Articles | Volume 18, issue 9
https://doi.org/10.5194/hess-18-3763-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-3763-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Soil erosion by snow gliding – a first quantification attempt in a subalpine area in Switzerland
K. Meusburger
Environmental Geosciences, University of Basel, Basel, Switzerland
G. Leitinger
Institute of Ecology, University of Innsbruck, Innsbruck, Austria
Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
M. H. Mueller
Environmental Geosciences, University of Basel, Basel, Switzerland
A. Walter
Environmental Geosciences, University of Basel, Basel, Switzerland
C. Alewell
Environmental Geosciences, University of Basel, Basel, Switzerland
Related authors
Laura Arata, Katrin Meusburger, Alexandra Bürge, Markus Zehringer, Michael E. Ketterer, Lionel Mabit, and Christine Alewell
SOIL, 3, 113–122, https://doi.org/10.5194/soil-3-113-2017, https://doi.org/10.5194/soil-3-113-2017, 2017
Simon Schmidt, Christine Alewell, Panos Panagos, and Katrin Meusburger
Hydrol. Earth Syst. Sci., 20, 4359–4373, https://doi.org/10.5194/hess-20-4359-2016, https://doi.org/10.5194/hess-20-4359-2016, 2016
Short summary
Short summary
We present novel research on the seasonal dynamics of the impact of rainfall (R-factor) on the mobilization of topsoil as soil erosion by water for Switzerland. A modeling approach was chosen that enables the dynamical mapping of the R-factor. Based on the maps and modeling results, we could investigate the spatial and temporal distribution of that factor, which is high for Switzerland. With these results, agronomists can introduce selective erosion control measures.
Christine Alewell, Axel Birkholz, Katrin Meusburger, Yael Schindler Wildhaber, and Lionel Mabit
Biogeosciences, 13, 1587–1596, https://doi.org/10.5194/bg-13-1587-2016, https://doi.org/10.5194/bg-13-1587-2016, 2016
Short summary
Short summary
Origin of suspended sediments in rivers is of crucial importance for optimization of catchment management. Sediment source attribution to a lowland river in central Switzerland with compound specific stable isotopes analysis (CSIA) indicated that 65 % of the suspended sediments originated from agricultural land during base flow, while forest was the dominant source during high flow. We achieved significant differences in CSIA signature from land uses dominated by C3 plant cultivation.
S. Stanchi, M. Freppaz, E. Ceaglio, M. Maggioni, K. Meusburger, C. Alewell, and E. Zanini
Nat. Hazards Earth Syst. Sci., 14, 1761–1771, https://doi.org/10.5194/nhess-14-1761-2014, https://doi.org/10.5194/nhess-14-1761-2014, 2014
K. Meusburger, L. Mabit, J.-H. Park, T. Sandor, and C. Alewell
Biogeosciences, 10, 5627–5638, https://doi.org/10.5194/bg-10-5627-2013, https://doi.org/10.5194/bg-10-5627-2013, 2013
K. Meusburger, G. Leitinger, L. Mabit, M. H. Mueller, and C. Alewell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-9505-2013, https://doi.org/10.5194/hessd-10-9505-2013, 2013
Preprint withdrawn
Gerald Dicen, Floriane Guillevic, Surya Gupta, Pierre-Alexis Chaboche, Katrin Meusburger, Pierre Sabatier, Olivier Evrard, and Christine Alewell
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-509, https://doi.org/10.5194/essd-2024-509, 2024
Preprint under review for ESSD
Short summary
Short summary
Fallout radionuclides such as 137Cs and 239+240Pu are considered as critical tools in various environmental research. Here, we compiled reference soil data on these fallout radionuclides from the literature to build a comprehensive database. Using this database, we determined the distribution and sources of 137Cs and 239+240Pu. We also demonstrated how the database can be used to identify the environmental factors that influence their distribution using a machine-learning algorithm.
Elena Tello-García, Erich Tasser, Ursula Peintner, Ulrike Tappeiner, and Georg Leitinger
EGUsphere, https://doi.org/10.5194/egusphere-2024-2435, https://doi.org/10.5194/egusphere-2024-2435, 2024
Preprint archived
Short summary
Short summary
This study looks at how two different agricultural grasslands respond to drought. One is more conservative and efficient, the other is more acquisitive and demanding. The conservative grassland showed better water use efficiency under drought, regulated by a denser root system and mycorrhiza community adaptation. Our findings suggest that conservative grassland mixtures may be more efficient and productive under drought conditions in the European Alps.
Katrin Meusburger, Paolo Porto, Judith Kobler Waldis, and Christine Alewell
SOIL, 9, 399–409, https://doi.org/10.5194/soil-9-399-2023, https://doi.org/10.5194/soil-9-399-2023, 2023
Short summary
Short summary
Quantifying soil redistribution rates is a global challenge. Radiogenic tracers such as plutonium, namely 239+240Pu, released to the atmosphere by atmospheric bomb testing in the 1960s are promising tools to quantify soil redistribution. Direct validation of 239+240Pu as soil redistribution is, however, still missing. Here, we used a unique sediment yield time series in southern Italy, reaching back to the initial fallout of 239+240Pu to verify 239+240Pu as a soil redistribution tracer.
