Articles | Volume 17, issue 3
https://doi.org/10.5194/hess-17-1229-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-17-1229-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Snow accumulation/melting model (SAMM) for integrated use in regional scale landslide early warning systems
G. Martelloni
University of Firenze, Earth Sciences Department, Via La Pira 4, 50121 Firenze, Italy
now at: University of Firenze, Department of Industrial Engineering (CSDC – Center of the Study of Complex Dynamics), Via Santa Marta 3, 50139 Firenze, Italy
S. Segoni
University of Firenze, Earth Sciences Department, Via La Pira 4, 50121 Firenze, Italy
D. Lagomarsino
University of Firenze, Earth Sciences Department, Via La Pira 4, 50121 Firenze, Italy
R. Fanti
University of Firenze, Earth Sciences Department, Via La Pira 4, 50121 Firenze, Italy
F. Catani
University of Firenze, Earth Sciences Department, Via La Pira 4, 50121 Firenze, Italy
Related authors
No articles found.
Chengyong Fang, Xuanmei Fan, Xin Wang, Lorenzo Nava, Hao Zhong, Xiujun Dong, Jixiao Qi, and Filippo Catani
Earth Syst. Sci. Data, 16, 4817–4842, https://doi.org/10.5194/essd-16-4817-2024, https://doi.org/10.5194/essd-16-4817-2024, 2024
Short summary
Short summary
In this study, we present the largest publicly available landslide dataset, Globally Distributed Coseismic Landslide Dataset (GDCLD), which includes multi-sensor high-resolution images from various locations around the world. We test GDCLD with seven advanced algorithms and show that it is effective in achieving reliable landslide mapping across different triggers and environments, with great potential in enhancing emergency response and disaster management.
Lorenzo Nava, Alessandro Novellino, Chengyong Fang, Kushanav Bhuyan, Kathryn Leeming, Itahisa Gonzalez Alvarez, Claire Dashwood, Sophie Doward, Rahul Chahel, Emma McAllister, Sansar Raj Meena, and Filippo Catani
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-146, https://doi.org/10.5194/nhess-2024-146, 2024
Preprint under review for NHESS
Short summary
Short summary
On April 2, 2024, a Mw 7.4 earthquake hit Taiwan’s eastern coast, causing extensive landslides and damage. We used automated methods combining Earth Observation (EO) data with Artificial Intelligence (AI) to quickly inventory the landslides. This approach identified 7,090 landslides over 75 km2 within 3 hours of acquiring the EO imagery. The study highlights AI’s role in improving landslide detection and understanding earthquake-landslide interactions for better hazard mitigation.
Sansar Raj Meena, Lorenzo Nava, Kushanav Bhuyan, Silvia Puliero, Lucas Pedrosa Soares, Helen Cristina Dias, Mario Floris, and Filippo Catani
Earth Syst. Sci. Data, 15, 3283–3298, https://doi.org/10.5194/essd-15-3283-2023, https://doi.org/10.5194/essd-15-3283-2023, 2023
Short summary
Short summary
Landslides occur often across the world, with the potential to cause significant damage. Although a substantial amount of research has been conducted on the mapping of landslides using remote-sensing data, gaps and uncertainties remain when developing models to be operational at the global scale. To address this issue, we present the High-Resolution Global landslide Detector Database (HR-GLDD) for landslide mapping with landslide instances from 10 different physiographical regions globally.
Sansar Raj Meena, Silvia Puliero, Kushanav Bhuyan, Mario Floris, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, https://doi.org/10.5194/nhess-22-1395-2022, https://doi.org/10.5194/nhess-22-1395-2022, 2022
Short summary
Short summary
The study investigated the importance of the conditioning factors in predicting landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors (features) in the overall prediction capabilities of the statistical and machine learning algorithms.
Giovanni Forzieri, Matteo Pecchi, Marco Girardello, Achille Mauri, Marcus Klaus, Christo Nikolov, Marius Rüetschi, Barry Gardiner, Julián Tomaštík, David Small, Constantin Nistor, Donatas Jonikavicius, Jonathan Spinoni, Luc Feyen, Francesca Giannetti, Rinaldo Comino, Alessandro Wolynski, Francesco Pirotti, Fabio Maistrelli, Ionut Savulescu, Stéphanie Wurpillot-Lucas, Stefan Karlsson, Karolina Zieba-Kulawik, Paulina Strejczek-Jazwinska, Martin Mokroš, Stefan Franz, Lukas Krejci, Ionel Haidu, Mats Nilsson, Piotr Wezyk, Filippo Catani, Yi-Ying Chen, Sebastiaan Luyssaert, Gherardo Chirici, Alessandro Cescatti, and Pieter S. A. Beck
Earth Syst. Sci. Data, 12, 257–276, https://doi.org/10.5194/essd-12-257-2020, https://doi.org/10.5194/essd-12-257-2020, 2020
Short summary
Short summary
Strong winds may uproot and break trees and represent a risk for forests. Despite the importance of this natural disturbance and possible intensification in view of climate change, spatial information about wind-related impacts is currently missing on a pan-European scale. We present a new database of wind disturbances in European forests comprised of more than 80 000 records over the period 2000–2018. Our database is a unique spatial source for the study of forest disturbances at large scales.
Samuele Segoni, Luca Piciullo, and Stefano Luigi Gariano
Nat. Hazards Earth Syst. Sci., 18, 3179–3186, https://doi.org/10.5194/nhess-18-3179-2018, https://doi.org/10.5194/nhess-18-3179-2018, 2018
Teresa Salvatici, Veronica Tofani, Guglielmo Rossi, Michele D'Ambrosio, Carlo Tacconi Stefanelli, Elena Benedetta Masi, Ascanio Rosi, Veronica Pazzi, Pietro Vannocci, Miriana Petrolo, Filippo Catani, Sara Ratto, Hervè Stevenin, and Nicola Casagli
Nat. Hazards Earth Syst. Sci., 18, 1919–1935, https://doi.org/10.5194/nhess-18-1919-2018, https://doi.org/10.5194/nhess-18-1919-2018, 2018
Short summary
Short summary
In this paper, we present the application of the physically based HIRESSS model (High Resolution Stability Simulator) to forecast the occurrence of shallow landslides in a portion of the Aosta Valley region (Italy). An in-depth study of the geotechnical and hydrological properties of the hillslopes controlling shallow landslides formation was conducted, in order to generate an input map of parameters. The main aim of this study is to set up a regional landslide early warning system.
