Articles | Volume 18, issue 8
Hydrol. Earth Syst. Sci., 18, 3225–3237, 2014
https://doi.org/10.5194/hess-18-3225-2014

Special issue: Hillslope hydrological modelling for landslides prediction

Hydrol. Earth Syst. Sci., 18, 3225–3237, 2014
https://doi.org/10.5194/hess-18-3225-2014

Research article 27 Aug 2014

Research article | 27 Aug 2014

Analysis of landslide triggering conditions in the Sarno area using a physically based model

G. Capparelli and P. Versace

Related authors

Big data managing in a landslide early warning system: experience from a ground-based interferometric radar application
Emanuele Intrieri, Federica Bardi, Riccardo Fanti, Giovanni Gigli, Francesco Fidolini, Nicola Casagli, Sandra Costanzo, Antonio Raffo, Giuseppe Di Massa, Giovanna Capparelli, and Pasquale Versace
Nat. Hazards Earth Syst. Sci., 17, 1713–1723, https://doi.org/10.5194/nhess-17-1713-2017,https://doi.org/10.5194/nhess-17-1713-2017, 2017
Short summary
Evaluating performance of simplified physically based models for shallow landslide susceptibility
Giuseppe Formetta, Giovanna Capparelli, and Pasquale Versace
Hydrol. Earth Syst. Sci., 20, 4585–4603, https://doi.org/10.5194/hess-20-4585-2016,https://doi.org/10.5194/hess-20-4585-2016, 2016
Short summary

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Modelling approaches
Estimation of rainfall erosivity based on WRF-derived raindrop size distributions
Qiang Dai, Jingxuan Zhu, Shuliang Zhang, Shaonan Zhu, Dawei Han, and Guonian Lv
Hydrol. Earth Syst. Sci., 24, 5407–5422, https://doi.org/10.5194/hess-24-5407-2020,https://doi.org/10.5194/hess-24-5407-2020, 2020
Short summary
Physically based model for gully simulation: application to the Brazilian semiarid region
Pedro Henrique Lima Alencar, José Carlos de Araújo, and Adunias dos Santos Teixeira
Hydrol. Earth Syst. Sci., 24, 4239–4255, https://doi.org/10.5194/hess-24-4239-2020,https://doi.org/10.5194/hess-24-4239-2020, 2020
Short summary
Assessing the perturbations of the hydrogeological regime in sloping fens due to roads
Fabien Cochand, Daniel Käser, Philippe Grosvernier, Daniel Hunkeler, and Philip Brunner
Hydrol. Earth Syst. Sci., 24, 213–226, https://doi.org/10.5194/hess-24-213-2020,https://doi.org/10.5194/hess-24-213-2020, 2020
Short summary
A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates
Rubianca Benavidez, Bethanna Jackson, Deborah Maxwell, and Kevin Norton
Hydrol. Earth Syst. Sci., 22, 6059–6086, https://doi.org/10.5194/hess-22-6059-2018,https://doi.org/10.5194/hess-22-6059-2018, 2018
Short summary
Hybridizing Bayesian and variational data assimilation for high-resolution hydrologic forecasting
Felipe Hernández and Xu Liang
Hydrol. Earth Syst. Sci., 22, 5759–5779, https://doi.org/10.5194/hess-22-5759-2018,https://doi.org/10.5194/hess-22-5759-2018, 2018
Short summary

Cited articles

Arnone, E., Noto, L. V., Lepore, C., and Bras, R. L.: Physically-based and distributed approach to analyze rainfall-triggered landslides at watershed scale, Geomorphology, 133, 121–131, https://doi.org/10.1016/j.geomorph.2011.03.019, 2011.
Baum, R. L., Savage, W. Z., and Godt, J. W.: TRIGRS – a FORTRAN program for transient rainfall infiltration and grid-based regional slope stability analysis, US Geological Survey Open-File Report, 02-0424, 2002.
Baum, R. L., Savage, W. Z., and Godt, J. W: TRIGRS-A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0, US Geological Survey Open-File Report 2008–1159, available at: http://pubs.usgs.gov/of/2008/1159/, 2008.
Caine, N.: The rainfall intensity-duration control of shallow landslides and debris flows, Geogr. Ann. A, 62, 23–27, 1980.
Calcaterra, D., Parise, M., Palma, B., and Pelella, L.: Multiple debris flows in volcanoclastic materials mantling carbonate slopes, in: Proceedings of the 2nd International Conference on Debris-FIow Hazard Mitigation, Taipei, Taiwan, 16–18 July 2000, 99–107, 2000.