Articles | Volume 18, issue 10
https://doi.org/10.5194/hess-18-4039-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-4039-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Determining regional limits and sectoral constraints for water use
T. K. Lissner
Geography Department, Humboldt University of Berlin, Germany
Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam, Germany
Invited contribution by T. K. Lissner, recipient of the Division Outstanding Young Scientists Award 2014.
C. A. Sullivan
School of Environmental Science and Management, Southern Cross University, Lismore, Australia
D. E. Reusser
Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam, Germany
J. P. Kropp
Dept. of Earth and Environmental Sciences, Potsdam University, Potsdam, Germany
Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam, Germany
Related authors
No articles found.
Boris F. Prahl, Diego Rybski, Markus Boettle, and Jürgen P. Kropp
Nat. Hazards Earth Syst. Sci., 16, 1189–1203, https://doi.org/10.5194/nhess-16-1189-2016, https://doi.org/10.5194/nhess-16-1189-2016, 2016
Short summary
Short summary
Damage functions are an essential tool for vulnerability assessment and the quantification of disaster loss. They are often tailored to specific hazards and regions, which complicates knowledge transfer between different hazards and places. In our work, we unify approaches for climate-related hazards, e.g. for storms and coastal floods. A unified damage function is embedded in an uncertainty framework, where we identify the dominating sources of uncertainty on local and regional scales.
M. Boettle, D. Rybski, and J. P. Kropp
Nat. Hazards Earth Syst. Sci., 16, 559–576, https://doi.org/10.5194/nhess-16-559-2016, https://doi.org/10.5194/nhess-16-559-2016, 2016
Short summary
Short summary
We provide simple functional expressions to characterise the development of coastal flood damage for rising mean sea levels as well as implemented flood protection levels. Furthermore, we are able to quantify the aleatory uncertainty of our estimates. All results are mathematically proven and their usability confirmed by employing two case study regions. Thus, we gain fundamental insights into the interplay of coastal flood damage, the mean sea level, and flood defence.
M. Pfannerstill, B. Guse, D. Reusser, and N. Fohrer
Hydrol. Earth Syst. Sci., 19, 4365–4376, https://doi.org/10.5194/hess-19-4365-2015, https://doi.org/10.5194/hess-19-4365-2015, 2015
Short summary
Short summary
To ensure reliable model results, hydrological processes have to be represented adequately in models. We present a framework that uses a temporal parameter sensitivity analysis and observed hydrological processes in the catchment to verify hydrological models. The framework is exemplarily applied to verify the groundwater structure of a hydrological model. The results show the appropriate simulation of all relevant hydrological processes in relation to processes observed in the catchment.
B. F. Prahl, D. Rybski, O. Burghoff, and J. P. Kropp
Nat. Hazards Earth Syst. Sci., 15, 769–788, https://doi.org/10.5194/nhess-15-769-2015, https://doi.org/10.5194/nhess-15-769-2015, 2015
Short summary
Short summary
Winter storms are the most costly natural hazard for European residential property. Their costs can be assessed via damage functions relating storm intensity to loss. However, the heavy-tailed loss distribution and the high uncertainty pose difficulties for their application. We address these difficulties by comparing four empirical damage functions and providing model recommendations. In a broader context, we discuss the shape of the damage functions in the light of theoretical considerations.
T. K. Lissner, D. E. Reusser, J. Schewe, T. Lakes, and J. P. Kropp
Earth Syst. Dynam., 5, 355–373, https://doi.org/10.5194/esd-5-355-2014, https://doi.org/10.5194/esd-5-355-2014, 2014
Short summary
Short summary
Climate change will have impacts on many different sectors of society, but a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable. This paper presents the AHEAD approach, which allows for relating impacts of climate change to 16 dimensions of livelihoods and well-being. Using the example of changes in water availability, the results show how climate change impacts AHEAD. The approach also provides a tool to frame uncertainties from climate models.