Pedro V. G. Batista, Peter Fiener, Simon Scheper, and Christine Alewell
Hydrol. Earth Syst. Sci., 26, 3753–3770, https://doi.org/10.5194/hess-26-3753-2022, https://doi.org/10.5194/hess-26-3753-2022, 2022
Short summary
Short summary
Patchy agricultural landscapes have a large number of small fields, which are separated by linear features such as roads and field borders. When eroded sediments are transported out of the agricultural fields by surface runoff, these features can influence sediment connectivity. By use of measured data and a simulation model, we demonstrate how a dense road network (and its drainage system) facilitates sediment transport from fields to water courses in a patchy Swiss agricultural catchment.
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Lauren Zweifel, Maxim Samarin, Katrin Meusburger, and Christine Alewell
Nat. Hazards Earth Syst. Sci., 21, 3421–3437, https://doi.org/10.5194/nhess-21-3421-2021, https://doi.org/10.5194/nhess-21-3421-2021, 2021
Short summary
Short summary
Mountainous grassland areas can be severely affected by soil erosion, such as by shallow landslides. With an automated mapping approach we are able to locate shallow-landslide sites on aerial images for 10 different study sites across Swiss mountain regions covering a total of 315 km2. Using a statistical model we identify important explanatory variables for shallow-landslide occurrence for the individual sites as well as across all regions, which highlight slope, aspect and terrain roughness.
Maral Khodadadi, Christine Alewell, Mohammad Mirzaei, Ehssan Ehssan-Malahat, Farrokh Asadzadeh, Peter Strauss, and Katrin Meusburger
SOIL Discuss., https://doi.org/10.5194/soil-2021-2, https://doi.org/10.5194/soil-2021-2, 2021
Revised manuscript not accepted
Short summary
Short summary
Forest soils store carbon and therefore play an important role in mitigating climate change impacts. Yet again, deforestation for farming and grazing purposes has grown rapidly over the last decades. Thus, its impacts on soil erosion and soil quality should be understood in order to adopt sustainable management measures. The results of this study indicated that deforestation can prompt soil loss by multiple orders of magnitude and deteriorate the soil quality in both topsoil and subsoil.
Claudia Mignani, Jörg Wieder, Michael A. Sprenger, Zamin A. Kanji, Jan Henneberger, Christine Alewell, and Franz Conen
Atmos. Chem. Phys., 21, 657–664, https://doi.org/10.5194/acp-21-657-2021, https://doi.org/10.5194/acp-21-657-2021, 2021
Short summary
Short summary
Most precipitation above land starts with ice in clouds. It is promoted by extremely rare particles. Some ice-nucleating particles (INPs) cause cloud droplets to already freeze above −15°C, a temperature at which many clouds begin to snow. We found that the abundance of such INPs among other particles of similar size is highest in precipitating air masses and lowest when air carries desert dust. This brings us closer to understanding the interactions between land, clouds, and precipitation.
Lena Wohlgemuth, Stefan Osterwalder, Carl Joseph, Ansgar Kahmen, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 17, 6441–6456, https://doi.org/10.5194/bg-17-6441-2020, https://doi.org/10.5194/bg-17-6441-2020, 2020
Short summary
Short summary
Mercury uptake by trees from the air represents an important but poorly quantified pathway in the global mercury cycle. We determined mercury uptake fluxes by leaves and needles at 10 European forests which were 4 times larger than mercury deposition via rainfall. The amount of mercury taken up by leaves and needles depends on their age and growing height on the tree. Scaling up our measurements to the forest area of Europe, we estimate that each year 20 t of mercury is taken up by trees.
Miriam Groß-Schmölders, Pascal von Sengbusch, Jan Paul Krüger, Kristy Klein, Axel Birkholz, Jens Leifeld, and Christine Alewell
SOIL, 6, 299–313, https://doi.org/10.5194/soil-6-299-2020, https://doi.org/10.5194/soil-6-299-2020, 2020
Short summary
Short summary
Degradation turns peatlands into a source of CO2. There is no cost- or time-efficient method available for indicating peatland hydrology or the success of restoration. We found that 15N values have a clear link to microbial communities and degradation. We identified trends in natural, drained and rewetted conditions and concluded that 15N depth profiles can act as a reliable and efficient tool for obtaining information on current hydrology, restoration success and drainage history.
José A. Gómez, Gema Guzmán, Arsenio Toloza, Christian Resch, Roberto García-Ruíz, and Lionel Mabit
SOIL, 6, 179–194, https://doi.org/10.5194/soil-6-179-2020, https://doi.org/10.5194/soil-6-179-2020, 2020
Short summary
Short summary
The long-term evolution of soil organic carbon in an olive orchard (planted in 1856) was evaluated and compared to an adjacent undisturbed natural area. Total soil organic carbon in the top 40 cm of the soil in the orchard was reduced to 25 % of that in the undisturbed area. The deposition downslope in the orchard of sediment coming from the eroded upslope area did not increase the accumulation of organic carbon in soil, but it quadrupled available phosphorus and improved overall soil quality.