Samuele Segoni, Ascanio Rosi, Daniela Lagomarsino, Riccardo Fanti, and Nicola Casagli
Nat. Hazards Earth Syst. Sci., 18, 807–812, https://doi.org/10.5194/nhess-18-807-2018, https://doi.org/10.5194/nhess-18-807-2018, 2018
Short summary
Short summary
We improve the warning system (WS) used to forecast landslides in Emilia Romagna (Italy) by using averaged soil moisture estimates. We tested two approaches. The first (based on a soil moisture threshold under which the original WS is not used) is very simple, reduces false alarms and can be easily applied elsewhere. The second (integrating rainfall and soil moisture thresholds in the WS) is more complicated but reduces both false alarms and missed alarms.
Federica Ferrigno, Giovanni Gigli, Riccardo Fanti, Emanuele Intrieri, and Nicola Casagli
Nat. Hazards Earth Syst. Sci., 17, 845–860, https://doi.org/10.5194/nhess-17-845-2017, https://doi.org/10.5194/nhess-17-845-2017, 2017
Short summary
Short summary
This paper represents one of the main outcomes of a 3-year PhD program at the Earth Sciences Department of the University of Firenze (Centre of Competence of the Italian Civil Protection for geohazards). The main objectives of this paper were to investigate the landslide kinematics through the monitoring activity using GB-InSAR technology and to validate the stabilization works effectiveness using the coupled action of the GB-InSAR and the observational method (OM).
D. Lagomarsino, S. Segoni, A. Rosi, G. Rossi, A. Battistini, F. Catani, and N. Casagli
Nat. Hazards Earth Syst. Sci., 15, 2413–2423, https://doi.org/10.5194/nhess-15-2413-2015, https://doi.org/10.5194/nhess-15-2413-2015, 2015
S. Segoni, A. Battistini, G. Rossi, A. Rosi, D. Lagomarsino, F. Catani, S. Moretti, and N. Casagli
Nat. Hazards Earth Syst. Sci., 15, 853–861, https://doi.org/10.5194/nhess-15-853-2015, https://doi.org/10.5194/nhess-15-853-2015, 2015
Short summary
Short summary
We monitor and forecast (with lead times up to 48h) regional-scale landslide hazard with an early warning system (EWS) implemented on a user-friendly WebGIS interface.
The EWS detects the most critical rainfall conditions using a mosaic of 25 site-specific thresholds. Moreover, when the rainfall paths recorded by the instruments are compared with the thresholds, the thresholds are shifted in the time axis and adjusted to all possible starting times until the most hazardous scenario is found.
S. Segoni, A. Rosi, G. Rossi, F. Catani, and N. Casagli
Nat. Hazards Earth Syst. Sci., 14, 2637–2648, https://doi.org/10.5194/nhess-14-2637-2014, https://doi.org/10.5194/nhess-14-2637-2014, 2014
F. Catani, D. Lagomarsino, S. Segoni, and V. Tofani
Nat. Hazards Earth Syst. Sci., 13, 2815–2831, https://doi.org/10.5194/nhess-13-2815-2013, https://doi.org/10.5194/nhess-13-2815-2013, 2013
P. Mercogliano, S. Segoni, G. Rossi, B. Sikorsky, V. Tofani, P. Schiano, F. Catani, and N. Casagli
Nat. Hazards Earth Syst. Sci., 13, 771–777, https://doi.org/10.5194/nhess-13-771-2013, https://doi.org/10.5194/nhess-13-771-2013, 2013
V. Tofani, S. Segoni, A. Agostini, F. Catani, and N. Casagli
Nat. Hazards Earth Syst. Sci., 13, 299–309, https://doi.org/10.5194/nhess-13-299-2013, https://doi.org/10.5194/nhess-13-299-2013, 2013
G. Rossi, F. Catani, L. Leoni, S. Segoni, and V. Tofani
Nat. Hazards Earth Syst. Sci., 13, 151–166, https://doi.org/10.5194/nhess-13-151-2013, https://doi.org/10.5194/nhess-13-151-2013, 2013
Related subject area
Subject: Hillslope hydrology | Techniques and Approaches: Modelling approaches
Technical note: Monitoring discharge of mountain streams by retrieving image features with deep learning
Investigation of the functional relationship between antecedent rainfall and the probability of debris flow occurrence in Jiangjia Gully, China
Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks
Understanding hydrologic controls of sloping soil response to precipitation through machine learning analysis applied to synthetic data
Elucidating the role of soil hydraulic properties on aspect-dependent landslide initiation
Recession discharge from compartmentalized bedrock hillslopes
Frozen soil hydrological modeling for a mountainous catchment northeast of the Qinghai–Tibet Plateau
On the similarity of hillslope hydrologic function: a clustering approach based on groundwater changes
Spatiotemporal changes in flow hydraulic characteristics and soil loss during gully headcut erosion under controlled conditions
Estimation of rainfall erosivity based on WRF-derived raindrop size distributions
Physically based model for gully simulation: application to the Brazilian semiarid region
Assessing the perturbations of the hydrogeological regime in sloping fens due to roads
A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates
Hybridizing Bayesian and variational data assimilation for high-resolution hydrologic forecasting
Multi-source data assimilation for physically based hydrological modeling of an experimental hillslope
A new method, with application, for analysis of the impacts on flood risk of widely distributed enhanced hillslope storage
Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem
Reconstructing long-term gully dynamics in Mediterranean agricultural areas
Evaluating performance of simplified physically based models for shallow landslide susceptibility
Multiresponse modeling of variably saturated flow and isotope tracer transport for a hillslope experiment at the Landscape Evolution Observatory
Determinants of modelling choices for 1-D free-surface flow and morphodynamics in hydrology and hydraulics: a review
Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale
Quantification of the influence of preferential flow on slope stability using a numerical modelling approach
Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models
Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach
Stable water isotope tracing through hydrological models for disentangling runoff generation processes at the hillslope scale
Analysis of landslide triggering conditions in the Sarno area using a physically based model
The influence of grid resolution on the prediction of natural and road-related shallow landslides
Incipient subsurface heterogeneity and its effect on overland flow generation – insight from a modeling study of the first experiment at the Biosphere 2 Landscape Evolution Observatory
Coupled prediction of flood response and debris flow initiation during warm- and cold-season events in the Southern Appalachians, USA