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Mathematical applications
Synthesis of historical reservoir operations from 1980 to 2020 for the evaluation of reservoir representation in large-scale hydrologic models
A Bayesian model for quantifying errors in citizen science data: application to rainfall observations from Nepal
A novel objective function DYNO for automatic multivariable calibration of 3D lake models
The importance of non-stationary multiannual periodicities in the North Atlantic Oscillation index for forecasting water resource drought
Decreased virtual water outflows from the Yellow River basin are increasingly critical to China
AI-based techniques for multi-step streamflow forecasts: application for multi-objective reservoir operation optimization and performance assessment
Optimal water use strategies for mitigating high urban temperatures
Physical versus economic water footprints in crop production: a spatial and temporal analysis for China
Development of a revised method for indicators of hydrologic alteration for analyzing the cumulative impacts of cascading reservoirs on flow regime
Changing global cropping patterns to minimize national blue water scarcity
Climate change impacts on the Water Highway project in Morocco
HESS Opinions: How should a future water census address consumptive use? (And where can we substitute withdrawal data while we wait?)
Complex relationship between seasonal streamflow forecast skill and value in reservoir operations
Water footprint of crop production for different crop structures in the Hebei southern plain, North China
Benchmark levels for the consumptive water footprint of crop production for different environmental conditions: a case study for winter wheat in China
Technical note: Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences
Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds
The question of Sudan: a hydro-economic optimization model for the Sudanese Blue Nile
Evolution of the human–water relationships in the Heihe River basin in the past 2000 years
A dynamic water accounting framework based on marginal resource opportunity cost
Climate change and non-stationary flood risk for the upper Truckee River basin
China's water sustainability in the 21st century: a climate-informed water risk assessment covering multi-sector water demands
Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy
Assessing water reservoirs management and development in Northern Vietnam
A framework for the quantitative assessment of climate change impacts on water-related activities at the basin scale
Jennie C. Steyaert and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 1071–1088, https://doi.org/10.5194/hess-28-1071-2024, https://doi.org/10.5194/hess-28-1071-2024, 2024
Short summary
Short summary
Reservoirs impact all river systems in the United States, yet their operations are difficult to quantify due to limited data. Using historical reservoir operations, we find that storage has declined over the past 40 years, with clear regional differences. We observe that active storage ranges are increasing in arid regions and decreasing in humid regions. By evaluating reservoir model assumptions, we find that they may miss out on seasonal dynamics and can underestimate storage.
Jessica A. Eisma, Gerrit Schoups, Jeffrey C. Davids, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 27, 3565–3579, https://doi.org/10.5194/hess-27-3565-2023, https://doi.org/10.5194/hess-27-3565-2023, 2023
Short summary
Short summary
Citizen scientists often submit high-quality data, but a robust method for assessing data quality is needed. This study develops a semi-automated program that characterizes the mistakes made by citizen scientists by grouping them into communities of citizen scientists with similar mistake tendencies and flags potentially erroneous data for further review. This work may help citizen science programs assess the quality of their data and can inform training practices.
Wei Xia, Taimoor Akhtar, and Christine A. Shoemaker
Hydrol. Earth Syst. Sci., 26, 3651–3671, https://doi.org/10.5194/hess-26-3651-2022, https://doi.org/10.5194/hess-26-3651-2022, 2022
Short summary
Short summary
The common practice of calibrating lake hydrodynamic models only to temperature data is shown to be unable to reproduce the flow dynamics well. We proposed a new dynamically normalized objective function (DYNO) for multivariable calibration to be used with parallel or serial optimization methods. DYNO is successfully applied to simultaneously calibrate the temperature and velocity of a 3-dimensional tropical lake model.
William Rust, John P. Bloomfield, Mark Cuthbert, Ron Corstanje, and Ian Holman
Hydrol. Earth Syst. Sci., 26, 2449–2467, https://doi.org/10.5194/hess-26-2449-2022, https://doi.org/10.5194/hess-26-2449-2022, 2022
Short summary
Short summary
We highlight the importance of the North Atlantic Oscillation in controlling droughts in the UK. Specifically, multi-year cycles in the NAO are shown to influence the frequency of droughts and this influence changes considerably over time. We show that the influence of these varying controls is similar to the projected effects of climate change on water resources. We also show that these time-varying behaviours have important implications for water resource forecasts used for drought planning.
Shuang Song, Shuai Wang, Xutong Wu, Yongyuan Huang, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 2035–2044, https://doi.org/10.5194/hess-26-2035-2022, https://doi.org/10.5194/hess-26-2035-2022, 2022
Short summary
Short summary
A reasonable assessment of the contribution of the water resources in a river basin to domestic crops supplies will be the first step in balancing the water–food nexus. Our results showed that although the Yellow River basin had reduced its virtual water outflow, its importance to crop production in China had been increasing when water footprint networks were considered. Our complexity-based approach provides a new perspective for understanding changes in a basin with a severe water shortage.