Pranav Hirave, Guido L. B. Wiesenberg, Axel Birkholz, and Christine Alewell
Biogeosciences, 17, 2169–2180, https://doi.org/10.5194/bg-17-2169-2020, https://doi.org/10.5194/bg-17-2169-2020, 2020
Short summary
Short summary
Sediment input into water bodies is a prominent threat to freshwater ecosystems. We tested the stability of tracers employed in freshwater sediment tracing based on compound-specific isotope analysis during early degradation in soil. While bulk δ13C values showed no stability, δ13C values of plant-derived fatty acids and n-alkanes were stably transferred to the soil without soil particle size dependency after an early degradation in organic horizons, thus indicating their suitability as tracers.
Marlène Lavrieux, Axel Birkholz, Katrin Meusburger, Guido L. B. Wiesenberg, Adrian Gilli, Christian Stamm, and Christine Alewell
Biogeosciences, 16, 2131–2146, https://doi.org/10.5194/bg-16-2131-2019, https://doi.org/10.5194/bg-16-2131-2019, 2019
Short summary
Short summary
A fingerprinting approach using compound-specific stable isotopes was applied to a lake sediment core to reconstruct erosion processes over the past 150 years in a Swiss catchment. Even though the reconstruction of land use and eutrophication history was successful, the observation of comparatively low δ13C values of plant-derived fatty acids in the sediment suggests their alteration within the lake. Thus, their use as a tool for source attribution in sediment cores needs further investigation.
Claudia Mignani, Jessie M. Creamean, Lukas Zimmermann, Christine Alewell, and Franz Conen
Atmos. Chem. Phys., 19, 877–886, https://doi.org/10.5194/acp-19-877-2019, https://doi.org/10.5194/acp-19-877-2019, 2019
Short summary
Short summary
A snow crystal can be generated from an ice nucleating particle or from an ice splinter. In this study we made use of the fact that snow crystals with a particular shape (dendrites) grow within a narrow temperature range (−12 to −17 °C) and can be analysed individually for the presence of an ice nucleating particle. Our direct approach revealed that only one in eight crystals contained such a particle and was of primary origin. The other crystals must have grown from ice splinters.
Reinhard Fromm, Sonja Baumgärtner, Georg Leitinger, Erich Tasser, and Peter Höller
Nat. Hazards Earth Syst. Sci., 18, 1891–1903, https://doi.org/10.5194/nhess-18-1891-2018, https://doi.org/10.5194/nhess-18-1891-2018, 2018
Short summary
Short summary
Snow gliding is a key factor for snow glide avalanche formation and soil erosion. This study considers atmospheric and snow variables, vegetation characteristics, and soil properties, and determines their relevance for snow gliding. The soil moisture, the soil temperature, the liquid water content of snow, the phytomass of mosses, and the friction coefficient have major influence.
However, further investigations may be focused on the freezing and melting processes in the uppermost soil layers.
Georg Frenck, Georg Leitinger, Nikolaus Obojes, Magdalena Hofmann, Christian Newesely, Mario Deutschmann, Ulrike Tappeiner, and Erich Tasser
Biogeosciences, 15, 1065–1078, https://doi.org/10.5194/bg-15-1065-2018, https://doi.org/10.5194/bg-15-1065-2018, 2018
Short summary
Short summary
For central Europe in addition to rising temperatures, an increasing variability in precipitation is predicted. In a replicated mesocosm experiment we compared evapotranspiration and the biomass productivity of two differently drought-adapted vegetation communities during two irrigation regimes (with and without drought periods). Significant differences between the different communities were found in the response to variations in the water supply and biomass production.
Laura Arata, Katrin Meusburger, Alexandra Bürge, Markus Zehringer, Michael E. Ketterer, Lionel Mabit, and Christine Alewell
SOIL, 3, 113–122, https://doi.org/10.5194/soil-3-113-2017, https://doi.org/10.5194/soil-3-113-2017, 2017
Emiliano Stopelli, Franz Conen, Caroline Guilbaud, Jakob Zopfi, Christine Alewell, and Cindy E. Morris
Biogeosciences, 14, 1189–1196, https://doi.org/10.5194/bg-14-1189-2017, https://doi.org/10.5194/bg-14-1189-2017, 2017
Short summary
Short summary
Based on the analysis of precipitation collected at high altitude, this study provides a relevant advancement in the assessment of the major factors responsible for the abundance and variability of airborne bacterial cells and Pseudomonas syringae in relation to ice nucleators. This is of prime importance to obtain a better understanding of the impact of ice-nucleation-active organisms on the development of precipitation and to determine the dispersal potential of airborne microorganisms.
Simon Schmidt, Christine Alewell, Panos Panagos, and Katrin Meusburger
Hydrol. Earth Syst. Sci., 20, 4359–4373, https://doi.org/10.5194/hess-20-4359-2016, https://doi.org/10.5194/hess-20-4359-2016, 2016
Short summary
Short summary
We present novel research on the seasonal dynamics of the impact of rainfall (R-factor) on the mobilization of topsoil as soil erosion by water for Switzerland. A modeling approach was chosen that enables the dynamical mapping of the R-factor. Based on the maps and modeling results, we could investigate the spatial and temporal distribution of that factor, which is high for Switzerland. With these results, agronomists can introduce selective erosion control measures.
