J., Jankauskas, B., Jankauskiene, G., and Ionita, I.: Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: A meta-analysis of plot data, Prog. Phys. Geog., 36, 599–653, 2012.
Montaldo, N., Albertson, J. D., and Mancini, M.: Vegetation dynamics and soil water balance in a water-limited Mediterranean ecosystem on Sardinia, Italy, Hydrol. Earth Syst. Sci., 12, 1257–1271, https://doi.org/10.5194/hess-12-1257-2008, 2008.
Moore, I. D., Hirschi, M. C., and Barfield, B. J.: Kentucky rainfall simulator, T. ASAE, 26, 1085–1089, 1983.
Morán-Tejeda, E., Ceballos-Barbancho, A., and Llorente-Pinto, J. M.: Hydrological response of Mediterranean headwaters to climate oscillations and land-cover changes: the mountains of Duero River basin (Central Spain), Global Planet. Change, 72, 39–49, 2010.
Neff, E.: Why rainfall simulation?, Agricultural Reviews and Manuals ARM-W-10, in: Proceedings of the Rainfall Simulator Workshop, Tucson, Arizona, 3–7, 1979.
Olyphant, G. A.: Temporal and spatial (down profile) variability of unsaturated soil hydraulic properties determined from a combination of repeated field experiments and inverse modeling, J. Hydrol., 281, 23–35, 2003.
Philip, J. R.: The theory of infiltration: 4. Sorptivity and algebraic infiltration equations, Soil Sci., 84, 257–264, 1957.
Philip, J. R.: General method of exact solution of the concentration-dependent diffusion equation, Aust. J. Phys., 13, 1–12, 1960.
Ram, S., Prasad, K. S. H., Gairola, A., Jose, M. K., and Trivedi, M. K.: Estimation of border-strip soil hydraulic parameters, J. Irrig. Drain. E.-ASCE, 138, 493–502, 2012.
Ramos, T. B., Goncalves, M. C., Martins, J. C., van Genuchten, M. T., and Pires, F. P.: Estimation of soil hydraulic properties from numerical inversion of tension disk infiltrometer data, Vadose Zone J., 5, 684–696, 2006.
Rienzner, M. and Gandolfi, C.: Investigation of spatial and temporal variability of saturated soil hydraulic conductivity at the field-scale, Soil Till. Res., 135, 28–40, 2014.
Romero, M. N., Martínez, T. L., Regüés, D., Lana-Renault, N., and Cerdà, A.: Hydrological response and sediment production under different land cover in abandoned farmland fields in a mediterranean mountain environment, B. Asoc. Geogr. Esp., 55, 303–323, 2011.
Russo, D., Bresler, E., Shani, U., and Parker, J. C.: Analyses of infiltration events in relation to determining soil hydraulic properties by inverse problem methodology, Water Resour. Res., 27, 1361–1373, 1991.
Sauvageout, H. and Lacaux, J.-P.: The shape of averaged drop size distributions, J. Atmos. Sci., 52, 1070–1083, 1995.
Segal, E., Bradford, S. A., Shouse, P., Lazarovitch, N., and Corwin, D.: Integration of hard and soft data to characterize field-scale hydraulic properties for flow and transport studies, Vadose Zone J., 7, 878–889, 2008.
Simunek, J. and van Genuchten, M. T.: Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion, Water Resour. Res., 32, 2683–2696, 1996.
Sivapalan, M., Beven, K., and Wood, E. F.: On hydrologic similarity: 2. A scaled model of storm runoff production, Water Resour. Res., 23, 2266–2278, 1987.
Stone, J. J., Paige, G. B., and Hawkins, R. H.: Rainfall intensity-dependent infiltration rates on rangeland rainfall simulator plots, T. ASABE, 51, 45–53, 2008.
Swanson, N. P.: Rotating-boom rainfall simulator, T. ASAE, 8, 71–72, 1965.
Verbist, K., Cornelis, W. M., Gabriels, D., Alaerts, K., and Soto, G.: Using an inverse modelling approach to evaluate the water retention in a simple water harvesting technique, Hydrol. Earth Syst. Sci., 13, 1979–1992, https://doi.org/10.5194/hess-13-1979-2009, 2009.
Xu, X., Lewis, C., Liu, W., Albertson, J. D., and Kiely, G.: Analysis of single-ring infiltrometer data for soil hydraulic properties estimation: Comparison of BEST and Wu methods, Agr. Water Manage., 107, 34–41, 2012.