Yuxue Guo, Xinting Yu, Yue-Ping Xu, Hao Chen, Haiting Gu, and Jingkai Xie
Hydrol. Earth Syst. Sci., 25, 5951–5979, https://doi.org/10.5194/hess-25-5951-2021, https://doi.org/10.5194/hess-25-5951-2021, 2021
Short summary
Short summary
We developed an AI-based management methodology to assess forecast quality and forecast-informed reservoir operation performance together due to uncertain inflow forecasts. Results showed that higher forecast performance could lead to improved reservoir operation, while uncertain forecasts were more valuable than deterministic forecasts. Moreover, the relationship between the forecast horizon and reservoir operation was complex and depended on operating configurations and performance measures.
Bin Liu, Zhenghui Xie, Shuang Liu, Yujing Zeng, Ruichao Li, Longhuan Wang, Yan Wang, Binghao Jia, Peihua Qin, Si Chen, Jinbo Xie, and ChunXiang Shi
Hydrol. Earth Syst. Sci., 25, 387–400, https://doi.org/10.5194/hess-25-387-2021, https://doi.org/10.5194/hess-25-387-2021, 2021
Short summary
Short summary
We implemented both urban water use schemes in a model (Weather Research and Forecasting model) and assessed their cooling effects with different amounts of water in different parts of the city (center, suburbs, and rural areas) for both road sprinkling and urban irrigation by model simulation. Then, we developed an optimization scheme to find out the optimal water use strategies for mitigating high urban temperatures.
Xi Yang, La Zhuo, Pengxuan Xie, Hongrong Huang, Bianbian Feng, and Pute Wu
Hydrol. Earth Syst. Sci., 25, 169–191, https://doi.org/10.5194/hess-25-169-2021, https://doi.org/10.5194/hess-25-169-2021, 2021
Short summary
Short summary
Maximizing economic benefits with higher water productivity or lower water footprint is the core sustainable goal of agricultural water resources management. Here we look at spatial and temporal variations and developments in both production-based (PWF) and economic value-based (EWF) water footprints of crops, by taking a case study for China. A synergy evaluation index is proposed to further quantitatively evaluate the synergies and trade-offs between PWF and EWF.
Xingyu Zhou, Xiaorong Huang, Hongbin Zhao, and Kai Ma
Hydrol. Earth Syst. Sci., 24, 4091–4107, https://doi.org/10.5194/hess-24-4091-2020, https://doi.org/10.5194/hess-24-4091-2020, 2020
Short summary
Short summary
The main objective of this work is to discuss the cumulative effects on flow regime with the construction of cascade reservoirs. A revised IHA (indicators of hydrologic alteration) method was developed by using a projection pursuit method based on the real-coded accelerated genetic algorithm in this study. Through this method, IHA parameters with a high contribution to hydrological-alteration evaluation could be selected out and given high weight to reduce the redundancy among the IHA metrics.
Hatem Chouchane, Maarten S. Krol, and Arjen Y. Hoekstra
Hydrol. Earth Syst. Sci., 24, 3015–3031, https://doi.org/10.5194/hess-24-3015-2020, https://doi.org/10.5194/hess-24-3015-2020, 2020
Short summary
Short summary
Previous studies on water saving through food trade focussed either on comparing water productivities among countries or on analysing food trade in relation to national water endowments. Here, we consider, for the first time, both differences in water productivities and water endowments to analyse national comparative advantages. Our study reveals that blue water scarcity can be reduced to sustainable levels by changing cropping patterns while maintaining current levels of global production.
Nabil El Moçayd, Suchul Kang, and Elfatih A. B. Eltahir
Hydrol. Earth Syst. Sci., 24, 1467–1483, https://doi.org/10.5194/hess-24-1467-2020, https://doi.org/10.5194/hess-24-1467-2020, 2020
Short summary
Short summary
The present work addresses the impact of climate change on the Water Highway project in Morocco. This project aims to transfer 860 × 106 m3 yr−1 of water from the north to the south. As the project is very sensitive to the availability of water in the northern regions, we evaluate its feasibility under different future climate change scenarios: under a pessimistic climate scenario, the project is infeasible; however, under an optimistic scenario a rescaled version might be feasible.