Emiliano Stopelli, Franz Conen, Cindy E. Morris, Erik Herrmann, Stephan Henne, Martin Steinbacher, and Christine Alewell
Atmos. Chem. Phys., 16, 8341–8351, https://doi.org/10.5194/acp-16-8341-2016, https://doi.org/10.5194/acp-16-8341-2016, 2016
Short summary
Short summary
Knowing the variability of ice nucleating particles (INPs) helps determining their role in the formation of precipitation. Here we describe and predict the concentrations of INPs active at −8 °C in precipitation samples collected at Jungfraujoch (CH, 3580 m a.s.l.). A high abundance of these INPs can be expected whenever a coincidence of high wind speed and first precipitation from an air mass occurs. This expands the set of conditions where such INPs could affect the onset of precipitation.
Christine Alewell, Axel Birkholz, Katrin Meusburger, Yael Schindler Wildhaber, and Lionel Mabit
Biogeosciences, 13, 1587–1596, https://doi.org/10.5194/bg-13-1587-2016, https://doi.org/10.5194/bg-13-1587-2016, 2016
Short summary
Short summary
Origin of suspended sediments in rivers is of crucial importance for optimization of catchment management. Sediment source attribution to a lowland river in central Switzerland with compound specific stable isotopes analysis (CSIA) indicated that 65 % of the suspended sediments originated from agricultural land during base flow, while forest was the dominant source during high flow. We achieved significant differences in CSIA signature from land uses dominated by C3 plant cultivation.
S. Osterwalder, J. Fritsche, C. Alewell, M. Schmutz, M. B. Nilsson, G. Jocher, J. Sommar, J. Rinne, and K. Bishop
Atmos. Meas. Tech., 9, 509–524, https://doi.org/10.5194/amt-9-509-2016, https://doi.org/10.5194/amt-9-509-2016, 2016
Short summary
Short summary
Human activities have increased mercury (Hg) cycling between land and atmosphere. To define landscapes as sinks or sources of Hg we have developed an advanced REA system for long-term measurements of gaseous elemental Hg exchange. It was tested in two contrasting environments: above Basel, Switzerland, and a peatland in Sweden. Both landscapes showed net Hg emission (15 and 3 ng m−2 h−1, respectively). The novel system will help to advance our understanding of Hg exchange on an ecosystem scale.
J. P. Krüger, J. Leifeld, S. Glatzel, S. Szidat, and C. Alewell
Biogeosciences, 12, 2861–2871, https://doi.org/10.5194/bg-12-2861-2015, https://doi.org/10.5194/bg-12-2861-2015, 2015
Short summary
Short summary
Biogeochemical soil parameters are studied to detect peatland degradation along a land use gradient (intensive, extensive, near-natural). Stable carbon isotopes, radiocarbon ages and ash content confirm peat growth in the near-natural bog but also indicate previous degradation. When the bog is managed extensively or intensively as grassland, all parameters indicate degradation and substantial C loss of the order of 18.8 to 42.9 kg C m-2.
S. Stanchi, M. Freppaz, E. Ceaglio, M. Maggioni, K. Meusburger, C. Alewell, and E. Zanini
Nat. Hazards Earth Syst. Sci., 14, 1761–1771, https://doi.org/10.5194/nhess-14-1761-2014, https://doi.org/10.5194/nhess-14-1761-2014, 2014
J. P. Krüger, J. Leifeld, and C. Alewell
Biogeosciences, 11, 3369–3380, https://doi.org/10.5194/bg-11-3369-2014, https://doi.org/10.5194/bg-11-3369-2014, 2014
E. Stopelli, F. Conen, L. Zimmermann, C. Alewell, and C. E. Morris
Atmos. Meas. Tech., 7, 129–134, https://doi.org/10.5194/amt-7-129-2014, https://doi.org/10.5194/amt-7-129-2014, 2014
K. Meusburger, L. Mabit, J.-H. Park, T. Sandor, and C. Alewell
Biogeosciences, 10, 5627–5638, https://doi.org/10.5194/bg-10-5627-2013, https://doi.org/10.5194/bg-10-5627-2013, 2013
K. Meusburger, G. Leitinger, L. Mabit, M. H. Mueller, and C. Alewell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-9505-2013, https://doi.org/10.5194/hessd-10-9505-2013, 2013
Preprint withdrawn
M. H. Mueller, R. Weingartner, and C. Alewell
Hydrol. Earth Syst. Sci., 17, 1661–1679, https://doi.org/10.5194/hess-17-1661-2013, https://doi.org/10.5194/hess-17-1661-2013, 2013
Related subject area
Subject: Snow and Ice | Techniques and Approaches: Instruments and observation techniques
How does a warm and low-snow winter impact the snow cover dynamics in a humid and discontinuous boreal forest? Insights from observations and modeling in eastern Canada
Climatology of snow depth and water equivalent measurements in the Italian Alps (1967–2020)
Contribution of rock glacier discharge to late summer and fall streamflow in the Uinta Mountains, Utah, USA
Monitoring snowpack outflow volumes and their isotopic composition to better understand streamflow generation during rain-on-snow events
Recent evolution and associated hydrological dynamics of a vanishing tropical Andean glacier: Glaciar de Conejeras, Colombia
Rainwater propagation through snowpack during rain-on-snow sprinkling experiments under different snow conditions
The importance of snowmelt spatiotemporal variability for isotope-based hydrograph separation in a high-elevation catchment
Dye tracing to determine flow properties of hydrocarbon-polluted Rabots glaciär, Kebnekaise, Sweden
Spatial distribution of stable water isotopes in alpine snow cover
From observation to the quantification of snow processes with a time-lapse camera network
Estimation of soil redistribution rates due to snow cover related processes in a mountainous area (Valle d'Aosta, NW Italy)
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, François Anctil, Tobias Jonas, and Étienne Tremblay
Hydrol. Earth Syst. Sci., 28, 2745–2765, https://doi.org/10.5194/hess-28-2745-2024, https://doi.org/10.5194/hess-28-2745-2024, 2024
Short summary
Short summary
Observations and simulations from an exceptionally low-snow and warm winter, which may become the new norm in the boreal forest of eastern Canada, show an earlier and slower snowmelt, reduced soil temperature, stronger vertical temperature gradients in the snowpack, and a significantly lower spring streamflow. The magnitude of these effects is either amplified or reduced with regard to the complex structure of the canopy.