Predicting subsurface stormflow response of a forested hillslope – the role of connected flow paths
Interplay of riparian forest and groundwater in the hillslope hydrology of Sudanian West Africa (northern Benin)
A model-based assessment of the potential use of compound-specific stable isotope analysis in river monitoring of diffuse pesticide pollution
A paradigm shift in stormflow predictions for active tectonic regions with large-magnitude storms: generalisation of catchment observations by hydraulic sensitivity analysis and insight into soil-layer evolution
Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems
Statistical analysis and modelling of surface runoff from arable fields in central Europe
Hydrological modelling of a slope covered with shallow pyroclastic deposits from field monitoring data
Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico
Characterization of groundwater dynamics in landslides in varved clays
A critical assessment of simple recharge models: application to the UK Chalk
The effect of spatial throughfall patterns on soil moisture patterns at the hillslope scale
Suspended sediment concentration–discharge relationships in the (sub-) humid Ethiopian highlands
A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide
Scale effect on overland flow connectivity at the plot scale
Physical models for classroom teaching in hydrology
Coupling the modified SCS-CN and RUSLE models to simulate hydrological effects of restoring vegetation in the Loess Plateau of China
Effects of peatland drainage management on peak flows
A conceptual model of the hydrological influence of fissures on landslide activity
A structure generator for modelling the initial sediment distribution of an artificial hydrologic catchment
A novel explicit approach to model bromide and pesticide transport in connected soil structures
Chenqi Fang, Genyu Yuan, Ziying Zheng, Qirui Zhong, and Kai Duan
Hydrol. Earth Syst. Sci., 28, 4085–4098, https://doi.org/10.5194/hess-28-4085-2024, https://doi.org/10.5194/hess-28-4085-2024, 2024
Short summary
Short summary
Measuring discharge at steep, rocky mountain streams is challenging due to the difficulties in identifying cross-section characteristics and establishing stable stage–discharge relationships. We present a novel method using only a low-cost commercial camera and deep learning algorithms. Our study shows that deep convolutional neural networks can automatically recognize and retrieve complex stream features embedded in RGB images to achieve continuous discharge monitoring.
Shaojie Zhang, Xiaohu Lei, Hongjuan Yang, Kaiheng Hu, Juan Ma, Dunlong Liu, and Fanqiang Wei
Hydrol. Earth Syst. Sci., 28, 2343–2355, https://doi.org/10.5194/hess-28-2343-2024, https://doi.org/10.5194/hess-28-2343-2024, 2024
Short summary
Short summary
Antecedent effective precipitation (AEP) plays an important role in debris flow formation, but the relationship between AEP and the debris flow occurrence (Pdf) is still not quantified. We used numerical calculation and the Monte Carlo integration method to solve this issue. The relationship between Pdf and AEP can be described by the piecewise function, and debris flow is a small-probability event comparing to rainfall frequency because the maximum Pdf in Jiangjia Gully is only 15.88 %.
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023, https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary
Short summary
To overcome the computational cost of numerical models, we propose a deep-learning approach inspired by hydraulic models that can simulate the spatio-temporal evolution of floods. We show that the model can rapidly predict dike breach floods over different topographies and breach locations, with limited use of ground-truth data.
Daniel Camilo Roman Quintero, Pasquale Marino, Giovanni Francesco Santonastaso, and Roberto Greco
Hydrol. Earth Syst. Sci., 27, 4151–4172, https://doi.org/10.5194/hess-27-4151-2023, https://doi.org/10.5194/hess-27-4151-2023, 2023
Short summary
Short summary
This study shows a methodological approach using machine learning techniques to disentangle the relationships among the variables in a synthetic dataset to identify suitable variables that control the hydrologic response of the slopes. It has been found that not only is the rainfall responsible for the water accumulation in the slope; the ground conditions (soil water content and aquifer water level) also indicate the activation of natural slope drainage mechanisms.
Yanglin Guo and Chao Ma
Hydrol. Earth Syst. Sci., 27, 1667–1682, https://doi.org/10.5194/hess-27-1667-2023, https://doi.org/10.5194/hess-27-1667-2023, 2023
Short summary
Short summary
In a localized area with the same vegetation, an overwhelming propensity of shallow landslides on the south-facing slope over the north-facing slope could not be attributed to plant roots. We provide new evidence from the pore water pressure of failing mass, unsaturated hydraulic conductivity, water storage, and drainage and the hillslope stability fluctuation to prove that the infinite slope model may be suitable for elucidating the aspect-dependent landslide distribution in the study area.
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022, https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Short summary
Streamflow dynamics are directly dependent on contributions from groundwater, with hillslope heterogeneity being a major driver in controlling both spatial and temporal variabilities in recession discharge behaviors. By analysing new model results, this paper identifies the major structural features of aquifers driving streamflow dynamics. It provides important guidance to inform catchment-to-regional-scale models, with key geological knowledge influencing groundwater–surface water interactions.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci., 26, 4187–4208, https://doi.org/10.5194/hess-26-4187-2022, https://doi.org/10.5194/hess-26-4187-2022, 2022
Short summary
Short summary
Frozen soil hydrology is one of the 23 unsolved problems in hydrology (UPH). In this study, we developed a novel conceptual frozen soil hydrological model, FLEX-Topo-FS. The model successfully reproduced the soil freeze–thaw process, and its impacts on hydrologic connectivity, runoff generation, and groundwater. We believe this study is a breakthrough for the 23 UPH, giving us new insights on frozen soil hydrology, with broad implications for predicting cold region hydrology in future.