Benjamin L. Ruddell
Hydrol. Earth Syst. Sci., 22, 5551–5558, https://doi.org/10.5194/hess-22-5551-2018, https://doi.org/10.5194/hess-22-5551-2018, 2018
Short summary
Short summary
We now lack sufficient empirical observations of consumptive use of water by humans and their economy, so it is worth considering what we can do with the withdrawal-based water use data we already possess. Fortunately, a wide range of applied water management and policy questions can be addressed using currently available withdrawal data. This discussion identifies important data collection problems and argues that the withdrawal data we already possess are adequate for some important purposes.
Sean W. D. Turner, James C. Bennett, David E. Robertson, and Stefano Galelli
Hydrol. Earth Syst. Sci., 21, 4841–4859, https://doi.org/10.5194/hess-21-4841-2017, https://doi.org/10.5194/hess-21-4841-2017, 2017
Short summary
Short summary
This study investigates the relationship between skill and value of ensemble seasonal streamflow forecasts. Using data from a modern forecasting system, we show that skilled forecasts are more likely to provide benefits for reservoirs operated to maintain a target water level rather than reservoirs operated to satisfy a target demand. We identify the primary causes for this behaviour and provide specific recommendations for assessing the value of forecasts for reservoirs with supply objectives.
Yingmin Chu, Yanjun Shen, and Zaijian Yuan
Hydrol. Earth Syst. Sci., 21, 3061–3069, https://doi.org/10.5194/hess-21-3061-2017, https://doi.org/10.5194/hess-21-3061-2017, 2017
Short summary
Short summary
In this study, we analyzed the water footprint (WF) of crop production and found winter wheat, summer maize and vegetables were the top water-consuming crops in the Hebei southern plain (HSP). The total WF, WFblue, WFgreen and WFgrey for 13 years (2000–2012) of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012. Finally, we evaluated a reasonable farming structure by analyzing scenarios of the main crops' WF.
La Zhuo, Mesfin M. Mekonnen, and Arjen Y. Hoekstra
Hydrol. Earth Syst. Sci., 20, 4547–4559, https://doi.org/10.5194/hess-20-4547-2016, https://doi.org/10.5194/hess-20-4547-2016, 2016
Short summary
Short summary
Benchmarks for the water footprint (WF) of crop production can serve as a reference and be helpful in setting WF reduction targets. The study explores which environmental factors should be distinguished when determining benchmarks for the consumptive (green and blue) WF of crops. Through a case study for winter wheat in China over 1961–2008, we find that when determining benchmark levels for the consumptive WF of a crop, it is most useful to distinguish between different climate zones.
Wei Hu and Bing Cheng Si
Hydrol. Earth Syst. Sci., 20, 3183–3191, https://doi.org/10.5194/hess-20-3183-2016, https://doi.org/10.5194/hess-20-3183-2016, 2016
Short summary
Short summary
Bivariate wavelet coherence has been used to explore scale- and location-specific relationships between two variables. In reality, a process occurring on land surface is usually affected by more than two factors. Therefore, this manuscript is to develop a multiple wavelet coherence method. Results showed that new method outperforms other multivariate methods. Matlab codes for a new method are provided. This method can be widely applied in geosciences where a variable is controlled by many factors.
Julie E. Shortridge, Seth D. Guikema, and Benjamin F. Zaitchik
Hydrol. Earth Syst. Sci., 20, 2611–2628, https://doi.org/10.5194/hess-20-2611-2016, https://doi.org/10.5194/hess-20-2611-2016, 2016
Short summary
Short summary
This paper compares six methods for data-driven rainfall–runoff simulation in terms of predictive accuracy, error structure, interpretability, and uncertainty. We demonstrate that autocorrelation in model errors can result in biased estimates of important values and show how certain model structures can be more easily interpreted to yield insights on physical watershed function. Finally, we explore how model structure can impact uncertainty in climate change sensitivity estimates.