Roberto Ranzi, Paolo Colosio, and Giorgio Galeati
Hydrol. Earth Syst. Sci., 28, 2555–2578, https://doi.org/10.5194/hess-28-2555-2024, https://doi.org/10.5194/hess-28-2555-2024, 2024
Short summary
Short summary
We studied temporal trends and variability of snow depth and snow water equivalent (SWE) in six regions of the Italian Alps. We applied different statistical analyses to a dataset of homogeneous and continuous measurements of snow depth and SWE, temporally spanning from 1967 to 2020, and discussed the results with meteo-climatic data. Our results quantify the decrease of SWE in the study area, confirming the impacts of climate modifications on the cryosphere in the Alps.
Jeffrey S. Munroe and Alexander L. Handwerger
Hydrol. Earth Syst. Sci., 27, 543–557, https://doi.org/10.5194/hess-27-543-2023, https://doi.org/10.5194/hess-27-543-2023, 2023
Short summary
Short summary
Rock glaciers are mixtures of ice and rock debris that are common landforms in high-mountain environments. We evaluated the role of rock glaciers as a component of mountain hydrology by collecting water samples during the summer and fall of 2021. Our results indicate that the water draining from rock glaciers late in the melt season is likely derived from old buried ice; they further demonstrate that this water collectively makes up about a quarter of streamflow during the month of September.
Andrea Rücker, Stefan Boss, James W. Kirchner, and Jana von Freyberg
Hydrol. Earth Syst. Sci., 23, 2983–3005, https://doi.org/10.5194/hess-23-2983-2019, https://doi.org/10.5194/hess-23-2983-2019, 2019
Short summary
Short summary
To better understand how rain-on-snow (ROS) events affect snowpack outflow volumes and streamflow generation, we measured snowpack outflow volumes and isotopic composition during 10 ROS events with automated snowmelt lysimeters at three locations in a pre-Alpine catchment. We quantified the spatio-temporal variability of snowpack outflow and its relative contribution to streamflow, and identified rainfall characteristics and initial snow depth as major controls on snow hydrological processes.
Enrique Morán-Tejeda, Jorge Luis Ceballos, Katherine Peña, Jorge Lorenzo-Lacruz, and Juan Ignacio López-Moreno
Hydrol. Earth Syst. Sci., 22, 5445–5461, https://doi.org/10.5194/hess-22-5445-2018, https://doi.org/10.5194/hess-22-5445-2018, 2018
Short summary
Short summary
We studied the recent evolution of a small glacier in the Colombian Andes that is close to extinction, focusing on the water release from the glacier. For this we used hydro-climatological data collected at the the glacier surroundings at an hourly resolution. Our results indicate that water from glacier melt increased as a consequence of accelerated glacier retreat, but up to a certain point (mid-2016) it started to decrease, with glacier melt becoming decreasingly important.
Roman Juras, Sebastian Würzer, Jirka Pavlásek, Tomáš Vitvar, and Tobias Jonas
Hydrol. Earth Syst. Sci., 21, 4973–4987, https://doi.org/10.5194/hess-21-4973-2017, https://doi.org/10.5194/hess-21-4973-2017, 2017
Short summary
Short summary
This research investigates the rainwater dynamics in the snowpack under artificial rain-on-snow events. Deuterium-enriched water was sprayed on the isolated snowpack and rainwater was further identified in the runoff. We found that runoff from cold snowpack was created faster than from the ripe snowpack. Runoff from the cold snowpack also contained more rainwater compared to the ripe snowpack. These results are valuable for further snowpack runoff forecasting.
Jan Schmieder, Florian Hanzer, Thomas Marke, Jakob Garvelmann, Michael Warscher, Harald Kunstmann, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 20, 5015–5033, https://doi.org/10.5194/hess-20-5015-2016, https://doi.org/10.5194/hess-20-5015-2016, 2016
Short summary
Short summary
We present novel research on the spatiotemporal variability of snowmelt isotopic content in a high-elevation catchment with complex terrain
to improve the isotope-based hydrograph separation method. A modelling approach was used to weight the plot-scale snowmelt isotopic content
with melt rates for the north- and south-facing slope. The investigations showed that it is important to sample at least north- and south-facing slopes,
because of distinct isotopic differences between both slopes.