Fadji Z. Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci., 26, 3805–3823, https://doi.org/10.5194/hess-26-3805-2022, https://doi.org/10.5194/hess-26-3805-2022, 2022
Short summary
Short summary
We propose a hillslope clustering approach based on the seasonal changes in groundwater levels and test its performance by comparing it to several common clustering approaches (aridity index, topographic wetness index, elevation, land cover, and machine-learning clustering). The proposed approach is robust as it reasonably categorizes hillslopes with similar elevation, land cover, hydroclimate, land surface processes, and subsurface hydrodynamics, hence a similar hydrologic function.
Mingming Guo, Zhuoxin Chen, Wenlong Wang, Tianchao Wang, Qianhua Shi, Hongliang Kang, Man Zhao, and Lanqian Feng
Hydrol. Earth Syst. Sci., 25, 4473–4494, https://doi.org/10.5194/hess-25-4473-2021, https://doi.org/10.5194/hess-25-4473-2021, 2021
Short summary
Short summary
Gully headcut erosion is always a difficult issue in soil erosion, which hinders the revelation of gully erosion mechanisms and the establishment of a gully erosion model. This study clarified the spatiotemporal changes in flow properties, energy consumption, and soil loss, confirming that gully head consumed the most of flow energy (78 %) and can contribute 89 % of total soil loss. Critical energy consumption initiating soil erosion of the upstream area, gully head, and gully bed is confirmed.
Qiang Dai, Jingxuan Zhu, Shuliang Zhang, Shaonan Zhu, Dawei Han, and Guonian Lv
Hydrol. Earth Syst. Sci., 24, 5407–5422, https://doi.org/10.5194/hess-24-5407-2020, https://doi.org/10.5194/hess-24-5407-2020, 2020
Short summary
Short summary
Rainfall is a driving force that accounts for a large proportion of soil loss around the world. Most previous studies used a fixed rainfall–energy relationship to estimate rainfall energy, ignoring the spatial and temporal changes of raindrop microphysical processes. This study proposes a novel method for large-scale and long-term rainfall energy and rainfall erosivity investigations based on rainfall microphysical parameterization schemes in the Weather Research and Forecasting (WRF) model.
Pedro Henrique Lima Alencar, José Carlos de Araújo, and Adunias dos Santos Teixeira
Hydrol. Earth Syst. Sci., 24, 4239–4255, https://doi.org/10.5194/hess-24-4239-2020, https://doi.org/10.5194/hess-24-4239-2020, 2020
Short summary
Short summary
Soil erosion by water has been emphasized as a key problem to be faced in the 21st century. Thus, it is critical to understand land degradation and to answer fundamental questions regarding how and why such processes occur. Here, we present a model for gully erosion (channels carved by rainwater) based on existing equations, and we identify some major variables that influence the initiation and evolution of this process. The successful model can help in planning soil conservation practices.
Fabien Cochand, Daniel Käser, Philippe Grosvernier, Daniel Hunkeler, and Philip Brunner
Hydrol. Earth Syst. Sci., 24, 213–226, https://doi.org/10.5194/hess-24-213-2020, https://doi.org/10.5194/hess-24-213-2020, 2020
Short summary
Short summary
Roads in sloping fens constitute a hydraulic barrier for surface and subsurface flow. This can lead to the drying out of downslope areas of the fen as well as gully erosion. By combining fieldwork and numerical models, this study presents an assessment of the hydrogeological impact of three road structures especially designed to limit their impact. The study shows that the impact of roads on the hydrological regime in fens can be significantly reduced by using appropriate engineering measures.
Rubianca Benavidez, Bethanna Jackson, Deborah Maxwell, and Kevin Norton
Hydrol. Earth Syst. Sci., 22, 6059–6086, https://doi.org/10.5194/hess-22-6059-2018, https://doi.org/10.5194/hess-22-6059-2018, 2018
Short summary
Short summary
Soil erosion is a global problem and models identify vulnerable areas for management. One such model is the Revised Universal Soil Loss Equation. We review its different sub-factors and compile studies and equations that modified it for local conditions. The limitations of RUSLE include its data requirements and exclusion of gullying and landslides. Future directions include accounting for these erosion types. This paper serves as a reference for others working with RUSLE and related approaches.
Felipe Hernández and Xu Liang
Hydrol. Earth Syst. Sci., 22, 5759–5779, https://doi.org/10.5194/hess-22-5759-2018, https://doi.org/10.5194/hess-22-5759-2018, 2018
Short summary
Short summary
Predicting floods requires first knowing the amount of water in the valleys, which is complicated because we cannot know for sure how much water there is in the soil. We created a unique system that combines the best methods to estimate these conditions accurately based on the observed water flow in the rivers and on detailed simulations of the valleys. Comparisons with popular methods show that our system can produce realistic predictions efficiently, even for very detailed river networks.
Anna Botto, Enrica Belluco, and Matteo Camporese
Hydrol. Earth Syst. Sci., 22, 4251–4266, https://doi.org/10.5194/hess-22-4251-2018, https://doi.org/10.5194/hess-22-4251-2018, 2018
Short summary
Short summary
We present a multivariate application of the ensemble Kalman filter (EnKF) in hydrological modeling of a real-world hillslope test case with dominant unsaturated dynamics and strong nonlinearities. Overall, the EnKF is able to correctly update system state and soil parameters. However, multivariate data assimilation may lead to significant tradeoffs between model predictions of different variables, if the observation data are not high quality or representative.