S. Satti, B. Zaitchik, and S. Siddiqui
Hydrol. Earth Syst. Sci., 19, 2275–2293, https://doi.org/10.5194/hess-19-2275-2015, https://doi.org/10.5194/hess-19-2275-2015, 2015
Z. Lu, Y. Wei, H. Xiao, S. Zou, J. Xie, J. Ren, and A. Western
Hydrol. Earth Syst. Sci., 19, 2261–2273, https://doi.org/10.5194/hess-19-2261-2015, https://doi.org/10.5194/hess-19-2261-2015, 2015
Short summary
Short summary
This paper quantitatively analyzed the evolution of human-water relationships in the Heihe River basin over the past 2000 years by reconstructing the catchment water balance. The results provided the basis for investigating the impacts of human societies on hydrological systems. The evolutionary processes of human-water relationships can be divided into four stages: predevelopment, take-off, acceleration, and rebalancing. And the transition of the human-water relationship had no fixed pattern.
A. Tilmant, G. Marques, and Y. Mohamed
Hydrol. Earth Syst. Sci., 19, 1457–1467, https://doi.org/10.5194/hess-19-1457-2015, https://doi.org/10.5194/hess-19-1457-2015, 2015
Short summary
Short summary
As water resources are increasingly used for various purposes, there is a need for a unified framework to describe, quantify and classify water use in a region, be it a catchment, a river basin or a country. This paper presents a novel water accounting framework whereby the contribution of traditional water uses but also storage services are properly considered.
L. E. Condon, S. Gangopadhyay, and T. Pruitt
Hydrol. Earth Syst. Sci., 19, 159–175, https://doi.org/10.5194/hess-19-159-2015, https://doi.org/10.5194/hess-19-159-2015, 2015
X. Chen, D. Naresh, L. Upmanu, Z. Hao, L. Dong, Q. Ju, J. Wang, and S. Wang
Hydrol. Earth Syst. Sci., 18, 1653–1662, https://doi.org/10.5194/hess-18-1653-2014, https://doi.org/10.5194/hess-18-1653-2014, 2014
J. Shi, J. Liu, and L. Pinter
Hydrol. Earth Syst. Sci., 18, 1349–1357, https://doi.org/10.5194/hess-18-1349-2014, https://doi.org/10.5194/hess-18-1349-2014, 2014
A. Castelletti, F. Pianosi, X. Quach, and R. Soncini-Sessa
Hydrol. Earth Syst. Sci., 16, 189–199, https://doi.org/10.5194/hess-16-189-2012, https://doi.org/10.5194/hess-16-189-2012, 2012
D. Anghileri, F. Pianosi, and R. Soncini-Sessa
Hydrol. Earth Syst. Sci., 15, 2025–2038, https://doi.org/10.5194/hess-15-2025-2011, https://doi.org/10.5194/hess-15-2025-2011, 2011
Cited articles
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Global estimates of water withdrawals and availability under current and future "business-as- usual" conditions, Hydrolog. Sci. J., 48, 339–348, https://doi.org/10.1623/hysj.48.3.339.45278, 2003.
Almeida, G., Vieira, J., Marques, A. S., Kiperstok, A., and Cardoso, A.: Estimating the potential water reuse based on fuzzy reasoning., J. Environ. Manage., 128, 883–892, https://doi.org/10.1016/j.jenvman.2013.06.048, 2013.
BAPPENAS: Indonesia Population Projection 2000–2025, http://www.datastatistik-indonesia.com/proyeksi/index.php (last access: March 2014), 2005.
Bates, B., Kundzewicz, Z., Wu, S., and Palutikof, J.: Climate change and water, Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 2008.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.: Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Glob. Change Biol., 13, 679–706, https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007.
Brown, A. and Matlock, M. D.: A Review of Water Scarcity Indices and Methodologies, Tech. rep., University of Arkansas, The Sustainability Consortium, Tempe, Arizona USA, 2011.
Chenoweth, J.: Minimum water requirement for social and economic development, Desalination, 229, 245–256, https://doi.org/10.1016/j.desal.2007.09.011, 2008.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A., and Wehner, M.: Long-term Climate Change: Projections, Commitments and Irreversibility, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P., chap. 12, Cambridge University Press, Cambridge, UK and New York, USA, 2013.
Eriyagama, N., Smakhtin, V., and Gamage, N.: Mapping Drought Patterns and Impacts: A Global Perspective, Tech. rep., IWMI Research Report 133, International Water Management Institute, Colombo, Sri Lanka, 2009.
Falkenmark, M.: Meeting water requirements of an expanding world population, Philos. T. Roy. Soc. B., 352, 929–936, https://doi.org/10.1098/rstb.1997.0072, 1997.