C. C. Clason, C. Coch, J. Jarsjö, K. Brugger, P. Jansson, and G. Rosqvist
Hydrol. Earth Syst. Sci., 19, 2701–2715, https://doi.org/10.5194/hess-19-2701-2015, https://doi.org/10.5194/hess-19-2701-2015, 2015
N. Dietermann and M. Weiler
Hydrol. Earth Syst. Sci., 17, 2657–2668, https://doi.org/10.5194/hess-17-2657-2013, https://doi.org/10.5194/hess-17-2657-2013, 2013
J. Garvelmann, S. Pohl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 1415–1429, https://doi.org/10.5194/hess-17-1415-2013, https://doi.org/10.5194/hess-17-1415-2013, 2013
E. Ceaglio, K. Meusburger, M. Freppaz, E. Zanini, and C. Alewell
Hydrol. Earth Syst. Sci., 16, 517–528, https://doi.org/10.5194/hess-16-517-2012, https://doi.org/10.5194/hess-16-517-2012, 2012
Cited articles
Ackroyd, P.: Erosion by snow avalanche and implications for geomorphic stability, Torlesse Range, New-Zealand, Arct. Alp. Res., 19, 65–70, https://doi.org/10.2307/1551001, 1987.
Ajayi, I. R., Fischer, H. W., Burak, A., Qwasmeh, A., and Tabot, B.: Concentration and vertical distribution of 137Cs in the undisturbed soil of southwestern Nigeria, Health Phys., 92, 73–77, 2007.
Alewell, C., Meusburger, K., Juretzko, G., Mabit, L., and Ketterer, M.: Suitability of 239+240Pu as a tracer for soil erosion in alpine grasslands, Chemosphere, 103, 274–280, https://doi.org/10.1016/j.chemosphere.2013.12.016, 2014.
Arapis, G. D. and Karandinos, M. G.: Migration of 137Cs in the soil of sloping semi-natural ecosystems in Northern Greece, J. Environ. Radioact., 77, 133–142, https://doi.org/10.1016/j.jenvrad.2004.03.004, 2004.
Bell, I., Gardner, J., and Descally, F.: An estimate of snow avalanche debris transport, Kaghan Valley, Himalaya, Pakistan, Arct. Alp. Res., 22, 317–321, https://doi.org/10.2307/1551594, 1990.
Beniston, M.: Mountain weather and climate: A general overview and a focus on climatic change in the Alps, Hydrobiologica, 562, 3–16, 2006.
Benmansour, M., Mabit, L., Nouira, A., Moussadek, R., Bouksirate, H., Duchemin, M., and Benkdad, A.: Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137Cs and 210Pbex, J. Environ. Radioact., 115, 97–106, https://doi.org/10.1016/j.jenvrad.2012.07.013, 2013.
Ceaglio, E., Meusburger, K., Freppaz, M., Zanini, E., and Alewell, C.: Estimation of soil redistribution rates due to snow cover related processes in a mountainous area (Valle d'Aosta, NW Italy), Hydrol. Earth Syst. Sci., 16, 517–528, https://doi.org/10.5194/hess-16-517-2012, 2012.
Confortola, G., Maggioni, M., Freppaz, M., and Bocchiola, D.: Modelling soil removal from snow avalanches: A case study in the North-Western Italian Alps, Cold Reg. Sci. Technol., 70, 43–52, https://doi.org/10.1016/j.coldregions.2011.09.008, 2012.
Foster, G. R. and Highfill, R. E.: Effect of terraces on soil loss – USLE P-factor values for terraces, J. Soil Water Conserv., 38, 48–51, 1983.
Freppaz, M., Godone, D., Filippa, G., Maggioni, M., Lunardi, S., Williams, M. W., and Zanini, E.: Soil Erosion Caused by Snow Avalanches: a Case Study in the Aosta Valley (NW Italy), Arct. Antarct. Alp. Res., 42, 412–421, https://doi.org/10.1657/1938-4246-42.4.412, 2010.
Fuchs, S. and Keiler, M.: Variability of Natural Hazard Risk in the European Alps: Evidence from Damage Potential Exposed to Snow Avalanches, in: Disaster Mangement Handbook, edited by: Pinkowski, J., Crc Press-Taylor & Francis Group, Boca Raton, 267–279, 2008.
Gardner, J. S.: Observations on erosion by wet snow avalanches, Mount Rae area, Alberta, Canada, Arct. Alp. Res., 15, 271–274, https://doi.org/10.2307/1550929, 1983.
Haefeli, R.: Schnee, Lawinen, Firn und Gletscher, in: Ingenieur-Geologie, edited by: Bendel, L., Springer Vienna, Wien, 1948.
Heckmann, T., Wichmann, V., and Becht, M.: Sediment transport by avalanches in the Bavarian Alps revisited – a perspective on modelling, in: Geomorphology in Environmental Application:, edited by: Schmidt, K. H., Becht, M., Brunotte, E., Eitel, B., and Schrott, L., Zeitschrift Für Geomorphologie Supplement Series, Gebruder Borntraeger, Stuttgart, 11–25, 2005.
Hoeller, P., Fromm, R., and Leitinger, G.: Snow forces on forest plants due to creep and glide, Forest Ecol. Manage., 257, 546–552, https://doi.org/10.1016/j.foreco.2008.09.035, 2009.
In der Gand, H. R. and Zupancic, M.: Snow gliding and avalanches, IAHS-AISH Publ., 69, 230–242, 1966.
IUSS: World reference base for soil resources, Tech. Rep., FAO, 2006.