Peter Metcalfe, Keith Beven, Barry Hankin, and Rob Lamb
Hydrol. Earth Syst. Sci., 22, 2589–2605, https://doi.org/10.5194/hess-22-2589-2018, https://doi.org/10.5194/hess-22-2589-2018, 2018
Short summary
Short summary
Flooding is a significant hazard and extreme events in recent years have focused attention on effective means of reducing its risk. An approach known as natural flood management (NFM) seeks to increase flood resilience by a range of measures that work with natural processes. The paper develops a modelling approach to assess one type NFM of intervention – distributed additional hillslope storage features – and demonstrates that more strategic placement is required than has hitherto been applied.
Abraham Endalamaw, W. Robert Bolton, Jessica M. Young-Robertson, Don Morton, Larry Hinzman, and Bart Nijssen
Hydrol. Earth Syst. Sci., 21, 4663–4680, https://doi.org/10.5194/hess-21-4663-2017, https://doi.org/10.5194/hess-21-4663-2017, 2017
Short summary
Short summary
This study applies plot-scale and hill-slope knowledge to a process-based mesoscale model to improve the skill of distributed hydrological models to simulate the spatially and basin-integrated hydrological processes of complex ecosystems in the sub-arctic boreal forest. We developed a sub-grid parameterization method to parameterize the surface heterogeneity of interior Alaskan discontinuous permafrost watersheds.
Antonio Hayas, Tom Vanwalleghem, Ana Laguna, Adolfo Peña, and Juan V. Giráldez
Hydrol. Earth Syst. Sci., 21, 235–249, https://doi.org/10.5194/hess-21-235-2017, https://doi.org/10.5194/hess-21-235-2017, 2017
Short summary
Short summary
Gully erosion is one of the most important erosion processes. In this study, we provide new data on gully dynamics over long timescales with an unprecedented temporal resolution. We apply a new Monte Carlo based method for calculating gully volumes based on orthophotos and, especially, for constraining uncertainties of these estimations. Our results show that gully erosion rates are highly variable from year to year and significantly higher than other erosion processes.
Giuseppe Formetta, Giovanna Capparelli, and Pasquale Versace
Hydrol. Earth Syst. Sci., 20, 4585–4603, https://doi.org/10.5194/hess-20-4585-2016, https://doi.org/10.5194/hess-20-4585-2016, 2016
Short summary
Short summary
This paper focuses on performance evaluation of simplified, physically based landslide susceptibility models. It presents a new methodology to systemically and objectively calibrate, verify, and compare different models and models performances indicators in order to individuate and select the models whose behavior is more reliable for a certain case study. The procedure was implemented in a package for landslide susceptibility analysis and integrated the open-source hydrological model NewAge.
Carlotta Scudeler, Luke Pangle, Damiano Pasetto, Guo-Yue Niu, Till Volkmann, Claudio Paniconi, Mario Putti, and Peter Troch
Hydrol. Earth Syst. Sci., 20, 4061–4078, https://doi.org/10.5194/hess-20-4061-2016, https://doi.org/10.5194/hess-20-4061-2016, 2016
Short summary
Short summary
Very few studies have applied a physically based hydrological model with integrated and distributed multivariate observation data of both flow and transport phenomena. In this study we address this challenge for a hillslope-scale unsaturated zone isotope tracer experiment. The results show how model complexity evolves as the number and detail of simulated responses increases. Possible gaps in process representation for simulating solute transport phenomena in very dry soils are discussed.
Bruno Cheviron and Roger Moussa
Hydrol. Earth Syst. Sci., 20, 3799–3830, https://doi.org/10.5194/hess-20-3799-2016, https://doi.org/10.5194/hess-20-3799-2016, 2016
Short summary
Short summary
This review paper investigates the determinants of modelling choices for numerous applications of 1-D free-surface flow and morphodynamics in hydrology and hydraulics. Each case study has a signature composed of given contexts (spatiotemporal scales, flow typology, and phenomenology) and chosen concepts (refinement and subscales of the flow model). This review proposes a normative procedure possibly enriched by the community for a larger, comprehensive and updated image of modelling strategies.
F. Todisco, L. Brocca, L. F. Termite, and W. Wagner
Hydrol. Earth Syst. Sci., 19, 3845–3856, https://doi.org/10.5194/hess-19-3845-2015, https://doi.org/10.5194/hess-19-3845-2015, 2015
Short summary
Short summary
We developed a new formulation of USLE, named Soil Moisture for Erosion (SM4E), that directly incorporates soil moisture information. SM4E is applied here by using modeled data and satellite observations obtained from the Advanced SCATterometer (ASCAT). SM4E is found to outperform USLE and USLE-MM models in silty–clay soil in central Italy. Through satellite data, there is the potential of applying SM4E for large-scale monitoring and quantification of the soil erosion process.
W. Shao, T. A. Bogaard, M. Bakker, and R. Greco
Hydrol. Earth Syst. Sci., 19, 2197–2212, https://doi.org/10.5194/hess-19-2197-2015, https://doi.org/10.5194/hess-19-2197-2015, 2015
Short summary
Short summary
The effect of preferential flow on the stability of landslides is studied through numerical simulation of two types of rainfall events on a hypothetical hillslope. A model is developed that consists of two parts. The first part is a model for combined saturated/unsaturated subsurface flow and is used to compute the spatial and temporal water pressure response to rainfall. Preferential flow is simulated with a dual-permeability continuum model consisting of a matrix/preferential flow domain.
O. Fovet, L. Ruiz, M. Hrachowitz, M. Faucheux, and C. Gascuel-Odoux
Hydrol. Earth Syst. Sci., 19, 105–123, https://doi.org/10.5194/hess-19-105-2015, https://doi.org/10.5194/hess-19-105-2015, 2015
Short summary
Short summary
We studied the annual hysteretic patterns observed between stream flow and water storage in the saturated and unsaturated zones of a hillslope and a riparian zone. We described these signatures using a hysteresis index and then used this to assess conceptual hydrological models. This led us to identify four hydrological periods and a clearly distinct behaviour between riparian and hillslope groundwaters and to provide new information about the model performances.