Falkenmark, M. and Rockström, J.: Balancing water for humans and nature. The new approach in ecohydrology, Earthscan, London, UK, 2004.
FAO: Irrigation in Africa in figures – South Africa, Tech. rep., AQUASTAT/FAO, ftp://ftp.fao.org/agl/aglw/docs/wr29_eng.pdf (last access: March 2014), 2005.
FAO: Irrigation in Southern and Eastern Asia in figures – Indonesia, Tech. rep., AQUASTAT/FAO, http://www.fao.org/docrep/016/i2809e/i2809e.pdf (last access: March 2014), 2011.
FAO: AQUASTAT database, Food and Agriculture Organization of the United Nations (FAO), http://www.fao.org/nr/water/aquastat/main/index.stm, last access: October 2013.
Finlayson, B. L., Barnett, J., Wei, T., Webber, M., Li, M., Wang, M. Y., Chen, J., Xu, H., and Chen, Z.: The drivers of risk to water security in Shanghai, Reg. Environ. Change, 13, 329–340, https://doi.org/10.1007/s10113-012-0334-1, 2012.
Flörke, M., Bärlund, I., and Kynast, E.: Will climate change affect the electricity production sector? A European study, J. Water Clim. Change, 3, 44, https://doi.org/10.2166/wcc.2012.066, 2011.
Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., and Alcamo, J.: Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study, Glob. Environ. Change, 23, 144–156, https://doi.org/10.1016/j.gloenvcha.2012.10.018, 2013.
Gharibi, H., Mahvi, A. H., Nabizadeh, R., Arabalibeik, H., Yunesian, M., and Sowlat, M. H.: A novel approach in water quality assessment based on fuzzy logic., J. Environ. Manage., 112, 87–95, https://doi.org/10.1016/j.jenvman.2012.07.007, 2012.
Gleick, P.: The human right to water, Water Policy, 1, 487–503, https://doi.org/10.1016/S1366-7017(99)00008-2, 1998.
Graedel, T. and van der Voet, E.: Linkages of Sustainability, The MIT Press, Cambridge, Massachusetts USA, 2010.
Hoekstra, A. Y. and Chapagain, A. K.: Water footprints of nations: Water use by people as a function of their consumption pattern, Int. Ser. Prog. Wat. Res., 21, 35–48, https://doi.org/10.1007/s11269-006-9039-x, 2006.
Howard, G. and Bartram, J.: Domestic Water Quantity, Service Level and Health, Tech. rep., World Health Organization, Geneva, Switzerland, 2003.
ICF: MEASURE DHS STATcompiler, ICF International, http://www.statcompiler.com/, last access: October 2013.
IRIN: SOUTH AFRICA: Clock ticks towards water scarcity, http://www.irinnews.org/report/84517/south-africa-clock-ticks-towards-water-scarcity (last access: March 2014), 2009.
Kirtman, B., Power, S., Adedoyin, J., Boer, G., Bojariu, R., Camilloni, I., Doblas-Reyes, F., Fiore, A., Kimoto, M., Meehl, G., Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G., Vecchi, G., and Wang, H.: Near-term Climate Change: Projections and Predictability, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P., chap. 11, Cambridge University Press, Cambridge, UK and New York, USA, 2013.
Kropp, J., Lüdeke, M. K. B., Reusswig, F., and Change, G.: Global Analysis and Distribution of Unbalanced Urbanization Processes: The FAVELA Syndrome, GAIA, 10, 109–120, 2001.
Larson, B., Minten, B., and Razafindralambo, R.: Unravelling the linkages between the millennium development goals for poverty, education, access to water and household water use in developing countries: Evidence from Madagascar, J. Dev. Stud., 42, 22–40, https://doi.org/10.1080/00220380500356258, 2006.
Lissner, T. K., Holsten, A., Walther, C., and Kropp, J. P.: Towards sectoral and standardised vulnerability assessments: the example of heatwave impacts on human health, Climatic Change, 112, 687–708, https://doi.org/10.1007/s10584-011-0231-5, 2012.
Lissner, T. K., Sullivan, C. A., Reusser, D. E., and Kropp, J. P.: Integrated assessments of water scarcity: knowns, unknowns and ways forward, in: The global water system in the anthropocene (in press), edited by: Bogardi, J. J., Bhaduri, A., Leentvaar, J., and Marx, S., Springer, 2014a.