Jomelli, V. and Bertran, P.: Wet snow avalanche deposits in the French Alps: Structure and sedimentology, Geogr. Ann. Ser. A, 83, 15–28, https://doi.org/10.1111/j.0435-3676.2001.00141.x, 2001.
Juretzko, G.: Quantifizierung der Bodenerosion mit 137Cs und USLE in einem alpinen Hochtal (Val Piora, CH), Master, Environmental Sciences, Basel, 1–152, 2010.
Kinnell, P. I. A.: Why the universal soil loss equation and the revised version of it do not predict event erosion well, Hydrol. Process., 19, 851–854, https://doi.org/10.1002/hyp.5816, 2005.
Kinnell, P. I. A.: Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review, J. Hydrol., 385, 384–397, https://doi.org/10.1016/j.jhydrol.2010.01.024, 2010.
Kirchner, G.: Establishing reference inventories of 137Cs for soil erosion studies: Methodological aspects, Geoderma, 211, 107–115, https://doi.org/10.1016/j.geoderma.2013.07.011, 2013.
Konz, N., Schaub, M., Prasuhn, V., Bänninger, D., and Alewell, C.: Cesium-137-based erosion-rate determination of a steep mountainous region, J. Plant Nutr. Soil Sci., 172, 615–622, https://doi.org/10.1002/jpln.200800297, 2009.
Konz, N., Baenninger, D., Konz, M., Nearing, M., and Alewell, C.: Process identification of soil erosion in steep mountain regions, Hydrol. Earth Syst. Sci., 14, 675–686, https://doi.org/10.5194/hess-14-675-2010, 2010.
Konz, N., Prasuhn, V., and Alewell, C.: On the measurement of alpine soil erosion, Catena, 91, 63–71, https://doi.org/10.1016/j.catena.2011.09.010, 2012.
Leitinger, G., Holler, P., Tasser, E., Walde, J., and Tappeiner, U.: Development and validation of a spatial snow-glide model, Ecol. Modell., 211, 363–374, https://doi.org/10.1016/j.ecolmodel.2007.09.015, 2008.
Mabit, L. and Bernard, C.: Assessment of spatial distribution of fallout radionuclides through geostatistics concept, J. Environ. Radioact., 97, 206–219, https://doi.org/10.1016/j.jenvrad.2007.05.008, 2007.
Mabit, L., Bernard, C., Laverdiere, M. R., Wicherek, S., Garnier, J., and Mouchel, J. M.: Assessment of soil erosion in a small agricultural basin of the St. Lawrence River watershed, Hydrobiologia, 410, 263–268, 1999.
Mabit, L., Bernard, C., and Laverdiere, M. R.: Quantification of soil redistribution and sediment budget in a Canadian watershed from fallout caesium-137 (137Cs) data, Can. J. Soil Sci., 82, 423–431, 2002.
Mabit, L., Benmansour, M., and Walling, D. E.: Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pb(ex) and 7Be for assessing soil erosion and sedimentation, J. Environ. Radioact., 99, 1799–1807, https://doi.org/10.1016/j.jenvrad.2008.08.009, 2008.
Mabit, L., Meusburger, K., Fulajtar, E., and Alewell, C.: The usefulness of 137Cs as a tracer for soil erosion assessment: A critical reply to Parsons and Foster (2011), Earth-Sci. Rev., 137, 300–307, https://doi.org/10.1016/j.earscirev.2013.05.008, 2013.
Margreth, S.: Snow pressure on cableway masts: Analysis of damages and design approach, Cold Reg. Sci. Technol., 47, 4–15, https://doi.org/10.1016/j.coldregions.2006.08.020, 2007.
Matisoff, G. and Whiting, P. J.: Measuring Soil Erosion Rates Using Natural (Be-7, Pb-210) and Anthropogenic (137Cs, 239Pu, 240Pu) Radionuclides, Handbook of Environmental Isotope Geochemistry, Vols. 1 and 2, edited by: Baskaran, M., Springer-Verlag Berlin, Berlin, 487–519, 2011.
McClung, D. M. and Clarke, G. K. C.: The effects of free-water on snow gliding, J. Geophys. Res.-Solid, 92, 6301–6309, 1987.
Merritt, W. S., Letcher, R. A., and Jakeman, A. J.: A review of erosion and sediment transport models, Environ. Modell. Softw., 18, 761–799, 2003.
Meusburger, K. and Alewell, C.: On the influence of temporal change on the validity of landslide susceptibility maps, Nat. Hazards Earth Syst. Sci., 9, 1495–1507, https://doi.org/10.5194/nhess-9-1495-2009, 2009.
Meusburger, K., Banninger, D., and Alewell, C.: Estimating vegetation parameter for soil erosion assessment in an alpine catchment by means of QuickBird imagery, Int. J. Appl. Earth Obs. Geoinf., 12, 201–207, https://doi.org/10.1016/j.jag.2010.02.009, 2010a.
Meusburger, K., Konz, N., Schaub, M., and Alewell, C.: Soil erosion modelled with USLE and PESERA using QuickBird derived vegetation parameters in an alpine catchment, Int. J. Appl. Earth Obs. Geoinf., 12, 208–215, https://doi.org/10.1016/j.jag.2010.02.004, 2010b.