D. J. Peres and A. Cancelliere
Hydrol. Earth Syst. Sci., 18, 4913–4931, https://doi.org/10.5194/hess-18-4913-2014, https://doi.org/10.5194/hess-18-4913-2014, 2014
Short summary
Short summary
A Monte Carlo approach, combining rainfall-stochastic models and hydrological and slope stability physically based models, is used to derive rainfall thresholds of landslide triggering. The uncertainty in threshold assessment related to variability of rainfall intensity within events and to past rainfall (antecedent rainfall) is analyzed and measured via ROC-based indexes, with a specific focus dedicated to the widely used power-law rainfall intensity-duration (I-D) thresholds.
D. Windhorst, P. Kraft, E. Timbe, H.-G. Frede, and L. Breuer
Hydrol. Earth Syst. Sci., 18, 4113–4127, https://doi.org/10.5194/hess-18-4113-2014, https://doi.org/10.5194/hess-18-4113-2014, 2014
G. Capparelli and P. Versace
Hydrol. Earth Syst. Sci., 18, 3225–3237, https://doi.org/10.5194/hess-18-3225-2014, https://doi.org/10.5194/hess-18-3225-2014, 2014
D. Penna, M. Borga, G. T. Aronica, G. Brigandì, and P. Tarolli
Hydrol. Earth Syst. Sci., 18, 2127–2139, https://doi.org/10.5194/hess-18-2127-2014, https://doi.org/10.5194/hess-18-2127-2014, 2014
G.-Y. Niu, D. Pasetto, C. Scudeler, C. Paniconi, M. Putti, P. A. Troch, S. B. DeLong, K. Dontsova, L. Pangle, D. D. Breshears, J. Chorover, T. E. Huxman, J. Pelletier, S. R. Saleska, and X. Zeng
Hydrol. Earth Syst. Sci., 18, 1873–1883, https://doi.org/10.5194/hess-18-1873-2014, https://doi.org/10.5194/hess-18-1873-2014, 2014
J. Tao and A. P. Barros
Hydrol. Earth Syst. Sci., 18, 367–388, https://doi.org/10.5194/hess-18-367-2014, https://doi.org/10.5194/hess-18-367-2014, 2014
J. Wienhöfer and E. Zehe
Hydrol. Earth Syst. Sci., 18, 121–138, https://doi.org/10.5194/hess-18-121-2014, https://doi.org/10.5194/hess-18-121-2014, 2014
A. Richard, S. Galle, M. Descloitres, J.-M. Cohard, J.-P. Vandervaere, L. Séguis, and C. Peugeot
Hydrol. Earth Syst. Sci., 17, 5079–5096, https://doi.org/10.5194/hess-17-5079-2013, https://doi.org/10.5194/hess-17-5079-2013, 2013
S. R. Lutz, H. J. van Meerveld, M. J. Waterloo, H. P. Broers, and B. M. van Breukelen
Hydrol. Earth Syst. Sci., 17, 4505–4524, https://doi.org/10.5194/hess-17-4505-2013, https://doi.org/10.5194/hess-17-4505-2013, 2013
Makoto Tani
Hydrol. Earth Syst. Sci., 17, 4453–4470, https://doi.org/10.5194/hess-17-4453-2013, https://doi.org/10.5194/hess-17-4453-2013, 2013
M. N. Papa, V. Medina, F. Ciervo, and A. Bateman
Hydrol. Earth Syst. Sci., 17, 4095–4107, https://doi.org/10.5194/hess-17-4095-2013, https://doi.org/10.5194/hess-17-4095-2013, 2013
P. Fiener, K. Auerswald, F. Winter, and M. Disse
Hydrol. Earth Syst. Sci., 17, 4121–4132, https://doi.org/10.5194/hess-17-4121-2013, https://doi.org/10.5194/hess-17-4121-2013, 2013
R. Greco, L. Comegna, E. Damiano, A. Guida, L. Olivares, and L. Picarelli
Hydrol. Earth Syst. Sci., 17, 4001–4013, https://doi.org/10.5194/hess-17-4001-2013, https://doi.org/10.5194/hess-17-4001-2013, 2013
C. Lepore, E. Arnone, L. V. Noto, G. Sivandran, and R. L. Bras
Hydrol. Earth Syst. Sci., 17, 3371–3387, https://doi.org/10.5194/hess-17-3371-2013, https://doi.org/10.5194/hess-17-3371-2013, 2013
J. E. van der Spek, T. A. Bogaard, and M. Bakker
Hydrol. Earth Syst. Sci., 17, 2171–2183, https://doi.org/10.5194/hess-17-2171-2013, https://doi.org/10.5194/hess-17-2171-2013, 2013
A. M. Ireson and A. P. Butler
Hydrol. Earth Syst. Sci., 17, 2083–2096, https://doi.org/10.5194/hess-17-2083-2013, https://doi.org/10.5194/hess-17-2083-2013, 2013
A. M. J. Coenders-Gerrits, L. Hopp, H. H. G. Savenije, and L. Pfister
Hydrol. Earth Syst. Sci., 17, 1749–1763, https://doi.org/10.5194/hess-17-1749-2013, https://doi.org/10.5194/hess-17-1749-2013, 2013
C. D. Guzman, S. A. Tilahun, A. D. Zegeye, and T. S. Steenhuis
Hydrol. Earth Syst. Sci., 17, 1067–1077, https://doi.org/10.5194/hess-17-1067-2013, https://doi.org/10.5194/hess-17-1067-2013, 2013
D. M. Krzeminska, T. A. Bogaard, J.-P. Malet, and L. P. H. van Beek
Hydrol. Earth Syst. Sci., 17, 947–959, https://doi.org/10.5194/hess-17-947-2013, https://doi.org/10.5194/hess-17-947-2013, 2013
A. Peñuela, M. Javaux, and C. L. Bielders
Hydrol. Earth Syst. Sci., 17, 87–101, https://doi.org/10.5194/hess-17-87-2013, https://doi.org/10.5194/hess-17-87-2013, 2013
A. Rodhe
Hydrol. Earth Syst. Sci., 16, 3075–3082, https://doi.org/10.5194/hess-16-3075-2012, https://doi.org/10.5194/hess-16-3075-2012, 2012
G. Y. Gao, B. J. Fu, Y. H. Lü, Y. Liu, S. Wang, and J. Zhou
Hydrol. Earth Syst. Sci., 16, 2347–2364, https://doi.org/10.5194/hess-16-2347-2012, https://doi.org/10.5194/hess-16-2347-2012, 2012
C. E. Ballard, N. McIntyre, and H. S. Wheater
Hydrol. Earth Syst. Sci., 16, 2299–2310, https://doi.org/10.5194/hess-16-2299-2012, https://doi.org/10.5194/hess-16-2299-2012, 2012
D. M. Krzeminska, T. A. Bogaard, Th. W. J. van Asch, and L. P. H. van Beek
Hydrol. Earth Syst. Sci., 16, 1561–1576, https://doi.org/10.5194/hess-16-1561-2012, https://doi.org/10.5194/hess-16-1561-2012, 2012
T. Maurer, A. Schneider, and H. H. Gerke
Hydrol. Earth Syst. Sci., 15, 3617–3638, https://doi.org/10.5194/hess-15-3617-2011, https://doi.org/10.5194/hess-15-3617-2011, 2011
J. Klaus and E. Zehe
Hydrol. Earth Syst. Sci., 15, 2127–2144, https://doi.org/10.5194/hess-15-2127-2011, https://doi.org/10.5194/hess-15-2127-2011, 2011
Cited articles
Aleotti, P.: A warning system for rainfall-induced shallow failures, Eng. Geol., 73, 247–265, 2004.