Lissner, T. K., Sullivan, C. A., Reusser, D. E., and Kropp, J. P.: Supplementary Material: Determining regional limits and sectoral constraints for water use considering climate change, available at: figshare, https://doi.org/10.6084/m9.figshare.1150217, 2014b.
Mayer, A., Mechler, B., Schlindwein, A., and Wolke, R.: Fuzzy Logic, Addison-Wesley, Bonn, Germany, 1993.
Molle, F., Wester, P., and Hirsch, P.: River basin closure: Processes, implications and responses, Agricultural Water Management, 97, 569–577, https://doi.org/10.1016/j.agwat.2009.01.004, 2010.
Morrison, J., Morikawa, M., Murphy, M., and Schulte, P.: Water Scarcity & Climate Change : Growing Risks for Businesses & Investors, Tech. rep., Ceres/Pacific Institute, Boston, USA, 2009.
Muller, M., Schreiner, B., Smith, L., Koppen, B. V., Sally, H., Aliber, M., Cousins, B., Tapela, B., Merwe-botha, M. V. D., Karar, E., and Pietersen, K.: Water security in South Africa, Tech. Rep. 12, Development Bank of Southern Africa (DBSA), Midrand, South Africa, 2009.
Pradhan, P., Reusser, D. E., and Kropp, J. P.: Embodied Greenhouse Gas Emissions in Diets, PLoS ONE, 8, e62228, https://doi.org/10.1371/journal.pone.0062228, 2013.
Rijsberman, F. R.: Water scarcity: Fact or fiction?, Agr. Water Manage., 80, 5–22, https://doi.org/10.1016/j.agwat.2005.07.001, 2006.
Shuval, H.: Approaches to Resolving the Water Conflicts Between Israel and her Neighbors – a Regional Water-for-Peace Plan, Water Int., 17, 133–143, https://doi.org/10.1080/02508069208686133, 1992.
Smakhtin, V., Revenga, C., and Döll, P.: A pilot global assessment of environmental water requirements and scarcity, Water Intern., 29, 307–317, https://doi.org/10.1080/02508060408691785, 2004.
Sullivan, C. A.: Calculating a Water Poverty Index, World Dev., 30, 1195–1210, https://doi.org/10.1016/S0305-750X(02)00035-9, 2002.
Sullivan, C. and Meigh, J.: Targeting attention on local vulnerabilities using an integrated index approach: the example of the climate vulnerability index, Water Sci. Technol., 51, 69–78, 2005.
Toze, S.: Reuse of effluent water?benefits and risks, Agr. Water Manage., 80, 147–159, https://doi.org/10.1016/j.agwat.2005.07.010, 2006.
UN: The Millennium Development Goals Report 2012, United Nations, New York, USA, 2012.
UNDP: International Human Development Indicators, http://hdr.undp.org/en/statistics/ (last access: July 2013).
van Aardt, C.: Population and Household Projections for South Africa by Province and Population Group, 2001–2021, Tech. Rep. May, Bureau of Market Research, University of South Africa (UNISA), 2007.
van Vliet, M. T. H., Yearsley, J. R., Ludwig, F., Vögele, S., Lettenmaier, D. P., and Kabat, P.: Vulnerability of US and European electricity supply to climate change, Nat. Clim. Change, 2, 676–681, https://doi.org/10.1038/nclimate1546, 2012.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Clim. Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M.: Global threats to human water security and river biodiversity, Nature, 467, 555–561, https://doi.org/10.1038/nature09440, 2010a.
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. a., Liermann, C. R., and Davies, P. M.: SUPPLEMENTARY INFORMATION: Global threats to human water security and river biodiversity, Nature, 467, 555–561, https://doi.org/10.1038/nature09440, 2010b.
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J.: The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework., P. Natl. Acad. Sci. USA, 111, 3228–3232, https://doi.org/10.1073/pnas.1312330110, 2014.
WFP: World Food Programme – Indonesia, http://www.wfp.org/countries/indonesia/food-security (last access: October 2013), 2012.
WHO/UNICEF: Joint Monitoring Programme for Water Supply and Sanitation, Global water supply and sanitation assessment 2000 Report, Tech. rep., World Health Organization and United Nations Children's Fund Publications, Washington, USA, 2000.
WWAP: The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk, WWAP (World Water Assessment Programme) UNESCO, Paris, France, 2012.