Articles | Volume 16, issue 12
Hydrol. Earth Syst. Sci., 16, 4693–4705, 2012
https://doi.org/10.5194/hess-16-4693-2012
Hydrol. Earth Syst. Sci., 16, 4693–4705, 2012
https://doi.org/10.5194/hess-16-4693-2012

Research article 18 Dec 2012

Research article | 18 Dec 2012

Modelling canopy and litter interception in commercial forest plantations in South Africa using the Variable Storage Gash model and idealised drying curves

H. H. Bulcock and G. P. W. Jewitt

Related authors

Editorial: Special Issue on Water security and the food-water-energy nexus: drivers, responses and feedbacks at local to global scales
Barry Croke and Graham Jewitt
Proc. IAHS, 376, 1–1, https://doi.org/10.5194/piahs-376-1-2018,https://doi.org/10.5194/piahs-376-1-2018, 2018
Scenario-based impacts of land use and climate changes on the hydrology of a lowland rainforest catchment in Ghana, West Africa
Michael S. Aduah, Graham P. W. Jewitt, and Michele L. W. Toucher
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-591,https://doi.org/10.5194/hess-2017-591, 2017
Preprint withdrawn
Short summary
Assessment of the Hype Model for Simulation of Water and Nutrients in the Upper uMngeni River Catchment in South Africa
Jean N. Namugize, Graham P. W. Jewitt, David Clark, and Johan Strömqvist
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-365,https://doi.org/10.5194/hess-2017-365, 2017
Revised manuscript has not been submitted
Short summary
Extending periodic eddy covariance latent heat fluxes through tree sap-flow measurements to estimate long-term total evaporation in a peat swamp forest
A. D. Clulow, C. S. Everson, M. G. Mengistu, J. S. Price, A. Nickless, and G. P. W. Jewitt
Hydrol. Earth Syst. Sci., 19, 2513–2534, https://doi.org/10.5194/hess-19-2513-2015,https://doi.org/10.5194/hess-19-2513-2015, 2015
Short summary
Drivers of spatial and temporal variability of streamflow in the Incomati River basin
A. M. L. Saraiva Okello, I. Masih, S. Uhlenbrook, G. P. W. Jewitt, P. van der Zaag, and E. Riddell
Hydrol. Earth Syst. Sci., 19, 657–673, https://doi.org/10.5194/hess-19-657-2015,https://doi.org/10.5194/hess-19-657-2015, 2015
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models
Thomas Lees, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 5517–5534, https://doi.org/10.5194/hess-25-5517-2021,https://doi.org/10.5194/hess-25-5517-2021, 2021
Short summary
Numerical daemons of hydrological models are summoned by extreme precipitation
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021,https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
How is Baseflow Index (BFI) impacted by water resource management practices?
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021,https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Technical note: RAT – a robustness assessment test for calibrated and uncalibrated hydrological models
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci., 25, 5013–5027, https://doi.org/10.5194/hess-25-5013-2021,https://doi.org/10.5194/hess-25-5013-2021, 2021
Short summary
Reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time distributions and increases young water fractions in a headwater catchment
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021,https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary

Cited articles

Aston, A. R.: Rainfall interception by eight small trees, J. Hydrol., 42, 383–396, 1979.
Battaglia, M., Sands, P., White, D., and Mummery, D.: CABALA: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support, Forest Ecol. Manag., 193, 251–282, 2004.
Blow, F. E.: Quantity and hydrologic characteristics of litter and upland oak forests in eastern Tennessee, J. Forest, 53, 190–195. 1955.
Bulcock, H. H. and Jewitt, G. P. W.: Field data collection and analysis of canopy and litter interception in commercial forest plantations in the KwaZulu-Natal Midlands, South Africa, Hydrol. Earth Syst. Sci., 16, 3717–3728, https://doi.org/10.5194/hess-16-3717-2012, 2012.
Calder, I. R.: A stochastic model of rainfall interception, J. Hydrol., 89, 65–71, 1986.
Download