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, 2002.
Bartlett, P. A., MacKay, M. D., and Verseghy, D. L.: Modified snow algorithms in the Canadian land surface scheme: Model runs and sensitivity analysis at three boreal forest stands, Atmos. Ocean, 44, 207–222, 2006.
Baum, R. L., Godt J. W., and Savage, W. Z.: Estimating the timing and location of shallow rainfall induced landslides using a model for transient, unsaturated infiltration, J. Geophys. Res., 115, F03013, https://doi.org/10.1029/2009JF001321, 2010.
Bernier, N. B., Bélair, S., Bilodeau, B., and Tong, L.: Near-Surface and Land Surface Forecast System of the Vancouver 2010 Winter Olympic and Paralympic Games, J. Hydrometeorol., 12, 508–530, 2011.
Bloschl, G., Kirnbauer, R., and Gutknecht, D.: Distributed snowmelt simulations in an alpine catchment 1. Model evaluation on the basis of snow cover patterns, Water Resour. Res., 27 3171–3179, 1991.
Brun, E., Martin, E., Simon, V., Gendre, C., and Coleou, C.: An energy and mass balance model of snowcover suitable for operational avalanche forecasting, J. Glaciol., 35, 333–342,1989.
Cannon, S. H., Boldt, E. M., Laber, J. L., Kean, J. W., and Staley, D. M.: Rainfall intensity–duration thresholds for postfire debris-flow emergency-response planning, Nat. Hazards, 59, 209–236, 2011.
Cardinali, M., Ardizzone, F., Galli, M., Guzzetti, F., and Reichenbach, P.: Landslide triggered by rapid snow melting: the December 1996-January 1997 event in Central Italy, in: Proceedings European Geophysical Society 1° Plinius Conference on Mediterranean Storms, Maratea, Italy, 14–16 October 1999, 439–448, 2000.
Cardoso, M. E., Salcedo, R. L., and de Azevedo, S. E.:The simplex-simulated annealing approach to continuous non-linear optimization, Comput. Chem. Eng., 20, 1065–1080, 1996.
Ceaglio, E., Meusburger, K., Freppaz, M., Zanini, E., and Alewell, C.: Estimation of soil redistribution rates due to snow cover related processes in a mountainous area (Valle d'Aosta, NW Italy), Hydrol. Earth Syst. Sci., 16, 517–528, https://doi.org/10.5194/hess-16-517-2012, 2012.
Chleborad, A. F.: Temperature, snowmelt, and the onset of spring season landslides in the central Rocky Mountains, US Geological Survey, Open-File Report 97-27, 35 pp., 1997.
Damiano, E., Olivares, L., and Picarelli, L.: Steep-slope monitoring in unsaturated pyroclastic soils, Eng. Geol., 137–138, 1–12, 2012.
Garen, D. C. and Marks, D.: Spatially distributed energy balance snowmelt modelling in a mountainous river basin: estimation of meteorological inputs and verification of model results, J. Hydrol., 315, 126–153, 2005.
Gokceoglu, C., Sonmez, H., Nefeslioglu, H. A., Duman, T. Y., and Can, T.: Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity, Eng. Geol., 81, 65–83, 2005.
Gustafsson, D., Waldner, P. A., and Stähli, M.: Factors governing the formation and persistence of layers in a subalpine snowpack, Hydrol. Process., 18, 1165–1183, https://doi.org/10.1002/hyp.1398, 2004.
Guzzetti, F.: Landslide fatalities and the evaluation of landslide risk in Italy, Eng. Geol., 58, 89–107, 2000.
Guzzetti, F., Reichenbach, P., Cardinali, M., Ardizzone, F., and Galli, M.: The impact of landslides in the Umbria region, central Italy, Nat. Hazards Earth Syst. Sci., 3, 469–486, https://doi.org/10.5194/nhess-3-469-2003, 2003.
Hedstrom, N. R. and Pomeroy, J. W.: Measurments and modeling of snow interception in the boreal forest, Hydrol. Process., 12, 1611–1625, 1998.
Herrero, J., Polo, M. J., Moñino, A., and Losada, M. A.: An energy balance snowmelt model in a Mediterranean site, J. Hydrol., 371, 98–107, 2009.