Meusburger, K., Mabit, L., Park, J.-H., Sandor, T., and Alewell, C.: Combined use of stable isotopes and fallout radionuclides as soil erosion indicators in a forested mountain site, South Korea, Biogeosciences, 10, 5627–5638, https://doi.org/10.5194/bg-10-5627-2013, 2013.
Nearing, M., Foster, G., Lane, L., and Finkner, S.: A process-based soil erosion model for USDA – water erosion prediction project technology, Trans. Am. Soc. Agr. Eng., 32, 1587–1593, 1989.
Newesely, C., Tasser, E., Spadinger, P., and Cernusca, A.: Effects of land-use changes on snow gliding processes in alpine ecosystems, Basic Appl. Ecol., 1, 61–67, https://doi.org/10.1078/1439-1791-00009, 2000.
Panagos, P., Meusburger, K., Van Liedekerke, M., Alewell, C., Hiederer, R., and Montanarella, L.: Assessing soil erosion in Europe based on data collected through a European Network, Soil Sci. Plant Nutr., 1–15, https://doi.org/10.1080/00380768.2013.835701, 2014.
Parker, S. P.: McGraw-Hill Dictionary of Scientific and Technical Terms, published by The McGraw-Hill Companies, Inc., New York City, 2002.
Renard, K. G., Foster, G. R., Weesies, G. A., MCCool, D. K., and Yoder, D. C.: Predicting soil erosion by water; a guide to conservation planning with the revised universal soil loss equation (RUSLE), US Department of Agriculture, Agricultural Research Service, 404 pp., 1997.
Riesen, T., Zimmermann, S., and Blaser, P.: Spatial Distribution of 137CS in Forest SOils of Switzerland, Water Air Soil Poll., 114, 277–285, https://doi.org/10.1023/a:1005045905690, 1999.
Risse, L. M., Nearing, M. A., Nicks, A. D., and Laflen, J. M.: Error assessment in the Universal Soil Loss Equation, Soil Sci. Soc. Am. J., 57, 825–833, 1993.
Rogler, H. and Schwertmann, U.: Rainfall erosivity and isoerodent map of Bavaria, Z. Kulturtech. Flurber., 22, 99–112, 1981.
Schaub, M., Konz, N., Meusburger, K., and Alewell, C.: Application of in-situ measurement to determine 137Cs in the Swiss Alps, J. Environ. Radioact., 101, 369–376, 2010.
Schimmack, W. and Schultz, W.: Migration of fallout radiocaesium in a grassland soil from 1986 to 2001 – Part 1: Activity-depth profiles of 134Cs and 137Cs, Sci. Total Environ., 368, 853–862, 2006.
Schimmack, W., Bunzl, K., and Zelles, L.: Initial rates of migration of radionuclides from the Chernobyl fallout in undisturbed soils, Geoderma, 44, 211–218, 1989.
Schuller, P., Bunzl, K., Voigt, G., Ellies, A., and Castillo, A.: Global fallout 137Cs accumulation and vertical migration in selected soils from South Patagonia, J. Environ. Radioact., 71, 43–60, https://doi.org/10.1016/s0265-931x(03)00140-1, 2004.
Schüpp, M.: Objective weather forecasts using statistical aids in Alps, Rivista Italiana Di Geofisica E Scienze Affini, 1, 32–36, 1975.
Shakhashiro, A. and Mabit, L.: Results of an IAEA inter-comparison exercise to assess 137Cs and total 210Pb analytical performance in soil, Appl. Radiat. Isotopes, 67, 139–146, 2009.
Smith, S. J., Williams, J. R., Menzel, R. G., and Coleman, G. A.: Prediction of sediment yield from Southern Plains grasslands with the Modified Universal Soil Loss Equation, J. Range Manage., 37, 295–297, https://doi.org/10.2307/3898697, 1984.
Stanchi, S., Freppaz, M., Ceaglio, E., Maggioni, M., Meusburger, K., Alewell, C., and Zanini, E.: Soil erosion in an avalanche release site (Valle d'Aosta: Italy): towards a winter factor for RUSLE in the Alps, Nat. Hazards Earth Syst. Sci., 14, 1761–1771, https://doi.org/10.5194/nhess-14-1761-2014, 2014.
Sutherland, R. A.: Caesium-137 soil sampling and inventory variability in reference locations: A literature survey, Hydrol. Process., 10, 43–53, 1996.
US Department of Agriculture, S. C. S.: Procedure for computing sheet and rill erosion on project areas, Technical Release No. 51 (Rev. 2), Soil Conservation Service, Engineering Division, 1977.
Walling, D. E., Zhang, Y., and He, Q.: Models for deriving estimates of erosion and deposition rates from fallout radionuclide (caesium-137, excess lead-210, and beryllium-7) measurements and the development of user friendly software for model implementation, in: Impact of Soil Conservation Measures on Erosion Control and Soil Quality, IAEA-TECDOC-1665, Vienna, 11–33, 2011.
Wischmeier, W. H. and Smith, D. D.: Predicting rainfall-erosion losses from cropland east of the Rocky Mountains, Agriculture Handbook 282, US Department of Agriculture, Washington, D.C., 1965.
Wischmeier, W. H. and Smith, D. D.: Predicting Rainfall Erosion Losses – A Guide to Conservation Planning, USDA/Science and Education Administration, US. Govt. Printing Office, Washington, D.C., 58 pp., 1978.