Himmelblau, D. M.: Applied Non-Linear Programming, McGraw- Hill, New York, 1972.
Hock, R.: A distributed temperature-index ice- and snowmelt model including potential direct solar radiation, J. Glaciol., 45, 101–111, 1999.
Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol., 282, 104–115, 2003.
Jost, G., Moore, R. D., Smith, R., and Gluns, D. R.: Distributed temperature-index snowmelt modelling for forested catchments, J. Hydrol., 420–421, 87–101, 2012.
Kawagoe, S., Kazama, S., and Sarukkalige, P. R.: Assessment of snowmelt triggered landslide hazard and risk in Japan, Cold Reg. Sci. Tech., 58, 120–129, 2009.
Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., Brown, W. M. III, Ellen, S. D., Harp, E. L., Wieczorek, G. F., Alger, C. S., and Zatkin, R. S.: Real-time landslide warning during heavy rainfall, Science, 238, 921–925, 1987.
Kustas, W. P., Rango, A., and Uijlenhoet, R.: A simple energy budget algorithm for the snowmelt runoff model, Water Resour. Res., 30, 1515–1527, 1994.
Lagomarsino, D., Segoni, S., Fanti, R., and Catani, F.: Updating and tuning a regional-scale landslide early warning system, Landslides, 10, 91–97, https://doi.org/10.1007/s10346-012-0376-y, 2013.
Lakhankar, T. Y., Muñoz, J., Romanov, P., Powell, A. M., Krakauer, N. Y., Rossow, W. B., and Khanbilvardi, R. M.: CREST-Snow Field Experiment: analysis of snowpack properties using multi-frequency microwave remote sensing data, Hydrol. Earth Syst. Sci., 17, 783–793, https://doi.org/10.5194/hess-17-783-2013, 2013.
Li, H.-Y. and Wang, J.: Simulation of snow distribution and melt under cloudy conditions in an Alpine watershed, Hydrol. Earth Syst. Sci., 15, 2195–2203, https://doi.org/10.5194/hess-15-2195-2011, 2011.
Marks, D., Domingo, J., Susong, D., Link, T., and Garen, D.: A spazially distributed energy balance snowmelt model for application in mountain basins, Hydrol. Process., 13, 1935–1959, 1999.
Marsili-Libelli, S.: Parameter estimation of ecological models, Ecol. Model., 62, 233–258, 1992.
Martelloni, G., Segoni, S., Fanti, R., and Catani, F.: Rainfall thresholds for the forecasting of landslide occurrence at regional scale, Landslides, 9, 485–495, 2012.
Martin, E., Timbal, B., and Brun, E.: Downscaling of general circulation model outputs: simulation of the snow climatology of the French Alps and sensitivity to climate change, Clim. Dynam., 13, 45–56, 1996.
Naudet, V., Lazzari, M., Perrone, A., Loperte, A., Piscitelli, S., and Lapenna, V.: Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, southern Italy), Eng. Geol., 98, 156–167, 2008.
Nelder, J. A. and Mead, R.: A simplex method for function minimization, Comput. J., 7, 308–313,1965.
Rango, A. and Martinec, J.: Revisiting the degree-day method for snowmelt computations, Water Resour. Bull., 31, 657–669, 1995.
Ryan, W. A., Doesken, N. J., and Fassnacht, S. R.: Preliminary results of ultrasonic snow depth sensor testing for National Weather Service (NWS) snow measurements in the US, Hydrol. Process., 22, 2748–2757, 2008.
Rosi, A., Segoni, S., Catani, F., and Casagli N.: Statistical and environmental analyses for the definition of a regional rainfall thresholds system for landslide triggering in Tuscany (Italy), J. Geogr. Sci., 22, 617–629, 2012.
Rossi, G., Catani, F., Leoni, L., Segoni, S., and Tofani, V.: HIRESSS: a physically based slope stability simulator for HPC applications, Nat. Hazards Earth Syst. Sci., 13, 151–166, https://doi.org/10.5194/nhess-13-151-2013, 2013.
Rousselot, M., Durand, Y., Giraud, G., Merindol, L., and Daniel, L.: Analysis and forecast of extreme new-snow avalanches: a numerical study of the avalanche cycles of February 1999 in France, J. Glaciol., 56, 758–770, 2010.
Schmidt, R. A. and Gluns, R.: Snowfall interception on branches of three conifer species, Can. J. Forest Res., 21, 1262–1269, 1991.
Segoni, S., Leoni, L., Benedetti, A. I., Catani, F., Righini, G., Falorni, G., Gabellani, S., Rudari, R., Silvestro, F., and Rebora, N.: Towards a definition of a real-time forecasting network for rainfall induced shallow landslides, Nat. Hazards Earth Syst. Sci., 9, 2119–2133, https://doi.org/10.5194/nhess-9-2119-2009, 2009.
Segoni, S., Rossi, G., and Catani, F.: Improving basin scale shallow landslide modelling using reliable soil thickness maps, Nat. Hazards, 61, 85–101, 2012.
Takeuchi, Y., Torita, H., Nishimura, K., and Hirashima, H.: Study of a large-scale dry slab avalanche and the extent of damage to a cedar forest in the Makunosawa valley, Myoko, Japanm, Ann. Glaciol., 52, 119–128, 2011.
US Army Corps of Engineers: Snow hydrology, summary report of the snow investigations, Technical report, US Army Corps of Engineers, North Pacific Division, Portland, Oregon, 1956.
Wieczorek, G. F.: Landslide triggering mechanisms, in: Landslides: Investigation and Mitigation, edited by: Turner, A. K. and Schuster, R. L., Washington DC, Transportation Research Board, National Research Council, Special Report, 76–90, 1996.
Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P.: A distributed hydrology-vegetation model for complex terrain, Water Resour. Res., 30, 1665–1679, 1994.
Zanotti, F., Endrizzi, S., Bertoldi, G., and Rigon, R.: The GEOTOP snow module, Hydrol. Process., 18, 3667–3679, https://doi.org/10.1002/hyp.5794, 2004.